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Abstract

Nanotechnology is on the brink of transforming numerous industrial sectors, and the petroleum
industry stands as a front-runner in embracing these revolutionary advancements. In recent years, a
growing interest has occurred in leveraging nanotechnology within the petroleum industry. Extensive
research studies on nano-enhanced oil recovery (nano-EOR) have consistently delivered promising
outcomes, underscoring its potential to elevate oil production substantially. However, a notable
challenge persists within this domain due to the limited data availability concerning nanoparticle
transport in porous media. This paper uses machine learning techniques to predict nanoparticle
transport in porous media. This study uses the finite difference method to generate simulated datasets
from a modified linear adsorption model. These simulated datasets are used to train machine learning
models for prediction by considering artificial neural network (ANNs), decision tree (DT), and random
forest (RF). We achieve mean squared values for ANN as 0.0478 (training), 0.0496 (testing), 0.0509
(validation), and R-squared values as 0.9798 (training), 0.9780 (testing), 0.9773 (validation), and for DT
and RF mean squared values are 0.014683, 0.009807, and R squared values are 0.928775, 0.952425.

Keywords: Enhanced oil recovery; nanoparticles; machine learning; fluid flow

AMS 2020 Classification: 35Q35; 68T07

1 Introduction

Enhanced oil recovery (EOR) is a technique employed to augment the production of hydrocarbons
from a well. The selection of an appropriate EOR method is contingent upon the data amassed
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during the reservoir assessment phase. Nanoparticles (NPs) are utilized in EOR because a sig-
nificant portion, approximately 60% to 70% of the hydrocarbons in most oil reservoirs remain
unrecovered through primary and secondary recovery methods. Nanometer-sized particles can
migrate, for instance, through the process of diffusion, into the confined pore throats within
reservoir rock formations. Within these narrow spaces, these particles can engage in various
physical and chemical interactions with the components of the reservoir fluid-rock system. These
interactions play a pivotal role in altering the multiphase flow parameters within the reservoir. Ul-
timately, this phenomenon contributes significantly to enhancing oil recovery from the reservoirs,
leading to more efficient and effective extraction processes [1, 2]. Silica-based NPs stand out as
very promising materials in a variety of applications, owing to the ease of manufacture and the
diversity in designing their surface features [3–5].
This paper employs numerical modeling, specifically based on filtration theory, to generate
datasets essential for the application of machine learning techniques aimed at predicting nanopar-
ticle transport within porous media. The motivation behind this approach is the scarcity of
publicly available datasets concerning nanoparticle transport in porous media, largely due to
the confidential nature of most datasets from petroleum engineering companies. To address this
data gap, our study generates simulated datasets using a mathematical continuum model. This
synthetic dataset is subsequently utilized as input for training machine learning models, with
a specific focus on predicting both nanoparticle concentration and pore volume. The machine
learning techniques utilized for these predictions encompass Artificial neural network (ANN),
Decision tree (DT), and Random forest (RF) algorithms.
The paper is organized as follows: Section 2 presents a comprehensive overview of EOR using
nanoparticles. Section 3 outlines our research methodology, while Section 4 introduces the
mathematical model employed in this study. Section 5 introduces Machine learning modeling.
Moving on to Section 6, we showcase the results of our research and engage in discussions. Finally,
Section 7 summarizes our findings and presents our conclusion and future research scope.

2 Background

Enhanced oil recovery with nanoparticles

Traditional oil extraction techniques, including primary and secondary methods, typically recover
around one-third of the initial oil reserves present in the reservoir. Global reserves are estimated
to be 1.5 trillion barrels. Using a value of one-third of 1.5 trillion barrels, the residual oil after
conventional recovery is predicted to be around 1.0 trillion barrels. Recognizing the significant
untapped potential in remaining oil reserves, various EOR techniques, such as thermal recovery,
chemical flooding, or gas flooding, have been developed to target these vast and underutilized
resources [6, 7]. Finding a cost-effective, environmentally friendly, and effective way to extract
the residual oil after primary and secondary recovery is still difficult. In addition, present tertiary
procedures are reliant on crude oil prices. In order to develop sustainable, economical, cost-
effective, efficient, and ecologically friendly solutions, further research is required. Additionally,
oil corporations are constantly under pressure and searching for innovative methods to recover
trapped oil, which has accounted for a significant amount of the overall cost of oil recovery.
Due to the ongoing rise in global energy demand, technology for locating hydrocarbon sources or
improving oil recovery must be developed [8]. Numerous research on the use of NPs in EOR has
been undertaken. Using NPS suspensions for EOR has numerous significant advantages. These
benefits include strong stability, which is mostly due to the supremacy of surface forces over gravity,
allowing for constant performance. Furthermore, the properties of NPs are intrinsically controlled
by their size and form, allowing for easy tailoring during the production process. The chemical
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properties of NPs are strongly related to their surface coating, allowing for simple customization
from hydrophilic to hydrophobic, depending on application needs. Notably, approximately 99.8%
of silica NPs consist of silicon dioxide, a prevalent constituent in sandstone, rendering their use
environmentally friendly. Moreover, the cost-effectiveness of NPs makes them a more economical
option compared to various other chemical EOR methods.
Additionally, NPs are effective at EOR through a variety of mechanisms, including the lowering of
interfacial tension, regulating mobility, and changing wettability. Laboratory tests demonstrate
that by using NPs, rock wettability may be changed from strongly oil-wet to strongly water-wet,
considerably increasing oil recovery [9–11].

Nanoparticles transport in porous media

Lecoanet et al. [12] conducted systematic studies on the transport of nanomaterials to assess their
mobility in glass-bead columns saturated with water. These nanomaterials have sizes ranging from
1.2 nm to 303 nm. Additionally, Lecoanet et al. [13] assessed the mobility of fullerene and oxide
NPs within porous media under varying flow rates. Their findings indicated that, for particles
with larger diameters (>100 nm), a slower flow rate led to increased retention, characterized
by delayed breakthrough and a reduced plateau value, while other flow conditions remained
constant. Jeong and Kim [14] explored copper oxide NPs transport in a two-dimensional porous
medium. They observed the aggregation of NPs within the pores and identified that nanoparticle
deposition and aggregation were notably influenced by both flow velocity and the surfactant
content present in the nanoparticle dispersion.
Wasan and Nikolov’s [15] research delved into the study of how nanofluids, when combined with
surfactants, behaved when applied to a solid surface, specifically focusing on their spreading
characteristics. The most prevalent non-toxic inorganic substance is silica NPs, which are also
less expensive to produce than other NPs [16, 17]. Ju et al. [18] divided polysilicon nanomaterials
into three categories based on their wettability behavior: NWP, HLP, and LHP. Additionally, they
claimed that polysilicon NPs could alter the wettability of porous surfaces when adsorbed on them.
Furthermore, silica NPs show good thermal stability when heated to 650°C, as demonstrated
by infrared spectrum, x-ray diffraction, and SEM examination, making them appropriate for
high-temperature reservoirs [19]. Ju and Fan [20] established a model for the transport of NPs
within a two-phase flow in porous media, utilizing the framework derived from the colloid model
of fine particle transport in two-phase flow within porous media [21]. El-Amin et al. [22–25]
have conducted simulations and modeling focused on the transport of NPs in connection with
two-phase flow within porous media.
Artificial intelligence (AI) technologies are becoming more and more widespread because of
their strong generalization potential and rapid reaction [26]. Machine learning shows promis-
ing potential in augmenting and improving traditional reservoir engineering methods across
a broad spectrum of reservoir engineering challenges [27]. ML models discover relationships
between inputs and outputs. ML may address problems such as regression, clustering, filtering,
classification, and forecasting. ANN, SVM, RF, GBR, and DT are examples of machine-learning
approaches. Traditional mathematical models employed in the simulation of reservoir fields are
indispensable for understanding and predicting oil recovery processes. Nevertheless, they come
with inherent complexities and demand substantial computational resources, leading to extended
processing times. The intricate nature of these models can pose significant challenges in terms of
both their development and execution. As such, there is a growing need for innovative approaches,
including machine learning and data-driven techniques, to streamline and enhance the efficiency
of reservoir field simulations, potentially reducing computational burdens while maintaining
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accuracy and reliability. ML petroleum researchers frequently confront the challenge of globalizing
their models to yield more broad correlations outside the test data set. ML applications have
constraints and problems that hamper globalization, including overfitting, coincidence, excessive
training, uninterpretable findings, and bias. Additionally, these models demand extensive data,
which may not always be available. All these issues are confirmed by many studies [28–31].
Subasi et al. [32] created a machine learning model for predicting reservoir permeability based on
well-log data using SGB regression. Their research puts many ML techniques to the test, including
RF, ANN, KNN, SVM, and SGB. They discovered that SGB outperformed other evaluated models
in numerous evaluation metrics tests, including accuracy and root mean squared error. In a study
conducted by J. Y. Lee et al. [33], an ANN was employed to train on data from 230 successful
EOR projects. The initial objective of this endeavor was to develop a predictive model capable
of determining the most suitable EOR method for a candidate reservoir. By utilizing data from
previous successful projects, the ANN was able to learn and identify patterns and correlations
that could inform EOR method selection. This innovative approach holds significant promise in
aiding decision-makers within the oil and gas industry in optimizing EOR strategies for improved
reservoir performance. Irfan and Shafie [34] solved and simulated fluid flow problems using deep
learning and ANN. Alwated and El-Amin [35] used ML techniques for the prediction of NPs
transport in porous media. El-Amin and Alwated [36] used ML techniques for the prediction of
NPs transport with the two-phase flow in porous media.

3 Research methodology

The research involved a series of distinct steps: First, developing a mathematical model for
simulating NPs transport in porous media. Second, solving the model using FDM and generating
simulated datasets for ML. Third, specific ML techniques, such as ANN, DT, and RF, should be
implemented to predict NPs’ transport in porous media. Performance metrics like MSE and R2

were used to evaluate model effectiveness. These actions collectively constituted the research
process. The strategy used to perform this research is summarized in a flow chart in Figure 1.

4 Mathematical model

Before describing the model, some assumptions are required.

• Homogeneous porous medium.
• Incompressible fluid and medium.
• Constant rate at isothermal state.
• Dispersion occurs in a parallel direction.

Advection-dispersion equation (ADE) is widely used to describe particle flow in porous media.

∂c
∂t

= D
∂2c
∂x2 − v

∂c
∂x

, (1)

where c represents the concentration of the particle, and D represents the dispersion coefficient.
D ∂2c

∂x2 represents the dispersion term and v ∂c
∂x represents the advection term.

The term advection refers to particle transport driven by the bulk motion of the fluid, dependent
on velocity and concentration. In the context of NPs flow, advection stands out as the primary
driving force behind particle motion. Dispersion, which characterizes the propensity of particles
to disperse and mix due to molecular diffusion and velocity gradients, is the second essential
process to take into account. Dispersion encompasses both diffusion and mechanical dispersion.
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Figure 1. Flowchart of research methodology



Patel et al. | 549

Additionally, in certain scenarios, particle-medium surface interactions may occur, necessitating
their inclusion in the equation.
Since there is always a reaction between NPs and the solid pore surface, the expression above Eq.
(1) is only applicable for the description of passive tracers and fails for modeling nanoparticle flow
because deposition will take place [37]. The reaction term is, therefore, included to account for the
binding of particles to the grain surface.Reaction term is described as ρb

ϕ
∂s
∂t , Where ϕ is porosity, ρb

is the bulk density, and s is the attachment concentration on solid surface.
Now, the ADE equation is

∂c
∂t

+
ρb
ϕ

∂s
∂t

= D
∂2c
∂x2 − v

∂c
∂x

. (2)

Agista [38] proposed a modified linear adsorption model.They assume that s is linear to c means

s = kccη, (3)

ρb
ϕ

∂s
∂t

=
ρb
ϕ

∂(kccη)

∂t
, (4)

where c is concentration of particle, η is the collector efficiency, and kc is concentration distribution
coefficient. By combining Eqs. (3) and (4) with Eq. (2) Hence, the final equation is written as

∂c
∂t

+
ρb
ϕ

∂(kccη)

∂t
= D

∂2c
∂x2 − v

∂c
∂x

. (5)

The linear expression assumes that the equilibrium between the adsorbed species concentration
on the solid and the dispersed concentration on the surrounding fluid is attained in a short period.
This suggests that any modification in the injected concentration will have an immediate and
proportional impact on the concentration of adsorbed species. As a result, adsorption is assumed
to be a reversible process. By implementing a sufficient post-flush step (c = 0), it becomes possible
to completely remove all adsorbed particles, thereby reducing the adsorbed concentration to zero
(s = 0).
The ICs :

c(x, 0) = 0, s(x, 0) = 0, for 0 ≤ x ≤ L. (6)

The BCs are :

c(0, t) =

{
c0, for 0 ≤ t ≤ ti,

0, for t > ti,
(7)

cx(L, t) = 0, for t > 0.
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5 Machine learning modeling

Artificial neural network

Perceptrons can only categorize instances that are linearly separable. Input instances are linearly
separable if they can be divided into categories by a straight line or plane. The perceptron will
then determine the answer. If the cases are non-linear, Separate learning will never be able to
classify all situations accurately. Artificial neural networks have been developed to address this
issue. [39] Zang presented an overview of existing work in ANN. ANN is an ML model that can
recognize and classify complex patterns [40]. ANN is motivated by how human brains function
and want to mimic that action. Like human brains attempt to predict patterns, ANN function
as a model; they employ neurons, linked building blocks that resemble the brain’s cells. These
neurons get data, run it through specific rules, and produce something. Three layers make up the
fundamental structure of an ANN: the input layer, hidden layers, and output layer.
Input layer nodes operate similarly to receivers in that they do not change the data they receive.
Multiple nodes in the hidden layers receive the same value from them. Alternatively, they
replicate the input data and deliver it to the hidden nodes for processing. Hidden layers perform
considerable input value adjustments in neural networks. Either they directly access the input
layer or other hidden nodes for information. Hidden layers are linked to output nodes or other
hidden layers. These layers use a weighted connection approach to manage the data. Hidden
layers in a neural network perform considerable input value adjustments. Either other hidden
nodes or the input layer directly provides them with information. Hidden layers are linked
to other hidden layers or output nodes. These layers use a system of weighted connections to
manage the data. The process is as follows: Each input value is multiplied by a weight, which
is a predetermined number. The weighted inputs are combined to produce a single number as
the last step. By using this technique, the hidden layers can carry out complex calculations and
extract important information from the incoming input. The number of hidden layers that neural
networks use will depend on how challenging the problem that they are trying to solve. The
output layer receives data from either the hidden or input layers. Its principal function is to return
an output value that represents the expected response variable.
ANN applications may be assessed based on data analysis characteristics, including accuracy,
processing speed, delay, performance, fault tolerance, volume, scalability, and convergence [41].
ANNs offer high-speed processing and parallel implementation, highlighting the need for further
study in this field of research [42]. ANN is effective for resolving issues with text data, image data,
and tabular data. The learning rate, which can range between 0 and 1, influences how rapidly the
network learns from data. A greater learning rate means that the network learns faster, whereas a
lower learning rate suggests that the network learns more slowly.

Decision tree

Murthy [43] offered an overview of work on DT and a sample of their utility for both newbies and
experts in the field of machine learning. Furthermore, Quinlan [44] suggests that decision trees
may be transformed into rules by defining unique rules for each path from root to leaf. Rules can
be derived directly from training data using rule-based algorithms. Furnkranz [45] presented a
comprehensive survey of rule-based techniques. DT is a statistical model that determines a target
value based on binary rules. It comprises branches, nodes, and leaves and is a straightforward
yet effective paradigm. DT is frequently used in machine learning to solve classification and
regression issues [46]. They may also be seen as a series of decision-making steps, where each
node stands for a particular set of rules. The evaluation moves forward by selecting one of the
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Table 1. Evaluation metrics

MSE 1
n
∑n

k=1(actualk − predictedk)
2

R2 1 − MSEmodel
MSEbase

Table 2. Simulation parameters [38, 47]

vp (cc) 14.8 ∗ 10−6
ϕ (%) 47.3

dp (nm) 100
ci (wt%) 0.1
v (m/s) 0.003093

ρb (kg/m3) 1.28 ∗ 103

q (m3/s) 8.33 ∗ 10−6
D (m2/s) 2.1 ∗ 10−6

η 0.00244
kc 0.135

two branches based on the result of the rule, starting at the root node. The final leaf, which often
represents the desired value, is reached after continuing this procedure. DT provides a simple and
understandable issue-solving method in many fields.

Random forest

Ho [48] suggested the random-subspace approach, which was later formalized as the random
forest by Breiman [49]. The popular supervised machine learning method RF is used for regression
and classification applications. Multiple DTs are combined using ensemble learning on various
dataset subsets. It improves accuracy and prevents overfitting by averaging or majority voting the
predictions of individual trees. Its key strength is the algorithm’s capacity to manage complicated
information and make reliable predictions. The accuracy of RF increases with the number of
trees by identifying more varied patterns. RF is well-known for its adaptability and consistent
performance in various domains and is widely utilized in finance, healthcare, Enhanced oil
recovery, and natural language processing.

Evaluation metrics

Mean squared error (MSE), and R squared (R2) are evaluation metrics that are frequently used
to evaluate machine learning models. These metrics offer insights into model performance by
measuring the average squared difference and standard deviation of residuals.

6 Results and discussion

Simulation parameter

Core-flooding data [47] are utilized as the input for a modified linear model in this section.
Laboratory studies involved the injection of iron oxide (Experiment 92) into a saturated Boise
sand pack medium and other data taken from [38]. Experiment (92) explored the sequestration
of iron oxide NPs under conditions of increased flow rates and reduced particle concentrations.
Simulation parameters are detailed in Table 2.
The Eq. (5), together with the initial condition (6) and boundary condition (7), is solved numerically
using the FDM and implemented within the MATLAB environment. Figure 2 shows an example
of running the numerical method and plotting NPs concentration versus the pore volume.
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Figure 2. NPs concentration against pore volume

Machine learning results and discussion

The FDM approach is used to build the simulated datasets. The simulated datasets contains
10 features, including ρb (bulk density), D (dispersion coefficient), η (collector efficiency), kc
(distribution coefficient), v (Velocity), ϕ (porosity), t (time), x (space), c (concentration), PV (pore
volume). Here c (concentration), and PV (pore volume) are selected as dependent variables for
prediction, and others are selected as independent variables. Table 3 represents The statistical
information of the datasets. The dataset summary includes all instances, along with essential
statistics like mean, standard deviation, minimum, quartiles, median, and maximum values
for each feature. The hardware we used for training consisted of a Windows 11 Home Single
Language operating system, with an AMD Ryzen 5 3500U CPU featuring 4 cores and a clock
frequency of 2.10 GHz, along with 8 GB of RAM.
Simulated datasets generated from numerical simulation results are used in ML algorithms. Three
different ML algorithms were used for the design prediction models, including ANN, DT, and RF.
The ANN model is mainly useful in cases where complex nonlinearities are common, such as fluid
dynamics and other fields, as it can learn complex non-linear dependencies. Similarly, Decision
Trees and Random Forests are known for interpretability, and they reduce overfitting and deliver
substantial advantages in real-world settings where actionable insights are paramount, such as
surveillance systems or early feasibility studies. The data set is categorized into two parts in a ratio
of 70:30, which means 70% for training and 30% for testing For DT and RF for ANN we split 30%
data in testing and validation. In ANN, 10 hidden layers are employed, and the network is trained
using the Levenberg-Marquardt optimization method due to fast convergence with mean square
error (MSE). Tanh(x) function is considered an activation function; we trained the neural network
in MATLAB (neural network toolbox). Figure 3 represents ANN model training performance.
ANN achieved the best value for the R squared method for training, testing, validation, and
overall values, which are 0.9798, 0.9780, 0.9773, and 0.9792, and MSE values for training, testing,
validation 0.0478, 0.0496, and 0.0509. Figure 4 represents the Values of regression for the ANN
model. Figure 5 represents the error histogram of the ANN model. In Figure 6, Mu represents the
gradients and step size, with a Mu parameter set at 1e−05, and the gradient value is recorded as
0.00056401. The graph illustrates a trend where both the gradient and Mu values decrease as the
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Table 3. The statistical information of the dataset

ρb D η kc v ϕ t x c PV
count 6076.0 6076.0 6076.0 6076.0 6076.0 6076.0 6076.0 6076.0 6076.0 6076.0
mean 1280.0 0.000002 0.00244 0.135 0.003093 0.473000 249.50 0.150000 0.448286 2.575000
std 0.0 0.000000 0.00000 0.000 0.000000 5.55 × 10−17 144.08 0.086624 0.455514 1.487044
min 1280.0 0.000002 0.00244 0.135 0.003093 0.473000 0.000 0.000000 0.000000 0.000000
25% 1280.0 0.000002 0.00244 0.135 0.003093 0.473000 124.75 0.075000 0.000010 1.287500
50% 1280.0 0.000002 0.00244 0.135 0.003093 0.473000 249.50 0.150000 0.228976 2.575000
75% 1280.0 0.000002 0.00244 0.135 0.003093 0.473000 374.25 0.225000 0.995902 3.862500
max 1280.0 0.000002 0.00244 0.135 0.003093 0.473000 499.00 0.300000 1.000000 5.150000

Figure 3. ANN model training performance

time period progresses.

For DT and RF The dataset is split into training and testing using the train test split function
from the Scikit-learn module. Four variables are produced by it: x test, y test, x train, and y
train. the model is trained with the x train and y train, while the model is assessed using the x
test. We used the default hyperparameters provided by the sci-kit-learn library in Python for RF
(100 estimators, max features set to 1.0, and max depth set to None) and for DT (max features
and max depth are none). Contrasting the anticipated value with the actual value can reveal
the error and the precision of the model. DT achieved R squared, MSE, RMSE, and MAE values
of 0.928775, 0.014683, 0.086180, 0.027885, and RF achieved R squared, MSE, RMSE, and MAE
values of 0.952425, 0.009807, 0.070340, 0.025088 respectively. Figure 7 represents the scatter plot of
DT, and Figure 8 represents the scatter plot of RF. In Figure 4, Figure 7 and Figure 8, the dotted
diagonal line represents the line of perfect prediction. For values ranging approximately between 1
and 5, the predictions are closely aligned with the values, as indicated by points clustering around
the diagonal line. This suggests that the model is quite accurate for higher values for predictions.
On the other hand, there is a noticeable clustering of points below the diagonal line for true values
between 0 and around 1. The reason is that the cluster is 0 to 1 May, which is slightly outside the
diagonal line because the actual values are minimal, so in this range, the performance is slightly
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Figure 4. Values of regression for the ANN model

Figure 5. Error histogram
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Figure 6. Transition statistics

Table 4. Evaluation metrics results for ANN, DT, and RF models

Model R2 MSE
ANN (Training) 0.9798 0.0478
ANN (Testing) 0.9780 0.0496

ANN (Validation) 0.9773 0.0509
DT 0.9287 0.0146
RF 0.9524 0.0098

outside the diagonal line. This indicates that the model tends to under-predict these values; the
predicted values are lower than the true values. Table 4 represents the overall performance of
machine learning models.

7 Conclusion and future research scope

Conclusion

Many studies on the application of nanotechnology in the petroleum sector, particularly in EOR,
have yielded encouraging findings. With various advantages, nano-EOR is recommended to
replace conventional chemical EOR for enhancing oil recovery efficiency: (1) NPs exhibit the
remarkable ability to enhance fluid performance while requiring only minimal material usage.
This efficient utilization of resources underscores the economic and environmental advantages
of nanotechnology in the petroleum industry. (2) Moreover, the improvements in heat and
mass transfer facilitated by nanoparticles make them a viable option for application in high-
temperature conditions. This characteristic opens the door to a range of possibilities for leveraging
nanotechnology in the petroleum sector, particularly in scenarios where elevated temperatures are
a significant factor.
The modified Linear (ML) model is employed in our study, and its numerical solution is obtained
through the Finite Difference Method. To ensure the stability and reliability of the simulation,
Neumann stability analysis is also applied. This analysis is crucial in achieving stable and accurate
results in our modeling and simulation process. The key reason for considering this problem as
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Figure 7. Scatter plot of Decision tree

Figure 8. Scatter plot of Random forest

a machine learning (ML) task is that ML can be efficient and flexible in predicting solutions for
different parameter settings. While numerical methods like FDM are known for their accuracy
and robustness in solving ADE, they often require considerable computational resources, mainly
when multiple solutions are ample under varying conditions. Although our FDM computational
costs are relatively reasonable, in our case, FDM simulation time is approximately 20 seconds. We
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explored ML as a more advanced solution that allows for quick prediction generation, which is
advantageous in situations where numerous evaluations are needed. Once trained, an ML model
can efficiently approximate the relationship between inputs and outputs without the necessity of
redefining the system of equations.
By injecting NPs into the reservoir, reservoir, and formation parameters can be altered. The
behavior of NPs in porous media can be predicted using ML. In the current study, Data is
generated from mathematical models for machine learning models like ANN, DT, and RF. R-
squared correlation and mean-squared error are used to evaluate the effectiveness of the predictive
models. ANN model was found to have great performance.

Future research scope

Nanotechnology has increasingly gained prominence in the field of oil recovery, with its continued
relevance expected in the future. Simultaneously, the era of Artificial Intelligence (AI) has ushered
in new opportunities for synergy between these two fields. Due to data privacy concerns, numer-
ous petroleum companies withhold valuable data. As a result, many models for Nano EOR have
been developed empirically and theoretically. These models facilitate the generation of simulated
datasets, which, in turn, serve as inputs for ML models. This predictive approach yields accurate
results, thereby enabling more informed decisions that can significantly benefit the petroleum
industry.
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