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Abstract: Radiating extended surfaces are widely used to enhance heat transfer between primary surface and the 
environment. The performance of such a surface is significantly affected by variable thermal conductivity, 
particularly in the case of large temperature differences. The aim of the present work is to evaluate the optimum 
dimensions of radiating rectangular fins with temperature-dependent thermal conductivity for a fixed fin volume. The 
nonlinear fin equation is solved by the Adomian decomposition method for obtaining the temperature distribution 
within such fins. The optimum geometry which maximizes the heat transfer rate from the fins of fixed volume is 
found by using the data from the solution. Derived condition of the optimality is a simple correlation relation between 
the fin parameter and thermal conductivity parameter describing the variation of thermal conductivity. The resulting 
correlation equation is a very suitable tool for optimum design of radiating rectangular fins with temperature-
dependent thermal conductivity.  
Keywords: Fin, Optimization, Variable thermal conductivity. 
  

DEĞİŞKEN ISI İLETİM KATSAYILI DİKDÖRTGEN KANATLARIN 
OPTİMİZASYONU İÇİN BİR KORELASYON DENKLEMİ 

 
Özet: Işınımla ısı yayan genişletilmiş yüzeyler geniş kullanım alanına sahiptir. Böyle bir yüzeyin, özellikle büyük 
sıcaklık farkları söz konusu olduğunda, performansı ısı iletim katsayısının değişken olmasından önemli ölçüde 
etkilenir. Bu çalışmanın amacı, değişken ısı iletim katsayısına sahip ışınımla ısı kaybeden kanatların sabit kanat 
hacmi için optimum boyutlarını bulmaktır. Doğrusal olmayan kanat denklemi Adomian yöntemi ile çözülerek kanat 
içindeki sıcaklık dağılımı elde edilmiştir. Bulunan sıcaklık profili yardımıyla sabit hacme sahip bir kanattan çevreye 
olan ısı geçişini maksimum yapan kanat geometrisi belirlenmiştir. Belirlenen optimizasyon koşulu kanat parametresi 
ile ısı iletim katsayısının sıcaklıkla değişimini tanımlayan ısı iletim katsayısı parametresi arasında kurulan bir 
korelasyon denklemidir. Bu denklem ışınımla ısı yayan dikdörtgen kesitli düz kanatların optimum tasarımı için son 
derece kullanışlı bir araçtır. 
Anahtar Kelimeler: Değişken ısı iletim katsayısı, Kanat, Optimizasyon. 
 
 

 

NOMENCLATURE 
  
A cross-sectional area of the fin, (m2) 
b fin length, (m) 
C integral constant representing dimensionless 

temperature at the fin tip 
k thermal conductivity, [W/(mK)] 
ko thermal conductivity at the outer space 

temperature, [W/(mK)] 
L the highest order derivative 
L-1 inverse operator of L 
N nonlinear operator 
Q heat transfer rate, (W) 
T temperature, (K) 
w semi-thickness of the fin, m 
x axial distance measured from fin tip, m 
β a constant describing the variation of  thermal 

conductivity 
ε fin emissivity 

η fin efficiency 
λ the slope of the thermal conductivity 

temperature curve, (1/K) 
ψ fin parameter 
σ the Stefan-Boltzmann constant, [W/(m2K4)] 
θ dimensionless temperature 
ξ dimensionless axial distance measured from the 

fin tip 
Subscripts and superscripts 
f fin 
* optimum 
 
INTRODUCTION 
 
Extended surfaces are extensively used in various 
industrial applications. An extensive review on this 
topic is presented by Kraus et al (2001). Fins are 
employed to enhance the heat transfer between the 
primary surface and its convective, radiating or 
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convective-radiating environment. Physical situations 
that involve only conduction and radiation are fairly 
common. A review on combined heat conduction and 
radiation can be seen in the literature (Özışık, 1973). 
Some examples include heat losses through the walls of 
a vacuum, heat transfer through super insulation made 
up of separated layers of highly reflective material and 
heat losses in satellite and spacecraft structures. The 
basic mechanism of heat transfer in a space radiator and 
a fin array is conduction combined with radiation in a 
nonparticipating medium, and the heat transfer 
characteristics of simple, one-dimensional, radiating 
fins have been studied extensively. Bartas and Sellers 
(1960) studied a heat rejecting system consisting of 
parallel tubes joined by web plates that served as 
extended surfaces. Wilkins Jr. (1960) gave expressions 
for the optimum proportion of triangular fins radiating 
to space at absolute zero. Chung and Zhang (1991) 
determined the optimum shape and minimum mass of a 
thin fin with diffuse reflecting surfaces using a 
variational calculus approach. Karlekar and Chao 
(1963) presented an optimization procedure for 
achieving maximum dissipation from a longitudinal fin 
system of trapezoidal profile with mutual irradiation. 
Schnurr (1976) used a nonlinear optimization approach 
for determining the minimum weight design for 
radiating fin arrays used in space applications. Hrymark 
et al. (1985) presented an efficient numerical method to 
discover the optimal shape for a fin subject to both 
convective and radiative heat loss.  Krishnaprakas 
(1996) presented the optimum design of a diffusely 
reflecting rectangular plate fin array extending from a 
plane wall employing a nonlinear optimization method. 
The optimum dimensions of trapezoidal profile 
radiating and convective-radiating circular fins and 
rectangular radiating fins with radiant interaction 
between the fin and its base were determined by 
Razelos and Krikkis (2001). However, all the papers 
dealing with fins or fin systems assumed a constant 
thermal conductivity. Fin or fin systems which are 
employed in spacecraft applications have high 
temperature differences between fin bases and their tips. 
Therefore, the variation of the thermal conductivity of 
fin material with fin temperature should be taken into 
consideration. 
 
In this work, Adomian decomposition method has been 
used to evaluate the temperature distribution within 
radiating rectangular fins with temperature-dependent 
thermal conductivity. The data obtained the 
decomposition solution has been correlated for a wide 
range of fin parameter and the thermal conductivity 
parameter describing the variation of the thermal 
conductivity. The result has been presented a simple 
correlation equation between two affecting parameters 
which are fin parameter and thermal conductivity 
parameter. The correlation equation can readily be used 
for designing of the radiating rectangular fins with 
variable thermal conductivity. 

PROBLEM DESCRIPTION 
 
A rectangular fin of thickness 2w and length b is shown 
in Figure 1. The dimension in the direction normal to 
the cross-section is large. Both surfaces of the fin are 
radiating to the vacuum of outer space at a very low 
temperature, which is assumed equal to zero absolute. 
The fin is diffuse-gray with emissivity ε, and has 
temperature-dependent thermal conductivity k, which 
depends on temperature linearly. The base temperature 
Tb of the fin is constant, and the fin tip is insulated. The 
radiative interaction between the fin and its base is 
neglected. Since the fin is assumed to be thin, the 
temperature distribution within the fin does not depend 
on y-direction.  
 
The energy balance equation for the differential element 
shown in Figure 1 is given 
 

0T2
dx
dT)T(k

dx
dw2 4 =εσ−⎥⎦

⎤
⎢⎣
⎡   (1) 

 
where k(T) and σ are the thermal conductivity and the 
Stefan-Boltzmann constant, respectively.  
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Figure 1. Schematic of a radiating rectangular fin. 
 
The thermal conductivity of the fin material is assumed 
to be a linear function of temperature according to 
 
 k(T)=ko(1+λT)  (2) 
 
where ko is the thermal conductivity at the outer space 
temperature of the fin, λ the slope of the thermal 
conductivity-temperature curve. 
 
Employing the following dimensionless parameters 
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the formulation of the problem reduces to 
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with boundary conditions 
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0at0
d
d

=ξ=
ξ
θ  (4b) 

1at1 =ξ=θ  (4c) 
 
THE ADOMIAN DECOMPOSITION METHOD 
 
The Adomian decomposition method, proposed by 
Adomian initially with the aims to solve frontier 
physical problem, has been applied to a wide class of 
deterministic and stochastic problems, linear and 
nonlinear, in physics, biology and chemical reactions 
etc. For nonlinear models, the method has shown 
reliable results in supplying analytical approximation 
that converges very rapidly (Adomian, 1988; Adomian, 
1994).  
 
We consider a general nonlinear equation  
 

,gNuRuLu =++   (5) 
 
where L is the highest order derivative which is 
assumed to be easily invertible, R the linear differential 
operator of less order than L, Nu represents the 
nonlinear terms, and g is the source term. Applying the 
inverse operator L-1 to the both sides of Eq. (5), and 
using the given conditions we obtain 
 

),Nu(L)Ru(L)x(fu 11 −− −−=         (6) 
 
where the function f(x) represents the terms arising from 
integrating the source term g(x), and from the using 
given conditions, all of which are assumed to be 
prescribed.  
 
For nonlinear differential equations, the nonlinear 
operator Nu=F(u) is represented by an infinite series of 
the so-called Adomian polynomials 
 

∑
∞

=

=
0m

mA)u(F                                    (7) 

 
The polynomials Am are generated for all kind of 
nonlinearity so that A0 depends only on u0, A1 depends 
on u0 and u1, and so on. The standard Adomian method 
defines the solution u(x) by the series 
 

∑
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F(u) is expanded Taylor series about u0  
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and is rewritten Eq. (8) as u-u0= u1+ u2+ u3+……, 
substituting it into Eq. (9) and then equating  two 

expressions for F(u) found in Eq. (9) and Eq. (7) defines 
formulas for the Adomian polynomials  
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By equating terms in Eq. (10) the first few Adomian’s 
polynomials A0+A1+A2 … are given 
 

),u(FA 00 =            (11a) 
),u(FuA 011 ′=  (11b) 
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M  
 
Now that the Ak are known, Eq. (7) can be substituted in 
Eq. (6) to specify the terms in the expansion for the 
solution of Eq. (8). 
 
FIN TEMPERATURE DISTRIBUTION  
 
Following Adomian decomposition analysis, the linear 
operator is defined as:  
 

.
d
dL 2

2

ξ
=   (12) 

 
Consequently, Eq. (4a) can be written as follows: 
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are nonlinear terms. Hence, using Eq. (11) gives 
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With the boundary condition given in Eq. (4b), θ(0) is 
any arbitrary constant, C. 
Applying the inverse operator L-1 to both sides of Eq. 
(13) we obtain 
 

,NCLNBLNALLL 1111 −−−− Ψ+β−β−=θ  (18) 
 
and 
 

.NCLNBLNAL 111
0
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If L is a second-order operator, L-1 is a twofold 
indefinite integral, i.e. 
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thus,  
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The next iterates are determined recursively by 
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Therefore, the first five iterates are expressed as: 
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    M  
Summing those iterates the dimensionless temperature 
distribution is calculated from the Eq. (5). The 
coefficient C representing the temperature at the fin tip, 
that must lie in the interval (0, 1), can be evaluated from 
the boundary condition given in Eq. (4c) using the 
Newton-Raphson method. Taking the fourteen terms in 
the series and applying the boundary condition given in 
Eq. (4c), the values of coefficient C relative to the 
thermal conductivity parameters, β, and the fin 
parameter, ψ, are calculated.  
 
The problem is also solved numerically by using 
MAPLE which uses a finite difference technique (FDT) 
with Richardson extrapolation (Ascher and Petzold, 
1998), and the corresponding results are compared with 
the Adomian solution. The results of the comparison 
show that the difference is 2.7 % in a case of the 
strongest nonlinearity, i.e. β=1.0 and ψ=100. 
 
FIN EFFICIENCY AND OPTIMIZATION 
 
The heat transfer rate from the fin surfaces is found by 
applying the Stefan-Boltzmann law. 
 

dxT2Q
b

0

4∫ εσ=  (24) 

 
Fin efficiency is defined as the energy radiated away by 
the fin divided by the energy that would be radiated if 
the entire fin were at the base temperature (Siegel and 
Howell, 1972). 
 

4
bideal Tb2Q εσ=  (25) 

 
Employing the dimensionless parameters in Eq. (3), fin 
efficiency is expressed as 
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Because the resulting complicated fin efficiency 
expression, i.e. Eq. (26), the fin efficiency was 
expressed as a function of fin parameter for an attained 
thermal conductivity parameter as following correlation 
equation. 
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The coefficients in Eq. (27) are given in Arslanturk 
(2006). Knowing the fin efficiency, we can determine 
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the heat transfer rate from the fin surfaces from the Eq. 
(25) and (26). 
 

)(Tb2Q 4
b ψηεσ=  (28) 

 
It is important to determine the conditions that will yield 
maximum heat dissipation for given value of thermal 
conductivity parameter and fixed fin profile, that is, 
A=2bw=constant. 
 
When the value of thermal conductivity parameter is 
fixed, the fin efficiency is a function of thermo-
geometric fin parameter ψ only from Eq. (27). Then Eq. 
(28) can be written as  
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since A=2bw, and ψ can be related to w by 
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In Eq. (30) the fin thickness w is the only variable. To 
maximize Q we differentiate Eq. (29) with respect to w 
and equate the resulting expression to zero. 
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Differentiation of Eq. (30) with respect to w yields 
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Substituting ∂ψ/∂w into Eq. (31b), we obtain 
 

)d/d(
)(

3
1

opt ψη
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where ψopt is the value of the fin parameter that will give 
maximum heat transfer rate Q for given value of 
thermal conductivity parameter β. Substituting the 
efficiency equation given in Eq. (27) into Eq. (33) it is 
obtained an algebraic equation for optimum thermo-
geometric fin parameter. Solving the algebraic equation 
by Newton-Raphson method, it is found the optimum 
value of the fin parameter as a function of thermal 
conductivity parameter. The results have been reported 
in terms of a simple correlation equation of compact 
form using standard statistical techniques.  
 

1311.11064.11928.02105.0 23* +β+β+β−=ψ  (34) 

The range of thermal conductivity parameter is taken as 
-0.8<β<0.8, in the correlation equation. The correlation 
coefficient for the regression equation is R2=0.9998. 
 
CONCLUSION 
 
Radiating rectangular fins with temperature-dependent 
thermal conductivity were optimized in the present 
work using the Adomian decomposition method. The 
optimization results were expressed a simple correlation 
equation obtained by standard statistical techniques. 
This equation yields the relation between the optimum 
fin parameter and thermal conductivity parameter 
describing the variation of the thermal conductivity. The 
present equation can be employed for all practical 
engineering purposes. 
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