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Abstract 

Metabolite analysis is critical in the cancer field because of provides information about the metabolic status of cells. The profiling of extracellular 

metabolites presents technical advantages over intracellular metabolites, such as easier access to extracellular metabolites without a quenching 

method and the growth medium containing high biomass. This study aimed to investigate the extracellular level of metabolites in colon cancer 

cells in a time-dependent manner. 1 x 106 cells were seeded in 4 Petri dishes and glucose, pyruvate, citric acid (TCA) cycle metabolites, and D2-

Hydroxyglutarate (D2-HG) in the conditioned medium were determined by 3,5-Dinitro Salicylic Acid (DNS) and Ultra Performance Liquid 

Chromatography (UPLC) method and pyruvate assay for 24-96th  hours. The results showed that glucose is consumed, and pyruvate and TCA 

cycle intermediates are released in decreasing amounts in all cell lines. It was also observed that glucose was more consumed, and TCA cycle 

metabolites were less released in metastatic colon cancer cells (SW620) than in primary colon adenocarcinoma cells (Caco-2). Most importantly, 

D2-HG oncometabolite was released more into the growth medium of colon cancer cells than normal colon cells for four days. In conclusion, the 

D2-HG is highly produced and released to the growth medium of colon cancer cell lines in a cancer-type-specific manner.  
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1. Introduction

During carcinogenesis, cells undergo metabolic and 

behavioral changes in a multistage process due to 

mutations. Metabolic changes include reprogramming 

of intracellular metabolism that controls inappropriate 

cell proliferation and adapts to the tumor 

microenvironment [1]. Cancer has become the most 

common disease after significant developments in 

treating heart diseases [2]. There are more than 200 types 

of cancer; the third most common type in men and 

women is colon cancer. Because of its mortality and high 

incidence, approximately 2 x 106 new colon cancer cases 

were observed in 2020 in stages III and IV [3,4]. The 

results highlighted that we need new therapeutic 

methods to increase the 5-year survival rate for late-stage 

patients. Recently, metabolic reprogramming has 

become a field of increasing interest [5,6].  

Metabolism consists of many vital reactions in which 

small molecules known as metabolites are produced 

[7,8]. Cells are like factories that produce a wide variety 

of chemicals including metabolites. The analysis of 

metabolite levels is critical as it will provide information 

about the metabolic status of the cells and determines the 

risk and frequency of diseases [9–12]. Metabolites 

produced and accumulated inside the cell are secreted to 

the extracellular medium by specific metabolic overflow 

[13]. Analysis of the correct level of intracellular 

metabolites is essential because the reactions occur 

inside the cell. However, it is challenging due to finding 

a reliable quenching method that does not damage the 

cell membrane and there is a low biomass ratio in the 

intracellular medium. On the other hand, extracellular 

metabolites can be accessed more easily without a 

quenching method. In addition, profiling the 

extracellular metabolite provides information about the 

environmental conditions and the metabolic status of 

cells [14]. In recent years, the comprehensive profiling of 

extracellular metabolites known as exametabolome 

analysis to assess or compare the metabolic status of 

cancer cells has gained importance. In recent years, as a 

result of the valuable developments in the metabolomics 
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field, metabolite analysis has become the more 

affordable, reliable, and reproducible postgenomic 

method [15].  

Metabolic reprogramming is one of the hallmarks of 

cancer cells, and some central metabolic pathways such 

as Glycolysis, TCA cycle, and pentose phosphate are 

aberrantly regulated during cancer progression [16]. The 

TCA cycle has been known as a signalling hub in cell 

metabolism because it connects many metabolic 

pathways. The TCA cycle plays a role in energy 

production and the biosynthesis of building blocks in the 

cell [17]. Recently it has been observed that the abnormal 

level of TCA cycle metabolites is related to different 

diseases such as obesity, diabetes, heart failure, and 

cancer [9,10,18,19]. Succinate, fumarate, and 2-

hydroxyglutarate are the TCA cycle-related metabolites 

and they affect processes of cancer development and 

progression [20–22]. Until now, the level of TCA cycle-

related metabolites has been investigated during colon 

cancer progression [23–25]. However, it is not known 

how the extracellular metabolite levels change while 

colon cancer cells gain metastatic properties. 

The present study used primary and metastatic colon 

cancer cell lines, and the extracellular metabolite level 

changes were investigated when cells gained metastatic 

properties. The levels of extracellular metabolite in the 

TCA cycle and glycolysis were determined by the 

pyruvate assay and DNS and HPLC methods in healthy 

and cancer cell lines for four days, and colon cancer-

specific metabolite was investigated. 

 

2. Materials and Methods 

2.1. Cell Lines 

Normal colon (CCD-18Co), colon adenocarcinoma 

(Caco-2), and metastatic colon cancer (SW620) cell lines 

were grown in DMEM, MEM, and RPMI, respectively. 

The content of all growth media and incubation 

conditions of cells have been described in a previous 

study [26]. 

2.2. Metabolite Extraction From the Extracellular 

Medium 

All cell lines were calculated as containing 1 x 106 cells 

and seeded into four Petri dishes. Approximately 300 µl 

conditioned medium was obtained from the Petri dishes, 

and the cell number was determined using Thoma lame 

after 24, 48, 72, and 96 hours. The conditioned media 

were stored at -80 °C until the experiment. The mediums 

were centrifuged at 17.000 g and +4 °C for 15 minutes, 

and the supernatants were used for further analysis 

(HPLC method, glucose, and pyruvate determinations 

[27].  

The released and consumed metabolite concentration 

levels were calculated for 1 x 106 cells following 

previously published protocols [28]. The calibration 

curve's equation and R² value, as well as the 

concentrations of the standard glucose solutions, are 

given in Table 1. 

2.3. 3,5-Dinitro Salicylic Acid (DNS) Method 

The DNS method [29] is used to determine glucose 

content in the growth mediums. The sample (50 µl) and 

Figure 1. The extracellular metabolite extraction procedure. 1 x 106 cells were seeded in 4 Petri dishes. Approximately 300 µl conditioned medium 

was obtained from the Petri dishes and the cell number was determined using Thoma lame after 24, 48, 72, and 96 hours. The conditioned media 

were centrifuged at 17,000 g and +4 °C for 15 minutes and the supernatants were used for further analysis. Glucose, pyruvate, TCA cycle 

metabolites, and D2-HG in the conditioned medium were determined by DNS and HPLC method and pyruvate assay for 24-96th  hours 



Atalay and Kayali   Turk J Anal Chem, 6(2), 2024, 108–114  

110 

 

DNS reagent (1:1) were stirred at 140 rpm at 100 °C. After 

10 minutes, it was incubated on ice for 1 minute. The 

standards and samples were measured at 540 nm [24] in 

a microplate reader (Multiskan™ GO, Thermo 

Scientific). The calibration curve's equality and R2 and 

the concentrations of the standard glucose solutions are 

given in Table 1. 

2.4. Pyruvate Assay 

The pyruvate assay determines the pyruvate content in 

the growth mediums [30] (Fig. 1). First, five mg of DNPH 

was dissolved in five ml of 2N HCl (37%), and then 10 µl 

was added to each well. Then, 30 µl of the samples were 

transferred to these wells and incubated for 5 minutes at  

room temperature. Finally, 60 µl of 2N NaOH was added 

and incubated at room temperature for 10 minutes. The 

results were obtained at 520 nm absorbance in a 

microplate reader (Multiskan™ GO, Thermo Scientific). 

The calibration curve's equality and R2 and the 

concentrations of the standard pyruvate solutions are 

given in Table 1. 

 

2.5. UPLC System 

A UPLC (Agilent) device with an Alltech OA-1000 

column which runs at 42 °C was used. All HPLC-grade 

standards (Sigma Aldrich) are detected in a UV detector 

(210 nm). The flow rate was 0.4 mL/min, and the mobile 

phase was 9.0 mM H2SO4 [31]. Table 1 gives the 

calibration curve's equality, R2 value, and the 

concentrations of the standards for citrate, α-KG, 

oxaloacetate, malate, D2-HG, succinate, and fumarate.  

2.6. Statistical Analysis 

The experiments were carried out in three independent 

repeats. GraphPad Prism 8.0 (GraphPad Software, CA, 

USA) was used for statistical analysis. The statistical 

analysis (Two-way ANOVA and then Tukey's multiple 

comparisons test) was performed. To denote statistical 

significance between the control and the sample groups, 

the asterisk(s) is shown on the graph. 

3. Results 

3.1. Glucose is Consumed More in The Colon Cancer 

Cell Lines During 96 Hours 

In the present study, changes in the extracellular 

metabolite levels were investigated in the primary and 

metastatic colon cancer cell lines in a time-dependent 

manner. The previous study determined only the 

extracellular metabolite levels at the 24th  hour [24].  

Reducing glucose to pyruvate is the first part of 

energy generation [32]. The consumed glucose levels 

were 1337.7–353.1 nmol/ml in the healthy cell line, while 

they were 1426.5–616.2 and 1609.8–638.8 nmol/ml in the 

Caco-2 and SW620, respectively. At the 96 h, glucose was 

1.7 and 1.8-fold (p<0.05) more consumed in the Caco-2 

and SW620 than CCD-18Co, respectively (Fig. 2–Fig. 4).   

3.2. The Pyruvate and TCA Cycle Metabolites Less 

Released from Colon Cancer Cell Lines During 96 

Hours 

Pyruvate, the end product of the glycolysis pathway, is 

converted to Acetyl CoA [32]. The released pyruvate 

levels were 58.6–17.2 nmol/ml in the healthy cell line, 

 

Table 1. The calibration curve's equality and R2 and the concentrations 

of the standard solutions for glucose, pyruvate, citrate, α-KG, 

oxaloacetate, malate, D2-HG, succinate and fumarate. 

 Calibration curve's 

equation 
R2 

Concentrations of the 

standard (ppm) 

glucose y=0,0005x+0,0078 

y=0,0005x+0,0074 

y=0,0004x+0,0388 

0,9998 

0,9992 

0,9999 

500–1000–2000 

300–500–1000 

1250–2500–5000 

pyruvate y=0,0235x+0,073 0,9981 3.125–6.25–12.5–25 

citrate y=3,9292x+1,55 0,9975 12–24–48 

α-KG  y=17,787x+6,9123 0,9998 2.5–5–10–25 

oxaloacetate y=2,1623x-9,1 1 25–50–100 

malate y=2,7077x-17,45 0,9995 25–50–100 

D2-HG y=3,5866x-24,45 0,9979 25–50–100 

succinate y=1,9914x-1,9 0,9998 5–10–20 

fumarate y=124,57x-16,3 0,9996 0.5–1–2 

Figure 2. Time-dependent extracellular metabolite levels in CCD-18Co at 24-96 h. Metabolites were extracted from extracellular matrix of CCD-

18Co cells in a time-dependent manner. Glucose and pyruvate levels were calculated by DNS method and pyruvate assay. The level of citrate, 

α-KG, D2-HG, succinate, fumarate, malate and oxaloacetate was determined by HPLC method. Abbreviations: ns, not significant. * p<0.05, ** 

p<0.01, *** p<0.001, **** p<0.0001 
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while they were 51.7–13.8 and 43.7–9.2 nmol/ml in the 

Caco-2 and SW620, respectively. At the 96 h, pyruvate 

was 1.9-fold (p<0.05) less released into the environment 

of SW620 than CCD-18Co (Fig. 2–Fig. 4).  

The released citrate levels were determined as 370.2–

70.9 nmol/ml in the CCD-18Co (Fig. 2), while they were 

180.1–47.6 and 121.6–52.9 nmol/ml in the Caco-2 and 

SW620, respectively (Fig. 3–Fig. 4). In the next step, 

isocitrate is oxidized to α-KG and thus the first oxidative 

decarboxylation reaction occurs [32].   

The released extracellular α-KG levels were 126.0–9.6 

nmol/ml in the CCD-18Co (Fig. 2), while they were 34.3–

10.3 and 12.7–4.1 nmol/ml in the Caco-2 and SW620, 

respectively (Fig. 3–Fig. 4). The extracellular α-KG levels 

were highly decreased in the SW620 cell line according 

to CCD-18Co because intracellular D2-HG was highly 

elevated in these cells [24]. At the 96 h, the α-KG was 2.3-

fold (p<0.05) less released into the environment of 

metastatic colon cancer cells than normal cells                 

(Fig. 2 and Fig. 4). The level of released extracellular 

succinate was 180.9–94.8 nmol/ml in the CCD-18Co (Fig. 

2), while they were 120.6–64.6 and 94.8–6.8 nmol/ml in 

the Caco-2 and SW620, respectively (Fig. 3–Fig. 4). At the 

96 h, the extracellular succinate level was highly 

decreased in the SW620 because we found that most 

intracellular α-KG is reduced to D2-HG [24]. The 

released extracellular fumarate levels were determined 

as 17.6–4.9 nmol/ml in the CCD-18Co (Fig. 2), while they 

were 5.5–1.8 and 12.7–3.3 nmol/ml in the Caco-2 and 

SW620, respectively     (Fig. 3–Fig. 4). In the next step of 

the TCA cycle, malate was synthesized from fumarate 

[32]. The released extracellular malate levels were 287.7–

128.7 nmol/ml in the CCD-18Co (Fig. 2), while they were 

166.6–45.4 and 134.7–41.7 nmol/ml in the Caco-2 and 

SW620, respectively (Fig. 3–Fig. 4). At the 96 h, malate 

was 2.8 and 3.1-fold (p<0.05) less released into the Caco-

2 and SW620 environment than CCD-18Co, respectively. 

In the last step of the TCA cycle, the oxaloacetate is 

synthesized from malate by the third oxidative 

decarboxylation reaction [32]. The released extracellular 

oxaloacetate levels were 335.7–38.2 nmol/ml in the CCD-

18Co (Fig. 2), while they were 145–53.4 and 106.9–15.3 

nmol/ml in the Caco-2 and SW620 cell lines, respectively 

(Fig. 3–Fig. 4). At the 96th h, oxaloacetate was 2.5–fold 

Figure 3. Time-dependent extracellular metabolite levels in Caco-2 at 24-96 h. Metabolites were extracted from extracellular matrix of Caco-2 cells 

in a time-dependent manner. Glucose and pyruvate levels were calculated by DNS method and pyruvate assay. The level of citrate, α-KG, D2-

HG, succinate, fumarate, malate and oxaloacetate was determined by HPLC method. Abbreviations: ns, not significant. * p<0.05, ** p<0.01, *** 

p<0.001, **** p<0.0001 

Figure 4. Time-dependent extracellular metabolite levels in SW620 at 24-96 h. Metabolites were extracted from extracellular matrix of SW620 cells 

in a time-dependent manner. Glucose and pyruvate levels were calculated by DNS method and pyruvate assay. The level of citrate, α-KG, D2-

HG, succinate, fumarate, malate and oxaloacetate was determined by HPLC method.   Abbreviations: ns, not significant. * p<0.05, ** p<0.01, *** 

p<0.001, **** p<0.0001 
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(p<0.05) less released into the SW620 environment than 

CCD-18Co.  

3.3. D2-HG Oncometabolite Released More From 

Colon Cancer Cell Lines 

D2-HG is converted from α-KG by the wild-type or 

mutant isocitrate dehydrogenase (IDH) 1/2 enzymes and 

involves in the cancer progression [20]. In our study, 

significant results were obtained in the time-dependent 

extracellular D2-HG oncometabolite. The released levels 

of D2-HG by cancer cell lines were increased for 96 

hours. The released extracellular D2-HG levels were   

6.9–4.1 nmol/ml in the CCD-18Co (Fig. 2), while they 

were 20.6–11.7 and 68.5–12.3 nmol/ml in the Caco-2 and 

SW620 cell lines, respectively (Fig. 3–Fig. 4). At the 96 h, 

D2-HG was 2.8 and 3.0-fold (p<0.01) more released into 

the environment of Caco-2 and SW620 than the healthy 

cell. 

4. Discussion 

Cancer cells tend to Glycolysis, known as the Warburg 

effect, because they need more energy and intermediate. 

However, it has been found that cancer progression is 

not universal, and cancer cells exhibit metabolic 

diversity [33–35]. This allows cancer cells to adapt to 

changing metabolic pathways to survive and proliferate. 

Thus, metabolites produced in different forms due to 

mutations or changing their concentrations are 

significant therapeutic advantages for scientists [36]. Our 

study showed that the extracellular metabolite levels 

were significantly different between normal and cancer 

cells (Fig. 2–Fig. 4).  

In the previous study, we investigated the level of 

intracellular metabolites produced in the TCA cycle and 

glycolysis in the cell lines (CCD-18Co, Caco-2, and 

SW620) and xenograft models generated with these cell 

lines. Unlike other metabolites, the elevated D2-HG level 

was found in the SW620 (152.6 µmol/106 cells), whereas 

it was not detected in the colon epithelial cells (CCD-

18Co). In the xenograft models, the D2-HG level was 7.4 

and 19.9-fold higher in Caco-2 and SW620 tumor tissues 

than in healthy tissue, respectively [24]. However, the 

time-dependent extracellular metabolite levels have not 

been detected until now. The present study, D2-HG-

related metabolite levels were detected in the growth 

medium of CCD-18Co, Caco-2, and SW620 for 96 h. It 

was found that the D2-HG was 2.8 and 3.0-fold (p<0.01) 

more released into the environment of Caco-2 and 

SW620 than the healthy cell (Fig. 2–Fig. 4). In relation to 

that, the α-KG was 2.3-fold (p<0.05) less released into the 

environment of metastatic colon cancer cells than normal 

cells (Fig. 2–Fig. 4).  

The TCA cycle is at the center of the mitochondrial 

metabolic pathway because coordinates energy 

generation, carbon metabolism, and biosynthetic 

pathways [37]. It has been observed that the abnormal 

level of TCA cycle metabolites is related to different 

diseases such as obesity, atrial fibrillation, heart failure, 

and cancer [9,10,18,38]. In the field of cancer, especially 

in colon cancer, the study of the amount of TCA cycle 

metabolites has recently increased [6]. As a result of our 

experiments, the levels of extracellular metabolites in 

cancer cells with a high metabolic rate differed 

significantly from healthy cells. In our study, Caco-2 and 

SW620 consumed 1.7 and 1.8-fold (p<0.05) more glucose 

than CCD-18Co respectively. Pyruvate was 1.9-fold 

(p<0.05) less released into the environment of SW620 

than CCD-18Co (Fig. 2–Fig. 4). In addition, cancer cells 

released less TCA cycle intermediate than the healthy 

cells for 96 hours (Fig. 2–Fig. 4), consistent with the 

previous studies [39,40]. We showed that colon cancer 

cells exhibit the Warburg effect because of highly 

consumed glucose. On the other side, the TCA cycle 

intermediates is less released. All the results showed that 

metabolism does not proceed through Glycolysis, and 

the TCA cycle is active. 

Based on the metabolic overflow concept, specific 

metabolites produced and accumulated inside the cell 

are secreted to the extracellular medium by specific 

metabolic overflow according to the needs of cell. Thus, 

information about the intracellular levels of these 

metabolites can be obtained by investigating the level of 

extracellular metabolites in the conditioned medium. 

When being studied experimentally, intracellular and 

extracellular metabolite levels must be determined 

simultaneously [14]. In the present study, unlike TCA 

cycle-related metabolites, the D2-HG oncometabolite, 

which is highly produced inside the cancer cells, was 

released more in the environment of Caco-2 and SW620 

compared to normal cells for 24–96 hours (Fig. 2–Fig. 4). 

These results are consistent with the intracellular 

metabolite levels we obtained in the previous study [24]. 

During cancer development and progression, 

reversible reactions of metabolic pathways are 

optimized according to the conditions of the cell. Thus, 

the ATP and precursor molecules required for 

biosynthesis are highly synthesized in cancer cells [41]. 

As a result of the reorganization of energy metabolism, 

abnormal intracellular and extracellular levels of TCA 

cycle-related metabolites have been produced when 

cancer cells gain metastatic properties. In the previous 

studies, it has been observed that glucose consumption 

was decreased, and TCA cycle-related metabolites were 

more produced in the cancer cells according to a healthy 

cell. We know that D2-HG was highly produced in 

colon, breast, head and neck squamous metastatic cancer 
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cells [24,42,43]. In our study, the level of released D2-HG 

(in the conditioned medium) was increased when colon 

cancer cells gained metastatic potential, consistent with 

the earlier studies. 

Our findings provide insight into the changes in time-

dependent extracellular metabolite levels produced in 

glycolysis and the TCA cycle in both colon epithelial and 

colon cancer cell lines. We demonstrated that glucose is 

used to synthesize the TCA cycle intermediates which 

are then gradually released into the conditioned 

medium. Unlike TCA cycle-related metabolites, the D2-

HG oncometabolite was released more in colon cancer 

than in normal cells. It is predicted that in the future, 

determining the levels of cancer-type-specific 

oncometabolite can be used for cancer diagnosis. 
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