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Abstract: Laminar forced convection heat transfer in parallel heat generating board in fixed volume of electronic 
package is investigated numerically. The main objective of this study is to maximize the total rate of heat transfer 
from the package to the air that flows through it. The boards are equidistant and the constraint of the optimization 
procedure is the constant pressure drop maintained across the electronic package for varying spacing of the heat-
generating boards. The optimal board spacing that maximizes the total heat transfer rate is determined. Board surfaces 
with both uniform temperature and uniform heat flux are considered.  The results of the optimization procedure show 
that the type of thermal boundary condition practically has no effect on the optimal board-to-board spacing. 
Keywords: Laminar forced convection, Electronic package, Optimal board spacing. 
 

LAMİNER ZORLANMIŞ TAŞINIM İLE SOĞUTULAN ISI ÜRETEN PARALEL 
LEVHALAR ARASINDAKİ EN UYGUN ARALIĞIN BELİRLENMESİ 

 
Özet: Bu çalışmada  laminer  zorlanış taşınımla soğutulan sabit hacimli elektronik paket içerisine yerleştirilmiş  
paralel kartlardan ısı transferi sayısal olarak incelenmiştir.Calışmanın amacı elektronik paketten maksimum ısı 
transferi için, kartlar arasındaki optimum aralığın belirlenmesidir. Optimum aralığın belirlenmesinde kartlar 
arasındaki aralıklar eşit varsayılmış, ve basınç düşümü de sabit alınmıştır. Kartlar arasındaki gelişmekte olan laminer 
hava akışı, kart yüzeylerinde  sabit sıcaklık ve sabit ısı akısı ısıl sınır şartlarında incelenmiştir. Sayısal çözümler 
laminer akışda optimum kart aralığının ısıl sınır şartlara bağlı olmadığını göstermektedir.  
Anahtar Kelimeler: Laminer zorlanmış taşınım , Elektronik paket, Optimum kart aralığı. 
 

LIST OF SYMBOLS  
 
a Coefficient for discretization equations 
Cp Specific heat of the fluid at constant pressure 
 [kJ/(kg•K)] 
d Spacing between the parallel heat-generating 

boards [m] 
Dh Hydraulic diameter [m] 
dopt Optimum spacing [m] 
H Height of the electronic package [m] 
k Thermal conductivity [W/(m•K)] 
L Length of the electronic package [m] 
Nu Nusselt number 
P Pressure [Pa] 
P* Dimensionless pressure 
Pr Prandtl number 
Q Total heat transfer rate per unit width of the  

package [W/m] 
q''w Wall heat flux [W/m2] 
Re Reynolds number 
T Temperature [K] 
T∞ Coolant inlet temperature [K] 
Tm Mean temperature [K] 
Tw Wall temperature [K] 
u Velocity component in x direction [m/s] 

U∞ Coolant inlet velocity [m/s] 
u* Dimensionless velocity component in  

x-direction 
v Velocity component in y direction [m/s] 
v* Dimensionless velocity component in  

y-direction 
x Axial (stream-wise) coordinate in Cartesian  

system, [m] 
x* Dimensionless axial coordinate 
y Cartesian coordinate across the cross section [m] 
y* Dimensionless Cartesian coordinate across the 

cross section 
ΔP Pressure drop in flow direction, Pa 
ΔP* Dimensionless pressure drop in flow direction 
Δxi Numerical grid spacing in x direction [m] 
Δyj Numerical, non-uniform grid spacing in  

y-direction [m] 
α Thermal diffusivity [m2/s] 
μ Dynamic viscosity coefficient [Pa•s] 
ν Kinematic viscosity [m2/s] 
θ Dimensionless temperature 
θm Dimensionless mean temperature 
ρ Density [kg/m3] 
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INTRODUCTION  
 
In recent years, electronics has become increasingly 
important in all faces of modern life from biomedical 
devices to aerospace applications. Design of electronic 
packaging is multi-disciplinary in nature as it involves 
the solution of electrical, mechanical and thermal 
problems. In this study, the attention is placed on the 
later. During the last two-three decades, the need for 
more compact electronic equipment has increased the 
power density of electronic packages, and hence their 
heat dissipation rate (Yanagida, 1988). For example, 
during the past 30 years, printed circuit boards (PCB’s) 
have gone from 4 to as many as 50 layers, line widths 
have been reduced from 0.25 to 0.05 mm and package 
densities have increased approximately 7 times (Bar-
Cohen, 1994). If the individual element (chips) is taken 
into consideration, chip sizes have been reduced 
approximately from 100 to 1 μm while number of 
components in one chip has increased approximately 
from 1 to 105 (Kakaç, 1994). 
 
To mount as many circuitry as possible in a given space 
requires shape optimization which is the most critical 
part of a thermal design. Shape optimization is the 
selection of the way in which components are arranged 
relative to each other in the finite space occupied by the 
package. The constraint of the optimization is the space, 
which is specified by the design specs and the two 
important design parameters are the cooling mode and 
the allowable upper temperature limit. The simplest 
cooling mode is single phase laminar flow in natural or 
forced convection. Although the allowable temperature 
vary from one to another applications, the failure rates 
increase by a factor of two for every 10 oC increment in 
operating temperature (Antonetti et al., 1989). The task 
of the today's thermal engineers in the field of 
electronics is to maintain the component temperatures 
relatively low despite of these high heat fluxes. 

 
Packaging constraints, electronic considerations, device 
or system operating modes lead to a variety of complex 
models for optimization. Horizontal two-dimensional 
channels formed by parallel plates, which are modeled 
either as uniform-flux or isothermal are well 
representative of different cases with an acceptable 
accuracy. Modeling of heat transfer from parallel plates 
is also the subject of this study.  

 
The purpose of this work is to determine the optimum 
board spacing to maintain the component temperatures 
below the allowable temperature limit and maximize the 
total rate of heat transfer from the finite space occupied 
by the package. The coolant (air) is assumed to be 
forced to flow through the package and the flow is 
laminar. 
 
The available literature on optimal spacing was 
reviewed most recently in Bejan (2000). Pioneering 
work by Tomimura and Fujii (1991) investigated the 

mixed convection of laminar airflow between vertical 
parallel plates with discrete heat sources. A correlation 
that predicts the maximum temperature of each heat 
source within a practical accuracy was obtained. Bejan 
and Sciubba (1992) studied the optimal board-to-board 
spacing between parallel plates cooled by forced 
convection for the laminar flow in the entrance region. 
Study was based on solution with the order of 
magnitude analysis of basic equations. Results are 
supported with some sort of numerical solution obtained 
from empirical pressure drop. Later work by Mereu et 
al. (1993) is again for the laminar flow in entrance 
region of parallel plates. Governing equations were 
solved by a commercial finite element package, where 
the finite thickness of each board was taken into 
account.  

In the present study, the working model is identical with 
the ones that appear in last two reviewed works. Here, 
the main novelty concerns the development of a 
numerical method to determine the optimal board 
spacing and maximum total heat transfer rate from a 
stack of parallel boards cooled by laminar forced 
convection of air.  

 
WORKING MODEL AND GOVERNING 
EQUATIONS 
 
The geometry of the electronic package is illustrated in 
Fig. 1. The fixed volume electronic package has height 
H, length L, and width W. A sufficiently large number 
of parallel electronic circuit boards, cooled by forced 
convection, are installed in the package. Since the 
thickness of generating boards is sufficiently smaller 
than the board spacing d, the thickness of the heat 
generating boards is neglected in the calculations.  
 
The coolant (air) at temperature T∞, enters the package 
from the left with uniform velocity ∞U , flows through 
the board-to-board channels, and exits through the right 
opening. The pressure difference across the package ΔP, 
is prescribed. This is a representative model for 
installations in which the pressure difference is 
maintained by fan or pump. Since the electronic boards 
are sufficiently wide in the direction perpendicular to 
the plane, the flow is assumed two-dimensional and the 
heat-generating electronic boards are modeled as double 
sided and flush-mounted electronic chips. 
 
Figure 2 represents the computational domain for this 
study. The equations that govern the process of forced 
convection for constant property incompressible flow 
(conservation of mass, momentum and energy) are 
expressed here in non-dimensional form in order to 
provide useful data in a computational investigation. 
The scaling parameters that represent the physical flow 
conditions are ,  d U¥ and ∞T . A two-dimensional (x, y) 
Cartesian system with the following non- dimensional 
variables is used 
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Figure 1. Stack of parallel heat generating boards cooled by 
forced convection. 
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Figure 2. Computational domain. 
 
In these expressions ),( yxu and ),( yxv are the velocity 
components, ),( yxP stands for pressure and ),( yxT  for 
temperature. 
 
In terms of these dimensionless parameters the 
governing equations can be expressed as: 
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y- momentum 
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In these equations the Reynolds number and the Prandtl 
number are defined as 
               2Re U d

n
¥=   (5a) 

              Pr pρ c
k
n

=  (5b) 

Where , ,pcr n and k  are the fluid properties and are 
assumed to be constant. 
 
The governing equations are elliptic and require 
boundary conditions to be prescribed around all 
boundaries. Four types of boundary are present: the 
symmetry plane, the board surface, and the inlet and 
outlet planes. There will be no flow across the 
symmetry plane, thus the velocity component *v along 
the symmetry plane, and both the gradient of 
temperature and velocity component *u across the 
symmetry plane are zero: 
 

  21y* =   0 < x∗ < L/d;  v* = 0, 0*

*

=
∂
∂

y
u ,  0* =

∂
∂
y
θ  (6) 

 
Since the board surface is smooth, impermeable and 
with no slip, all velocity components are zero on it. 
Either uniform temperature or uniform heat flux 
boundary conditions have been applied.  

 
y∗ = 0;    0 < x∗ < L/d;     v* = 0      u* = 0,   

    
 θ = 1 (For board surfaces with uniform temperature) 

  

 1* −=
∂
∂
y
θ (For board surfaces with uniform heat flux)  

                                                                                    (7) 
 
Air at a uniform temperature T∞ enters the 
computational domain through the inlet plane with 
uniform velocity ∞U . Thus, the inlet boundary 
conditions are 
 
x∗ = 0;   0 < y∗ < 1/2;  u* =1   v* = 0 θ = 0  (8) 
 
If the length of the computational domain is sufficiently 
larger than the board spacing d, it is common practice to 
assume that the flow is perpendicular to the outlet plane 
and that the heat transfer on the outlet is purely by 
convection rather than by conduction. The boundary 
conditions become: 
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Since the given flow field must satisfy the continuity 
equation, the governing differential equations 
(momentum and energy equations) can be expressed in 
the form of a single elliptic differential equation of the 
form  
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where φ represents a generic, dependent field variable 
( *u , *v , or θ ), Γ is a coefficient and Sφ  is the source 
term. Their values are given in Table 1. Here too, the 
terms on the left-hand side of equation represent the 
convective terms; the first two terms on the right- hand 
side represent the diffusive terms and φS represents the 
source terms. 
 
Table 1. Non-dimensional coefficients relating the governing 
equations of laminar forced convection to the general elliptic 
equation. 

 φ  Γ  Sφ 

x – momentum *u  
Re
2  

*

*

x
P

∂
∂

−  

y- momentum *u  
Re
2  

*

*

y
P

∂
∂

−  

Energy θ  
PrRe

2  
0 

 
Since the governing equations can be expressed in a 
single form of a differential equation, a solution 
technique that is capable of solving the differential 
equation of this general form will also be suitable to 
handle the present problem. One such a numerical 
solution technique was developed by Patankar (1980), is 
based on a control volume-finite difference formulation, 
in which the above equations are integrated over the 
control volume that is part of the domain of interest and 
is constructed through the midpoints of the finite-
difference mesh surrounding a point P where the values 
of the field variables are to be determined. The 
neighboring nodal points are labeled as compass 
indicators as N, S, E and W as shown in Figure 3.   
 
During the integration a staggered grid arrangement is 
used and a central differencing scheme for the 
discretization of diffusion terms and a power-law 
scheme for the discretization of convective terms are 
employed. Assembling the integrated form of the 

convective, diffusive and the source terms a set of 
discretized linear algebraic equation of the form  

baaaaa SSNNWWEEPP ++++= φφφφφ  (11) 
 
is obtained. This equation, which is called finite volume 
equation, represents the influence of convection and 
diffusion at the four faces of control volume and source 
term on the value of the field variable φ at point P. aE, 
aW, aN, and aS are the neighboring coefficients. They 
represent influence of convection and diffusion, in terms 
of flow rate and conductance. The term b represents the 
integration of the source term over the cell. See 
Patankar (1980) for the details of this formulation. 
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Figure 3. The domain for the discretization of general elliptic 
equation. 
 
The discretized momentum equations, can be solved 
only when the pressure field is given or is somewhat 
estimated. Unless the correct pressure field is employed 
the resulting velocity field from the momentum 
equations will not satisfy the continuity equation. Such 
an imperfect velocity field (based on a guessed pressure 
field) can be improved and will progressively get closer 
to satisfying the continuity equation by applying the 
velocity and pressure corrections on the guessed values. 
The details of formulation of velocity and pressure 
corrections are given in Patankar (1980). After the flow 
field has been computed, the temperature distribution is 
found by solving the discretized energy equation. 
 
The above numerical procedure is given the name 
SIMPLE, which stands for Semi–Implicit Method for 
Pressure-Linked Equations. It is an iterative method; the 
guessed pressure field is corrected after each iteration 
process, following the solution of discretized 
momentum equations. A line-by-line tri-diagonal matrix 
algorithm is applied to solve system of discretized 
equations while different under relaxation factors are 
used to prevent instability and divergence due to non-
linearity in the Navier-Stokes equations (Eqs. (2)and 
(3)). 
 
For deriving the discretization of conservation 
equations, the field of interest has been covered by an 
orthogonal grid network. The grid network consists of 
36 uniform grid lines in x direction and 19 non-uniform 
grids lines in y direction. In the x direction, the spacing 
between grid lines was taken constant and equal to 
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where i is the number of grid lines in x direction. In the 
y direction, where a steep gradient of variable occurs, 
the spacing between the adjacent grid lines was varied 
according to the following relation. 
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Where j is the number of grid lines in y direction. Figure 
4 represents a part of such a grid, a typical node ),( ji , 
and the four surrounding nodes ),1( ji − , ),1( ji + , 

)1,( −ji  and )1,( +ji . Starting with a uniform inlet 
velocity, the flow solution takes about 150-200 
iterations to converge. 
 

 i-1,j

 i,j+1
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  i,j-1

y 
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y 
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     x 
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       xi,  
Figure 4. Spacing between grid lines. 
 
A numerical code has been developed to perform the 
analysis presented in this study. The code is written in 
JAVA programming language. The program consisted 
of three main parts; the first part is for the calculation of 
coefficients, the second is the part that includes matrix 
solver and other routine operations, and the third part 
checks convergence, calculates new variables etc. In the 
iterative solutions, there is difference between the exact 
solution of the finite difference equations and the 
solution reached when the iteration scheme is stopped. 
For the iterative matrix solutions of x and y -momentum 
equations, fractional change in each dependent variable 
at each node was examined to determine the 
convergence by the following formula  
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φ

φφ
≤

− −

max

1

N
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  (14) 

 
where φN is the value of the variable φ at the end of the 
Nth cycle and φN-1 is its value of the (N-1)th cycle. η is 
the convergence criterion and is taken to be 0.0001 in 
this study.  
 
For the pressure correction and for the residual of the 
continuity equation, absolute change at each node was 
examined to determine convergence. 
 
                               ηφφ ≤− −

max

1NN  (15) 

 

where η,  is the convergence criterion. η is taken as 
0.00005 for the solutions of pressure correction equation 
and 0.00002 for the residual of continuity equation. 
 
In order to confirm the validity and accuracy of solution 
method used in the current study, first dimensionless 
pressure drops for hydrodynamically developing 
laminar flow in a flat duct are calculated. Calculated 
dimensionless pressure drops are compared with the 
dimensionless pressure drops that were evaluated by 
using correlations developed by Shah and London 
(1987):  
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This comparison is shown in Figure 5. Where the 
apparent friction factor, fapp and dimensionless 
coordinate +x are employed according to their 
definitions respectively, 
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Examination of Figure 5 reveals that the results of 
present numerical study are in excellent agreement with 
the aforementioned correlation. 
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Figure 5. Dimensionless pressure drop for hydrodynamically 
developing flow in a flat duct. 
 
There are a large number of experimentally based 
correlations for Nusselt number in literature for 
simultaneously developing laminar flow in flat duct. For 
assessing the accuracy of current computational 
approach, calculated Nusselt numbers for board surfaces 
with uniform temperature are also compared with those 
reported by Shah and Bhatti (1987):  
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 For dimensionless presentation, the Nusselt number and 
axial coordinate x++ are defined by, 
 

           
k

dh
k
DhNu xhx

x
2

==   (20) 

 

            
PrRe2d

x
PehD

xx ==++   (21) 

 
and the result of the comparison is displayed in Fig 6. 
The numerical results are in excellent agreement with 
the results of correlation reported by Shah and Bhatti 
(1987). The average relative deviation is less than 6%. 
These agreements confirm the validity of numerical 
technique used in this study. 
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Figure 6. Local Nusselt number for simultaneously 
developing laminar flow in a flat duct with constant wall 
temperature boundary condition. 
 
THE OPTIMAL BOARD-TO- BOARD SPACING 
 
Board Surfaces with Uniform Temperature  
 
Consider now the problem of determining the optimal 
number of isothermal plates (constant temperature 
boundary condition) in a space (package) cooled by 
forced convection. The optimal number of isothermal 
plate means to find the optimal board-to-board spacing 
for maximum heat transfer rate extracted by the coolant 
(air). The heat transfer rate through a single channel can 
be formulated as 
 
                    )(sin ∞−= TTCmQ mepgle &&   (22) 
 
where m& is the mass flow rate through the single 
channel, pC is the specific heat of air at constant 
pressure, ∞T is the inlet temperature and meT  is the 
outlet mean temperature. The mass flow rate through 
the single channel is expressed per unit length in the 
direction perpendicular to the flow. 
 
If the number of channels is expressed as dHN = , 
then the total heat transfer rate from the package may be 
expressed as 

                     
d
HTTCmQ mep )( ∞−= &&   (23) 

 
in which  
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Substituting Eqs. (24), (25) and (26) into Eq. (23) the 
heat transfer rate from the package can be calculated as, 
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The resulting expression can be nondimensionalized as 
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Since L, H,ν ,Cp, ρ and )T(Tw ∞−  are fixed our job is to 
maximize the quantity on the right hand side of this last 
expression (objective function), subject to the 
constraint, 
 
               ConstantP =Δ   (29) 
 
Board Surfaces with Uniform Heat Flux 
 
The total heat transfer rate from an L×H space filled by 
a stack of N=H/d number of parallel boards with 
uniform heat flux wq ′′  on both surfaces is  
 
               LqNQ w′′= 2&   (30) 
 
and that the maximum temperature of the board, which 
occurs at its trailing edge, is 
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where 

maxwT  denotes the local wall temperature at down 
stream, at distance L from the inlet. Combining 
Equations (30) and (31) yields  
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where 

maxwT is the maximum allowable surface 
temperature. The total heat transfer rate can be 
calculated by recognizing the thermal conductivity of 
the fluid 
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where L, H,ν , Cp, and ρ are given. Therefore, the 
objective is to maximize Q&  while keeping the 
maximum allowable surface temperature 

maxwT below 
safe level or to maximize the quantity 

2
max )/(

1
Pr
2

Ldθ
on the right hand side of Eq. (34) 

subject to the same constraint, 
 
                  ConstantP =Δ   (35) 
 
The constraint can now be nondimensionalized as 
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in which L, ρ ,ν  and PΔ  are fixed. Therefore, the 
constraint of optimization then, can be written in term of 
the dimensionless group on the right hand side of Eq. 
(36)  

                =Δ 2

2
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Ld
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MAXIMIZATION PROCEDURE 
 
The maximization procedure consists of calculating the 
dimensionless heat transfer rate from the package, 

)νTH(TCLQ wp ∞−ρ&  or )νTH(TCLQ wp ∞−
max

ρ&  for 
constant temperature and constant heat flux boundary 
condition respectively. These are calculated from Eq. 
(28) or Eq. (34) for the values of constrain 

=Δ 2

2
*

)/(
Re

Ld
P  2.193×107, 3.834×107, 5.745×107, 

7.881×107, 9.177×107, 1.225×108, 2.226×108, 
4.678×108, 1.359×109, 2.577×109 and 5.468×109 by the 
following procedure.  
 
Assumed first is the value of (d/L), which played the 
role of parameter. For each value of (d/L) the sequence 
of numerical calculations can be stated as 
  
• Guess the Reynolds number  (Re ≤ 2300) 
• Calculate the dimensionless pressure drop 

*PΔ from Eq. (37) 
• Solve the continuity and momentum equations Eqs. 

(1), (2) and (3)  to obtain dimensionless velocity 
components **,vu  

• Calculate the dimensionless pressure drop 
*PΔ from the velocity pressure correction relation. 

Treat the calculated dimensionless pressure drop as 
a new guessed dimensionless pressure drop, return 
the first step and repeat the whole procedure until a 
converged solution is obtained 

• Solve the energy equation Eq. (4) to obtain the 
temperature distribution for constant temperature or 
constant heat flux boundary condition. 

• Calculate the dimensionless heat transfer rate from 
the package from Eq. (28) when the board surface 
temperature is assumed uniform or from Eq. (34) 
when the board surface is modeled as uniform heat 
flux. 

 
In this way emerge numerically the one to one 
relationship between the dimensionless heat transfer rate 
from the package )νTH(TCLQ wp ∞−ρ& , or 

)νTH(TCLQ wp ∞−
max

ρ& , dimensionless pressure drop 

2

24
ρν

LPΔ  and the parameter (d/L) In Figures (7) and (8) 

the variation of )νTH(TCLQ wp ∞−ρ&  and 

)νTH(TCLQ wp ∞−
max

ρ&  are plotted as a function of 

(d/L) for different values of 2

24
ρν

LPΔ . From Figs (7) 

and (8) it can be observed that at a given dimensionless 
pressure drop, heat transfer rate from the package 
( )νTH(TCLQ wp ∞−ρ& or ( )νTH(TCLQ wp ∞−

max
ρ& ) first 

increases up to a maximum value and then starts 
decreasing. The value of the parameter (d/L) at which 
the heat transfer rate is maximized is called optimal 
board-to-board spacing dopt.  The optimal board spacing 

(L / dopt) for the given pressure drop 2

24
ρν

LPΔ  is given 

in Fig. 9. This figure shows that the optimal board-to –
board spacing is almost insensitive to the type of 
boundary condition used. A curve is also provided to fit 
the data in Fig. 9 to demonstrate the trend of the 
numerical data points. The equation of this curve is 
obtained by square regression method as 
 

                    
4/1

2

24217.0 ⎥
⎦

⎤
⎢
⎣

⎡
Δ=

ρυ
LP

d
L

opt

  (38) 

 

For air flow, recognizing that Pr 0.72n
a

= =  , Eq. (38) 

can be written as  
 

                     
4/12

00.3 ⎥
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αμ
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Figure 7. The total heat transfer rate versus board-to-board 
spacing for a space filled by a stock of parallel boards with 
both surfaces isothermal (Pr=0.72).  
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Figure 8. The total heat transfer rates versus board-to-board 
spacing for a space filled by a stock of parallel boards with 
uniform heat flux on both surfaces (Pr=0.72).   
 
The fitted curve indicates that the optimal board spacing 
is proportional to 2/1L  and inversely proportional 
to 4/1PΔ . The properties of coolant affect the optimal 
board-to–board spacing through the group of 
properties 4/1)(αμ . In convective heat transfer literature, 

the dimensionless pressure difference group ⎥
⎦

⎤
⎢
⎣

⎡Δ
αμ

2PL  

was termed as Bejan number by Bhattacharjee and 
Grosshandler (1988). 
 
The optimal dimensionless board spacing for air flow 
(Pr=0.72 as in this work) is 10% greater than the order 
of magnitude estimate given in Bejan and Scuibba 
(1992) 
 

                
L

dopt ≅  
4/12

730.2
−

⎥
⎦

⎤
⎢
⎣

⎡Δ
αμ
PL   (40) 

 
and 1% less than the result of numerical solution 
obtained from empirical pressure drop and reported in 
Bejan and Scuibba (1992). 
 

              
L

dopt =  
4/12

033.3
−

⎥
⎦

⎤
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⎡ Δ
αμ
PL   (41) 

 

41

2

242170
/

opt

LP.
d

L
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρυ
Δ

10

100

   107    108    109   1010

Iso therm al Surfaces

Uniform  Heat F lux Surfaces

 50

L 
/ d

op
t

2

24   
ρν

Δ LP

 
Figure 9. The optimal spacing versus pressure drop for a 
space filled with by a stack of parallel boards (Isothermal and 
uniform heat flux surfaces). 
 
The maximum total heat transfer rate from a space filled 
with stack of parallel boards, is the value of heat 
transfer rate that corresponds the optimal spacing at a 
given pressure drop. In Fig. 10, the variation of 
maximum total heat transfer rate as a function of (L/dopt) 
for boards with both isothermal surface is plotted. A 
curve is also provided to fit the numerical data in Fig 
10. The equation of this curve is  
 

             
)νTH(TC

LQ

wp ∞−ρ
max
&

=
2

05.6 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

optd
L   (42) 

 
In Fig.11, the variation of maximum total heat transfer 
rate as a function of (L/dopt) is plotted for stack of 
parallel boards with uniform heat flux on both surfaces 
and the following functional form is selected as the best 
to represent these numerical data.  
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LQ
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ρ
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2
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optd
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Substituting now, Eq. (38) into Eqs. (42) and (43) the 
overall thermal conductance of an air-cooled package 
becomes  
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for isothermal and uniform heat flux boundary 
conditions, respectively. 
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Figure 10. The optimal board-to-board spacing versus 
maximum heat transfer (Pr=0.72, Isothermal surfaces). 
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Figure 11. The optimal board-to-board spacing versus 
maximum heat transfer (Pr=0.72, Uniform heat flux surfaces). 

 
The maximum total heat transfer rate is proportional to 
maximum allowable temperature difference between 
board and coolant inlet ( )( ∞− TTw or )(

max ∞− TTw ), 
height of the electronic package H, and square root of 
pressure drop 2/1PΔ . When the allowable surface 
temperature is the same for both cases the maximum 
total heat transfer rate for board surfaces, which are 
isothermal, is 25% higher than that of uniform heat flux 
condition. This result is to be expected because the 
temperature of the isothermal surface is equal to the 
allowable surface temperature over its entire length 
while the temperature of the uniform-flux surface 
reaches to the allowable surface temperature only at its 
trailing edge.  
 
According to the results of the numerical solution 
obtained from empirical pressure drop and reported in 
Bejan and Scuibba (1992) the thermal conductance for 
isothermal and uniform heat flux boundary conditions 
are  
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The numerical results of this study recommend 
something very similar. However, the maximum heat 
transfer rate calculated from Eq. (43) is 23% below the 
maximum value obtained by the order of magnitude 
estimate based on the intersection of asymptotes method 
developed in Bejan and Scuibba (1992) and is given by  
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CONCLUSION 
 
The objective of this paper is to predict the optimal 
spacing for parallel heat generating board in a fixed 
volume of electronic package (stack) with prescribed 
pressure drop and cooled by laminar forced convection. 
The fixed pressure drop assumption is an acceptable 
model for installations in which several parallel 
packages receive their coolant from the same plenum. 
The pressure in the plenum is maintained by a fan or, in 
the case of a liquid coolant, by a pump. The fan or pump 
may be located upstream or downstream of the packages 
those are being cooled by laminar forced convection. 
Board surfaces with uniform temperature and uniform 
heat flux are considered. The optimal spacing which is 
the value of board–to-board spacing that correspond 
maximum total heat transfer rate from a package of 
parallel boards is not practically affected by the thermal 
boundary condition and is given by the relation.  

 

                        
4/12

00.3 ⎥
⎦

⎤
⎢
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⎡Δ
=

αμ
PL

L
dopt   (48) 

 
The optimal board-to–board spacing is directly 
proportional to 2/1L and the property group 4/1)(μα and 

inversely proportional to 4/1PΔ . These optimal results 
are obtained by complete numerical simulation of the 
flow and temperature fields in each channel of a fixed 
volume of electronic package. The results are valid 
when the flow is laminar. This condition acts as 
constraint on the pressure drop that is maintained 
constant across each channel.  
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