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Abstract: Radiating extended surfaces are widely used to enhance heat transfer between primary surface and the
environment. The performance of such a surface is significantly affected by variable thermal conductivity,
particularly in the case of large temperature differences. The aim of the present work is to evaluate the optimum
dimensions of radiating rectangular fins with temperature-dependent thermal conductivity for a fixed fin volume. The
nonlinear fin equation is solved by the Adomian decomposition method for obtaining the temperature distribution
within such fins. The optimum geometry which maximizes the heat transfer rate from the fins of fixed volume is
found by using the data from the solution. Derived condition of the optimality is a simple correlation relation between
the fin parameter and thermal conductivity parameter describing the variation of thermal conductivity. The resulting
correlation equation is a very suitable tool for optimum design of radiating rectangular fins with temperature-
dependent thermal conductivity.
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DEGISKEN ISI iLETiM KATSAYILI DiKDORTGEN KANATLARIN
OPTIMIiZASYONU iCiN BiR KORELASYON DENKLEMIi

Ozet: Ismimla 1s1 yayan genisletilmis yiizeyler genis kullamim alanina sahiptir. Boyle bir yiizeyin, 6zellikle biiyiik
sicaklik farklar1 s6z konusu oldugunda, performansi 1st iletim katsayisinin degisken olmasindan onemli 6lciide
etkilenir. Bu caligmanin amaci, degisken 1s1 iletim katsayisina sahip isinimla 1s1 kaybeden kanatlarin sabit kanat
hacmi i¢in optimum boyutlarin1 bulmaktir. Dogrusal olmayan kanat denklemi Adomian yontemi ile ¢oziilerek kanat
icindeki sicaklik dagilimi elde edilmistir. Bulunan sicaklik profili yardimiyla sabit hacme sahip bir kanattan ¢evreye
olan 1s1 gegigini maksimum yapan kanat geometrisi belirlenmistir. Belirlenen optimizasyon kosulu kanat parametresi
ile 1s1 iletim katsayisinin sicaklikla degisimini tanimlayan 1s1 iletim katsayisi parametresi arasinda kurulan bir
korelasyon denklemidir. Bu denklem 1sinimla 1s1 yayan dikdortgen kesitli diiz kanatlarin optimum tasarimi i¢in son
derece kullanigh bir aragtir.

Anahtar Kelimeler: Degisken 1s1 iletim katsayisi, Kanat, Optimizasyon.

NOMENCLATURE n fin efficiency
A the slope of the thermal conductivity
A cross-sectional area of the fin, (m?) temperature curve, (1/K)
b fin length, (m) \ fin parameter
C integral constant representing dimensionless o the Stefan-Boltzmann constant, [W/(m*K*)]
temperature at the fin tip 0 dimensionless temperature
k thermal conductivity, [W/(mK)] 13 dimensionless axial distance measured from the
k, thermal conductivity at the outer space fin tip
temperature, [W/(mK)] Subscripts and superscripts
L the highest order derivative f fin
L' inverse operator of L * optimum
N nonlinear operator
Q heat transfer rate, (W) INTRODUCTION
T temperature, (K)
W semi-thickness of the fin, m Extended surfaces are extensively used in various
X axial distance measured from fin tip, m industrial applications. An extensive review on this
B a constant describing the variation of thermal topic is presented by Kraus et al (2001). Fins are
conductivity employed to enhance the heat transfer between the
€ fin emissivity primary surface and its convective, radiating or
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convective-radiating environment. Physical situations
that involve only conduction and radiation are fairly
common. A review on combined heat conduction and
radiation can be seen in the literature (Ozisik, 1973).
Some examples include heat losses through the walls of
a vacuum, heat transfer through super insulation made
up of separated layers of highly reflective material and
heat losses in satellite and spacecraft structures. The
basic mechanism of heat transfer in a space radiator and
a fin array is conduction combined with radiation in a
nonparticipating medium, and the heat transfer
characteristics of simple, one-dimensional, radiating
fins have been studied extensively. Bartas and Sellers
(1960) studied a heat rejecting system consisting of
parallel tubes joined by web plates that served as
extended surfaces. Wilkins Jr. (1960) gave expressions
for the optimum proportion of triangular fins radiating
to space at absolute zero. Chung and Zhang (1991)
determined the optimum shape and minimum mass of a
thin fin with diffuse reflecting surfaces using a
variational calculus approach. Karlekar and Chao
(1963) presented an optimization procedure for
achieving maximum dissipation from a longitudinal fin
system of trapezoidal profile with mutual irradiation.
Schnurr (1976) used a nonlinear optimization approach
for determining the minimum weight design for
radiating fin arrays used in space applications. Hrymark
et al. (1985) presented an efficient numerical method to
discover the optimal shape for a fin subject to both
convective and radiative heat loss. Krishnaprakas
(1996) presented the optimum design of a diffusely
reflecting rectangular plate fin array extending from a
plane wall employing a nonlinear optimization method.
The optimum dimensions of trapezoidal profile
radiating and convective-radiating circular fins and
rectangular radiating fins with radiant interaction
between the fin and its base were determined by
Razelos and Krikkis (2001). However, all the papers
dealing with fins or fin systems assumed a constant
thermal conductivity. Fin or fin systems which are
employed in spacecraft applications have high
temperature differences between fin bases and their tips.
Therefore, the variation of the thermal conductivity of
fin material with fin temperature should be taken into
consideration.

In this work, Adomian decomposition method has been
used to evaluate the temperature distribution within
radiating rectangular fins with temperature-dependent
thermal conductivity. The data obtained the
decomposition solution has been correlated for a wide
range of fin parameter and the thermal conductivity
parameter describing the variation of the thermal
conductivity. The result has been presented a simple
correlation equation between two affecting parameters
which are fin parameter and thermal conductivity
parameter. The correlation equation can readily be used
for designing of the radiating rectangular fins with
variable thermal conductivity.
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PROBLEM DESCRIPTION

A rectangular fin of thickness 2w and length b is shown
in Figure 1. The dimension in the direction normal to
the cross-section is large. Both surfaces of the fin are
radiating to the vacuum of outer space at a very low
temperature, which is assumed equal to zero absolute.
The fin is diffuse-gray with emissivity €, and has
temperature-dependent thermal conductivity k, which
depends on temperature linearly. The base temperature
Ty, of the fin is constant, and the fin tip is insulated. The
radiative interaction between the fin and its base is
neglected. Since the fin is assumed to be thin, the
temperature distribution within the fin does not depend
on y-direction.

The energy balance equation for the differential element
shown in Figure 1 is given

d

2w —
X

{k(T)j—I}—zsoT“ =0 (1)

where k(T) and o are the thermal conductivity and the
Stefan-Boltzmann constant, respectively.

X |dx|

b

Figure 1. Schematic of a radiating rectangular fin.

The thermal conductivity of the fin material is assumed
to be a linear function of temperature according to

K(T)=ko(1+AT) (2)

where k, is the thermal conductivity at the outer space
temperature of the fin, A the slope of the thermal
conductivity-temperature curve.

Employing the following dimensionless parameters

T ecT, b’ X
0=— =—0 =— =AT 3
T, w g b p=AT, 3)
the formulation of the problem reduces to
2 2 2
d e+[3@ +B€)d e—‘I’E)“:O (4a)
6(22 dE-’ 2

with boundary conditions



(4b)
(4c)

THE ADOMIAN DECOMPOSITION METHOD

The Adomian decomposition method, proposed by
Adomian initially with the aims to solve frontier
physical problem, has been applied to a wide class of
deterministic and stochastic problems, linear and
nonlinear, in physics, biology and chemical reactions
etc. For nonlinear models, the method has shown
reliable results in supplying analytical approximation
that converges very rapidly (Adomian, 1988; Adomian,
1994).

We consider a general nonlinear equation

Lu+Ru+Nu=g, (5)
where L is the highest order derivative which is
assumed to be easily invertible, R the linear differential
operator of less order than L, Nu represents the
nonlinear terms, and g is the source term. Applying the
inverse operator L to the both sides of Eq. (5), and
using the given conditions we obtain

u=f(x)-L"(Ru)-L"(Nu), (6)
where the function f(x) represents the terms arising from
integrating the source term g(x), and from the using
given conditions, all of which are assumed to be
prescribed.

For nonlinear differential equations, the nonlinear
operator Nu=F(u) is represented by an infinite series of
the so-called Adomian polynomials

Fuy=Y A, ™)

The polynomials A, are generated for all kind of
nonlinearity so that A, depends only on u,, A; depends
on uy and u;, and so on. The standard Adomian method
defines the solution u(x) by the series

u=Su, @®)
m=0

F(u) is expanded Taylor series about uy

FW=FUuy)+F'(uy)u—-uy)+

Fr(ug) Ul _2L:0)2 +Er(uy) U _3L!’°)3 ¥ )

and is rewritten Eq. (8) as u-uy= u+ ut ust...... s

substituting it into Eq. (9) and then equating two
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expressions for F(u) found in Eq. (9) and Eq. (7) defines
formulas for the Adomian polynomials

Fu)=A,+A, +...=F(uy)+F(uy)(u, +u, +...)
2 10
+F"(u0)(u1 +u22'+...) . (10)

By equating terms in Eq. (10) the first few Adomian’s
polynomials A¢g+A +A, ... are given

A, =F(u,), (11a)
A, =u,F'(uy), (11b)
A, =u2F’(u0)+%u,2F”(u0), (11c)
A, = u3F'(u0)+u1u2F"(u0)+%ufF"’(uo), (11d)

Now that the Ay are known, Eq. (7) can be substituted in
Eq. (6) to specify the terms in the expansion for the
solution of Eq. (8).

FIN TEMPERATURE DISTRIBUTION

Following Adomian decomposition analysis, the linear
operator is defined as:

d2

= . 12
4 12)
Consequently, Eq. (4a) can be written as follows:
a0 (do) .4
LO=—B0——-PB| — | +VY0"=-BNA-BNB+¥NC
g dg
13)
where
0=>9, (14a)
m=0
2 o
NA =03 ?:ZAm (14b)
dé m=0
2
de -
NB=|—| =) B, (14¢)
) -2
NC=0*=>"C, (14d)
m=0
are nonlinear terms. Hence, using Eq. (11) gives
d*e
A, =0,—2 15a
0 0 d§2 ( )
2 2
A1:91%+ Od 921 (15Db)
dg dg
2 2 2
A2:92d620+91dezl+60dez2 (15¢)
dg dg dg



d’e, d’e, d’o, d*,
Al PO T e asg)
2
B, - % (16a)
dg
g =290 40, (16b)
dg dé
B, = ﬁ 4249 49, (16¢)
de dg deg
do, do,  ,do, do,
e de T de de (1ed
and
C, =0 (17a)
C, =466, (17b)
C, = 66207 + 460, (17¢)
C,=40,0° +12020,0, + 4020, (17d)

With the boundary condition given in Eq. (4b), 6(0) is
any arbitrary constant, C.

Applying the inverse operator L™ to both sides of Eq.
(13) we obtain

L'LO=-BL'NA —BL'NB+¥L'NC, (18)
and
0=0, —BL'NA -BL'NB+¥YL'NC. (19)

If L is a second-order operator, L' is a twofold

indefinite integral, i.e.

L'LO=06-6(0)-¢& dOEiO) (20)

thus,

0, =0(0)+¢& de(O) (21)
dg

The next iterates are determined recursively by

0., =-BL'A_ -BL'B, +¥L'C,, (22)

Therefore, the first five iterates are expressed as:

0,=C (23a)

0, = 'y’ (23b)

0, :—EBCS‘Péz +%C7‘I’2§4 (23¢)
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%ﬁzc"\ygz Bc plgt * 120 C“"I’ £° (23d)
64 :_1B3C7\P§2 +_B2C()\I;2§4
2 24 23
17 1I\y3g6 Bydes ( e)
-—pC P +——CY
45 g : 2520 s

Summing those iterates the dimensionless temperature
distribution is calculated from the Eq. (5). The
coefficient C representing the temperature at the fin tip,
that must lie in the interval (0, 1), can be evaluated from
the boundary condition given in Eq. (4c) using the
Newton-Raphson method. Taking the fourteen terms in
the series and applying the boundary condition given in
Eq. (4c), the values of coefficient C relative to the
thermal conductivity parameters, [, and the fin
parameter, , are calculated.

The problem is also solved numerically by using
MAPLE which uses a finite difference technique (FDT)
with Richardson extrapolation (Ascher and Petzold,
1998), and the corresponding results are compared with
the Adomian solution. The results of the comparison
show that the difference is 2.7 % in a case of the
strongest nonlinearity, i.e. B=1.0 and y=100.

FIN EFFICIENCY AND OPTIMIZATION

The heat transfer rate from the fin surfaces is found by
applying the Stefan-Boltzmann law.

b
Q= jzscT“dx 24)

Fin efficiency is defined as the energy radiated away by
the fin divided by the energy that would be radiated if
the entire fin were at the base temperature (Siegel and
Howell, 1972).

=2beoT,

Q ideal (2 5)

Employing the dimensionless parameters in Eq. (3), fin
efficiency is expressed as

j 0*de (26)

n=
Q ideal

Because the resulting complicated fin efficiency
expression, ie. Eq. (26), the fin efficiency was
expressed as a function of fin parameter for an attained
thermal conductivity parameter as following correlation
equation.

_a+chn(P)+ eln(¥)?
1+bIn(¥)+dIn(¥)*
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The coefficients in Eq. (27) are given in Arslanturk
(2006). Knowing the fin efficiency, we can determine



the heat transfer rate from the fin surfaces from the Eq.
(25) and (26).

Q =2becT,n(y) (28)
It is important to determine the conditions that will yield
maximum heat dissipation for given value of thermal
conductivity parameter and fixed fin profile, that is,
A=2bw=constant.

When the value of thermal conductivity parameter is
fixed, the fin efficiency is a function of thermo-
geometric fin parameter y only from Eq. (27). Then Eq.
(28) can be written as

A
Q=2e0T; ——n(y) 29)
2w
since A=2bw, and vy can be related to w by
ecT, A”
= 30
v Tew (30)

In Eq. (30) the fin thickness w is the only variable. To
maximize Q we differentiate Eq. (29) with respect to w
and equate the resulting expression to zero.

a_ngchjAﬂ nw) =0 (31a)
ow ow| w
or
1 1 on(y) oy
R +—— 7" T -0 31b
e () v (31b)
Differentiation of Eq. (30) with respect to w yields
3ecT A’
8_\|/ = _‘C’G—b4 = _3_“’ (32)
ow 4k w w
Substituting oy/ow into Eq. (31b), we obtain
1
Jp— n(y) (33)
3 (dn/dvy)

where . is the value of the fin parameter that will give
maximum heat transfer rate Q for given value of
thermal conductivity parameter . Substituting the
efficiency equation given in Eq. (27) into Eq. (33) it is
obtained an algebraic equation for optimum thermo-
geometric fin parameter. Solving the algebraic equation
by Newton-Raphson method, it is found the optimum
value of the fin parameter as a function of thermal
conductivity parameter. The results have been reported
in terms of a simple correlation equation of compact
form using standard statistical techniques.

~0.2105p% +0.1928B> +1.1064B + 1.1311  (34)

W*
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The range of thermal conductivity parameter is taken as
-0.8<Pp<0.8, in the correlation equation. The correlation
coefficient for the regression equation is R>=0.9998.

CONCLUSION

Radiating rectangular fins with temperature-dependent
thermal conductivity were optimized in the present
work using the Adomian decomposition method. The
optimization results were expressed a simple correlation
equation obtained by standard statistical techniques.
This equation yields the relation between the optimum
fin parameter and thermal conductivity parameter
describing the variation of the thermal conductivity. The
present equation can be employed for all practical
engineering purposes.
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