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Abstract: The Synthetic Kernel (SKN) approximation is employed to radiative transfer problems of hollow spherical 
participating and linearly anisotropically scattering medium. The SKN method relies on approximating the integral 
transfer kernels by synthetic kernels. The radiative integral transfer equations (RITEs) are then reduced to a set of 
coupled second-order differential equations. The method is tested against exact solution for various optical geome-
tries, constant and space-dependent scattering albedo variations simulating homogeneous/inhomogeneous medium. It 
is demonstrated that low order SKN approximation can be used to solve one dimensional radiative transfer problems of 
spherical participating medium.  
Keywords: Synthetic Kernel Method, Radiative Transfer, Anisotropic Scattering, Spherical Hollow Medium, Partici-
pating medium, Concentric sphere. 
 
LİNEER ANİSOTROPİYLE SAÇAN KATILIMCI İÇİÇE KÜRESEL ORTAMDA IŞINIM 

ISI TRANSFER PROBLEMİNİN SKN METODU İLE ÇÖZÜMÜ 
 
Özet: Sentetik Kernel metodu, soğuran, yayan ve lineer anizotropiyle saçan içiçe küresel ortamların ısıl ışınım prob-
lemlerine uygulanmıştır. Metot, ışınım integral taşınım kernellerine sentetik kerneller ile yaklaşımda bulunmak sure-
tiyle, bir takım-diferansiyel denklem sistemine indirgenmesi esasına dayanır. Metot, çeşitli optik geometriler, homo-
jen ve homojen olmayan ortamların simülasyonunda, sabit ve uzay-bağımlı saçılma albedo değişimlerine karşın ışı-
nım integral denkleminin gerçek çözümüyle karşılaştırılmıştır. Düşük mertebeli SKN yaklaşımın bir boyutlu küresel 
katılımcı ortam ışınım taşınımı problemlerinin çözümünde kullanılabileceği gösterilmiştir. 
Anahtar Kelimeler: Sentetik Kernel Metodu, Işınım Isı transferi, Anizotropik saçılma, İçiçe küresel ortam, Katılımcı 
ortam, İçiçe küre. 
 
 
NOMENCLATURE 
 

( )nE x     nth order exponential integral function 
G(τ)   dimensionless incident radiation 

1

1
( 2 ( , ) )I d

−
= π τ μ μ∫  

Gn(τ)  expression defined by Eq. (16)  
I(τ,μ)  dimensionless radiative intensity  

2 4( ( , ) ( ))refi n T= τ μ σ π  

1 2,G GK K  transfer kernels of incident energy 
given by Eqs. (5) and (6) 

1 2,q qK K   transfer kernels of heat flux given by 
Eqs. (7) and (8)  

S0(τ)  dimensionless isotropic source func-
tion given by Eqs. (5) 

2 4
0( ( ))refs n T= σ π  

S1(τ)  dimensionless anisotropic source func-
tion given by Eqs. (6) 

2 4
1( ( ))refs n T= σ π  

T(τ)  temperature 
1a   coefficient of linear anisotropy 

f1(τ), f2(τ) boundary terms defined by Eqs. (9) 
and (10) 

q(τ)  dimensionless radiative heat flux 
1

1
( 2 ( , ) )I d

−
= π τ μ μ μ∫  

qn(τ)   expression defined by Eq. (17) 
wn  Gauss quadrature weights 
 
Greek symbols 
Γ   hemispherical transmissivity  

0 ( )Ω τ   scattering albedo ( ( )σ τ β ) 
β   extinction coefficient 
κ(τ) absorption coefficient 
μn  Gauss quadrature abscissas 
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θ(τ)  dimensionless temperature 
( ( ) refT T= τ ) 

ρ  hemispherical reflectivity 
σ(τ) scattering coefficient 
τ dimensionless optical variable (=rβ) 
Subscripts 
n  nth component of the SKN equations 
ref  reference 
w  wall 
 
INTRODUCTION 
 
Radiative transfer in spherical participating medium has 
numerous applications in insulation and combustion 
systems, thermal manufacturing processes, particulate 
solar collectors, nuclear engineering, astrophysics, and 
environmental and space sciences such as prediction of 
the effect of dust and participating gases on the global 
environment. 
 
The exact formulation of the radiative transfer equation 
(RTE) is the radiative integral transfer equation (RITE). 
The exact integral equations for any geometry and/or 
arbitrary boundary condition cannot be generalized due 
to the difficulty in finding the geometry-dependent 
integral transfer kernels which require analytical deriva-
tions. The integral transfer kernels are mathematically 
singular in nature, and the numerical solution of the 
RITE also requires special techniques to avoid or re-
move singularities. Therefore, a number of numerical 
methods have been developed over last few decades to 
solve thermal radiative transfer problems in participat-
ing medium. Monte-Carlo, zonal method, spherical 
harmonics (PN), discrete ordinate method (DOM), dif-
ferential and modified differential approximations, col-
location and variational methods have been proposed 
and used for various geometries, including spherical 
medium. However, every one of the methods mentioned 
also has its own limitations in certain cases and/or ge-
ometries.   
 
Radiative transfer in a participating homogeneous or 
inhomogeneous solid spherically symmetric medium 
with isotropic or linearly anisotropic scattering has been 
the subject of numerous studies (Traugot, 1969; Thynel 
and Özısık, 1985a; Thynel and Özısık, 1985b; Thynel 
and Özısık, 1986; El-Wakil et al., 1988; Thynell, 1989; 
Wilson and Nanda, 1990; El-Wakil et al., 1991; Sghaier, 
et al., 2000). The radiative transfer in paricipating hol-
low or concentric spherical medium has also been stud-
ied with various methods (Ryhming, 1966; Viskanta and 
Crosbie, 1967; Olfe, 1968; Crosbie and Khalil, 1972; 
Tong and Swathit, 1987; Tsai, et al., 1989; Jia, et al., 
1991; Li and Tong, 1990; Altaç and Tekkalmaz, 2004; 
Trabelsi, et al., 2005) such as discrete ordinates method 
(DOM), spherical harmonics, variational and colloca-
tion.  These methods in principle require the solution of 
either the radiative transfer equation (RTE) or the radia-
tive integral transfer equation (RITE) for intensity, inci-
dent energy and radiative heat flux. The discrete ordi-
nates method (DOM or SN method) had first found ap-

plications in neutron transport. In the last two decades, 
the DOM has evolved and quickly became the dominant 
mean of obtaining numerical solutions in radiative 
transfer, and it is considered to be potential and a very 
promising tool for treating thermal radiation problems. 
Although the method yields results of sufficient accu-
racy for most engineering problems; the DOM is also 
plagued with so called “ray effect” in rectangular and 
curvilinear geometries (Lewis and Miller, 1984). The 
main cause of ray effect is the angular discretization. As 
a remedy, one could simply increase the number of 
directions; however, the ray effect still persists (Lewis 
and Miller, 1984). Comparisons of the RTE solutions 
for rectangular geometries with the exact, P1, S4, S8, S16, 
SK1 and SK2 methods confirm that the SKN solutions are 
free of ray effect while distinct ray effect oscillations 
even in S16 solutions are observed (Altaç and Tekkal-
maz, 2003). Additionally, in curvilinear geometries a 
great deal of difficulties has to be dealt with due to the 
streaming term, directional derivative, of RTE. 
 
The incident energy and the radiative heat flux in the 
RITEs contain only spatial variables since the angular 
dependence is completely eliminated due to integration 
of intensity over the solid angle.  On the other hand, one 
of the major disadvantages of treating the RITEs is that 
the numerical solution of the RITEs results in dense 
matrices. In one dimensional geometries, this may not 
be a great concern; however, particularly, in multi-
dimensional geometries this consequence may require 
restrictions on the computational memory and execution 
time. The second major disadvantage of dealing with 
RITEs is the integral transfer kernels for a specific ge-
ometry must be derived analytically, and for compli-
cated geometries the derivation of the transfer kernels is 
a difficult task, not to mention the singularities that 
should be tackled analytically or computationally.  
 
The Synthetic Kernel (SKN) method deals with the 
RITEs, and it consists of an approximation, in the form 
of exponentials, to the RITE kernels similar to the ex-
ponential kernel approximation. Then, the RITEs, in 
multidimensional geometries, can be cast as a set of 
coupled elliptic second-order partial differential equa-
tions, or ordinary differential equations in one dimen-
sional geometries. Thus, one does not have to deal with 
the singularity removal of the transfer kernels. The 
method was first employed to neutron transport prob-
lems of homogeneous and inhomogeneous medium 
(Altaç and Spinrad, 1990; Spinrad and Altaç, 1990), the 
SKN solutions—which consisted of benchmark problems 
with stepwise changing medium properties—agreed 
remarkably well with those of the spherical harmonics, 
DOM and Monte-Carlo. Recently, the method was ap-
plied to two-dimensional thermal radiative transfer 
problems (Altaç, 1997; Altaç and Tekkalmaz, 2002). 
The foregoing studies used the half-range Gauss quadra-
ture set to obtain the approximate synthetic kernels. The 
method was also extended to linearly anisotropically 
scattering participating homogeneous and inhomogene-
ous plane-parallel medium (Altaç, 2002a; Altaç, 2002b), 
and the SKN solutions of the benchmark problems com-
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pared extremely well those of high order spherical har-
monics PN, DOM and RITE. The method was later 
applied to an absorbing, emitting, and isotropically 
scattering homogeneous and inhomogeneous solid 
spherical medium (Altaç and Tekkalmaz, 2003). The 
performance of the SKN  method was explored in com-
parison to the test problems with the exact and S8 solu-
tions. Most recently, the SKN method was employed to 
homogeneous and inhomogeneous one- and two-
dimensional (r-z) geometries (Döner and Altaç, 2006a; 
Döner and Altaç, 2006b; Döner and Altaç, 2006c). 
These studies show that the method can be used to ob-
tain very accurate solutions with less computational 
efforts.  
 
In this paper, the SKN method is extended to radiative 
transfer in linearly anisotropically scattering participat-
ing hollow sphere medium. The geometry and the 
benchmark problem is unique in that it has an internal 
boundary unlike other foregoing problems tackled so 
far. The performance of the method with an internal 
boundary is investigated by comparing the SKN solu-
tions quantitatively and qualitatively with exact RITE 
solutions. 
 
DERIVATION OF THE RITE FOR SPHERICAL 
SHELL MEDIUM 
 
For general coordinate systems, the dimensionless form 
of the RITE for homogeneous absorbing, emitting and 
linearly anisotropically scattering medium is given in 
Altaç (2003). The derivations of the RITEs for spherical 
media is carried out using the general forms—Eqs. (12) 
and (13) of  Altaç (2003). The geometry and the coordi-
nate system is shown in Figure 1.  

 

 
Figure 1. Spherical geometry and the coordinate system. 

 
To obtain the RITEs for one-dimensional spherical 
medium, we perform the integrations of Eqs. (12) and 
(13) over the azimuthal and polar angles. Then the 
monochromatic dimensionless RITEs for one-
dimensional hollow spherical medium can be written as, 
for the incident energy, 

( ) ( ) ( ) ( )

( ) ( )

2

1

2

1

1 1 0

1 2 1

,

                   ,

G

G

G f K S d

a K S d

τ

′τ =τ

τ

′τ =τ

′ ′ ′τ = τ + τ τ τ τ

′ ′ ′+ τ τ τ τ

∫

∫
 (1) 

and for the net radiative heat flux 

( ) ( ) ( ) ( )

( ) ( )

2

1

2

1

2 01

1 12

,

                    ,

q

q

q f K S d

a K S d

τ

′τ =τ

τ

′τ =τ

′ ′ ′τ = τ + τ τ τ τ

′ ′ ′+ τ τ τ τ

∫

∫
 (2) 

where S0(τ) and S1(τ) are the isotropic and anisotropic 
source functions which are defined as 

[ ] ( )4
0 0 0( ) 4 1 ( ) ( ) ( )S Gτ = π − Ω τ θ τ + Ω τ τ  (3) 

and 
( ) ( ) ( )1 0S qτ = Ω τ τ  (4) 

where θ(τ)=T(τ)/Tref is the dimensionless temperature, 
Ω0 is the space-dependent scattering albedo given by 
Ω0=σ(τ)/β and β=σ(τ)+κ(τ) which is the extinction coef-
ficient, σ(τ) and κ(τ)  are the space-dependent scattering 
and absorption coefficients, respectively, and [1- Ω0(τ)] 
θ4(τ) is the dimensionless blackbody radiation intensity. 
 
The integral transfer kernels of incident energy are, 
expressed with superscript G, can be written as follows: 

( ) ( ) ( ){ }1 1 1, ( , )
2

GK E E
′τ′ ′ ′τ τ = τ − τ − λ τ τ
τ

 (5) 

and 

( )
( ) ( )

( )
( ) ( )

2

2 1 2

3 3

sgn
1, ( , ) ( , )
2

( , )

G

E

K E

E E

⎧ ⎫′ ′ ′τ τ − τ τ − τ
⎪ ⎪⎪ ⎪′ ′ ′τ τ = +η τ τ λ τ τ⎨ ⎬

τ ⎪ ⎪′ ′− τ − τ + λ τ τ⎪ ⎪⎩ ⎭

 (6) 

where 2 2 2 2
1 1( , )′ ′λ τ τ = τ − τ + τ − τ  and 

2 2( , )′ ′η τ τ = τ − τ definitions have been adapted here 
to save space and to present equations in a coherent 
fashion. 
 
On the other hand, transfer kernels of net radiative heat 
flux, expressed with superscript q, are written as 

( )
( ) ( )

( )
( ) ( )

2

1 21 2

3 3

 sgn

, ( , ) ( , )
2

( , )

q

E

K E

E E

⎧ ⎫′ ′τ τ − τ τ − τ
⎪ ⎪′τ ⎪ ⎪′ ′τ τ = −η τ τ λ τ τ⎨ ⎬

τ ⎪ ⎪′ ′+ τ − τ − λ τ τ⎪ ⎪⎩ ⎭

 (7) 

and 

( )

( )
( )

( )
( )

( ) ( )

3

1 1 3

42 2

4

5 5

( , ) ( , ) ( , )
1, ( , ) ( , )

2

( , )

q

E

E

K E

E

E E

⎧ ⎫′ ′ττ τ − τ
⎪ ⎪
⎪ ⎪′ ′+η τ τ η τ τ λ τ τ
⎪ ⎪⎪ ⎪′ ′ ′τ τ = +λ τ τ λ τ τ⎨ ⎬

τ ⎪ ⎪′ ′− τ − τ τ − τ⎪ ⎪
⎪ ⎪′ ′− τ − τ + λ τ τ⎪ ⎪⎩ ⎭

 (8) 
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where sgn(τ-τ′) is the sign function. 
 
Incident diffuse radiation from the inner and outer shell 
surfaces are expressed as 

( )
( ) ( )
( )

( )
( )

( ) ( )

1 2 1 3 11
1

3 1

2 2 2
2

2 1 2 2

3 2 3 2

( , )
2

( , ) ( , )
2

( , )

w

w

E EI
f

E

E
I

E

E E

τ τ − τ + η τ τ⎧ ⎫⎪ ⎪τ = ⎨ ⎬τ − τ − τ⎪ ⎪⎩ ⎭
τ τ − τ⎧ ⎫

⎪ ⎪
+ −η τ τ λ τ τ⎨ ⎬

τ ⎪ ⎪+ τ − τ − λ τ τ⎩ ⎭

 (9) 

and 

( )

( )
( ) ( )

( )
( ) ( )

( )
( )

( )
( ) ( )

( ) ( )

1 3 1

1 4 11
2 2

1 4 1

5 1 5 1

2 3 2

2 1 1 3 2
2

2 4 22

2 4 2

5 2 5 2

( , ) ( , )2
( , )

( , ) ( , ) ( , )

( , ) ( , )
2

( , )

w

w

E

EI
f

E

E E

E

E
I

E

E

E E

ττ τ − τ⎧ ⎫
⎪ ⎪

− τ − τ τ − τ⎪ ⎪τ = ⎨ ⎬
+η τ τ η τ ττ ⎪ ⎪

⎪ ⎪− τ − τ + η τ τ⎩ ⎭
−ττ τ − τ⎧ ⎫

⎪ ⎪
−η τ τ η τ τ λ τ τ⎪ ⎪

⎪ ⎪+ −λ τ τ λ τ τ⎨ ⎬
τ ⎪ ⎪+ τ − τ τ − τ⎪ ⎪

⎪ ⎪+ τ − τ − λ τ τ⎩ ⎭

 (10) 

where Iw1 and Iw2 are the incident diffuse radiation in-
tensities of inner and outer shells, respectively.  
 
DERIVATION OF THE SKN EQUATIONS 
 
The exact radiative transfer kernels are replaced with a 
sum of exponentials. The rational behind the synthetic 
kernel approximation of the RITEs kernels and quadra-
ture selection is given in detail in Altaç (2002a).  For the 
mth order exponential integral functions, we use the the 
following finite sum obtained by the N-point Gaussian 
integration over (0,1)μ ∈  interval:  

1
2 /

0

/2

1

( )

                for  1, ,5n

m x
m

N
xm

n n
n

E x e d

w e m

− − μ

− μ−

=

= μ μ

≅ μ =

∫

∑ L

 (11) 

where wn and μn’s are quadrature weights and abscissas 
over the prescribed interval. These quadratures are tabu-
lated for various N values in Abramowitz and Stegun 
(1964). Using the same form of the exponential sum for 
Em(x), one can obtain various quadrature sets to improve 
the accuracy of the synthetic kernels (Altaç, 2002a).  
 
To start the derivation of the SKN equations, we substi-
tute the approximations by Eq. (11) into the exponential 
integral functions in Eq. (1) and (2), and we define nth 
component of the kernels as  
 

( )
( )

( )1,
exp /

,
2 exp ( , ) /

nG
n

n n
K

⎧ ⎫′− τ − τ μ′τ ⎪ ⎪′τ τ = ⎨ ⎬
τμ ′− −λ τ τ μ⎪ ⎪⎩ ⎭

%  (12) 

( )

( ) ( )
( )

( )
( )

1
2,

sgn exp /

( , ) exp ( , ) /1,
2 exp /

exp ( , ) /

n

nG
n

n n

n n

K

⎧ ⎫′ ′ ′τ τ − τ − τ − τ μ
⎪ ⎪

′ ′+η τ τ −λ τ τ μ⎪ ⎪⎪ ⎪′τ τ = ⎨ ⎬
τ ′−μ − τ − τ μ⎪ ⎪

⎪ ⎪′+μ −λ τ τ μ⎪ ⎪⎩ ⎭

%  (13) 

( )

( ) ( )
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( )
( )

1
1, 2
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( , ) exp ( , ) /
,

exp /2

exp ( , ) /

n

nq
n

n n

n n

K

⎧ ⎫′ ′τ τ − τ − τ − τ μ
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′+μ − τ − τ μτ ⎪ ⎪
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%   (14) 

and 

( )

( )
( )

( )
( )
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2
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3
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K
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⎪ ⎪
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⎪ ⎪
′−μ − τ − τ μ⎪ ⎪
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We also define the following quantities 

( ) ( ) ( )

( ) ( )
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a K S d
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∫
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%
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and  

( ) ( ) ( )

( ) ( )

2

1

2

1

01,

1 12,

,

        ,

q
n n

q
n

q K S d

a K S d

τ

′τ =τ

τ

′τ =τ

′ ′ ′τ = τ τ τ τ

′ ′ ′+ τ τ τ τ

∫

∫

%

%

 (17) 

It is important to note that Eqs. (16) and (17) do not 
have any physical meanings. Using (16) and (17), Eq. 
(1) and (2)  can be rewritten as 

( )1
1

( ) ( )
N

n n
n

G f w G
=

τ = τ + τ∑  (18) 

and 

( )2
1

( ) ( )
N

n n
n

q f w q
=

τ = τ + τ∑  (19) 

At this stage, to get quantities of physical interest, 
namely G(τ)

 
and q(τ), we need to find solutions for Eqs. 

(16) and (17). Here, the derivation of SKN equations for 
a solid sphere is given by setting τ1=0  in Eqs. (16) and 
(17), then appropriate boundary conditions for hollow 
medium is imposed. Under foregoing assumptions, it 
can be shown that Gn(τ) 

 and qn(τ) satisfy the following 
coupled first-order differential equations by taking the 
derivatives of Eqs. (16) and (17) with respect to τ : 
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2 2
1  1

( )
( ) ( )n

n n n
dG

q a S
d

τ
τ = −μ + μ τ

τ
 (20) 

and 
2 2 2

0( ) ( ) ( )n n
d q G S
d

⎡ ⎤τ τ = −τ τ + τ τ⎣ ⎦τ
 (21) 

When taking the derivative of the RHS of Eq. (20), we 
have to deal with the following term: 

2 20
0

2
0

( ) ( ) ( )

                             ( ) ( )

dd q q
d d

d q
d

Ω⎡ ⎤Ω τ τ τ = τ τ⎣ ⎦τ τ

⎡ ⎤+ Ω τ τ τ⎣ ⎦τ

 (22) 

We can use the energy balance given by Eq. (23) on the 
second term of Eq. (22).  

( )
( )

2
4

02

( )
div 1 ( ) 4 ( ) ( )

d q
G

d

τ τ
⎡ ⎤= = − Ω τ πθ τ − τ⎣ ⎦τ τ

q  (23) 

We use Eqs. (3), (4) and (23), and rearrange the remain-
ing expressions to eliminate qn(τ)  from Eqs. (20) and 
(21). We then finally obtain—so called—the SKN equa-
tions (for n=1,2,…N) as follows:  

[ ]

[ ]

2 2
2

2 4
0 1  0

2
0 1  0

2 0
1  

1 ( )

                 4 1 ( ) 1 ( ) ( )

                ( ) 1 1 ( ) ( )

               ( )

n
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n

n

n

dGd G
d d

a
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d
a q

d

⎡ ⎤−μ τ + τ⎢ ⎥τ ττ ⎣ ⎦
⎡ ⎤= π − Ω τ − μ Ω τ θ τ⎣ ⎦

⎡ ⎤+ Ω τ + μ − Ω τ τ⎣ ⎦
Ω

− μ τ
τ

 (24) 

Thermal radiation boundary conditions for hollow 
spherical medium are already included in surface inte-
grals through force functions f1(τ)  and f2(τ) —Eqs. (9) 
and (10). However, we need a set of alternative bound-
ary conditions of mathematical in nature to be able 
solve the SKN equations. A couple of boundary condi-
tions can be obtained by simply evaluating the limits of 
Gn(τ) 

  and qn(τ)   for τ→τ1 and τ→τ2 surfaces. Having 
done that two boundary conditions yield for the inner 
shell 

1
1 1 0 1 1

1

( ) 1 1 ( ) ( ) ( )n
n

n

dG
G a q

d
⎛ ⎞τ

+ − τ = Ω τ τ⎜ ⎟τ τ μ⎝ ⎠
 (25) 

and for the outer shell 

2
2 1 0 2 2

2

( ) 1 1 ( ) ( ) ( )n
n

n

dG
G a q

d
⎛ ⎞τ

+ + τ = Ω τ τ⎜ ⎟τ τ μ⎝ ⎠
 (26) 

These boundary conditions are to be used regardless of 
the physical boundary conditions imposed on the inner 
and/or outer shells. However, for solid spherical geome-
try, the boundary condition at the center becomes 
dGn(τ1) /dτ=0 (Altaç and Tekkalmaz, 2003). 
 
To find an SKN expression for the net radiative heat 
flux, we substitute qn(τ) from Eq. (20) in Eq. (21), along 
with the use of Eqs. (3) and (4), solving it for qn(τ) we 
obtain: 

( ) 2 2
2 1 0

1 1

( ) 1 ( )
N N

n
n n n n

n n

dGq f w a w
d

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟τ = τ − μ − Ω τ μ
⎜ ⎟ ⎜ ⎟τ⎝ ⎠ ⎝ ⎠

∑ ∑
 (27) 

Equation (27) allows us to compute the net radiative 
heat flux with only Gn(τ) information. However, one can 
obtain net heat flux by integrating Eq. (21) over the 
control volume starting from the inner shell towards the 
outer shell. 
 
RESULTS AND DISCUSSION 
 
The following benchmark problems have been consid-
ered for the quantitative and qualitative comparisons of 
the SKN method’s performance with the exact RITE 
solutions.  
 
Benchmark Problem 1 (BMP-1). The problem of 
radiative transfer in a hollow spherical participating 
medium with a constant scattering albedo (homogene-
ous medium) and transparent outer shell boundary is 
considered. The main source in the medium is due to the 
externally isotropic unit incidence of radiation at the 
outer shell of the sphere τ= τ2; that is, Iw2=1. The line-
arly anisotropic scattering medium is cold. The hemi-
spherical reflectivity and transmissivity of the outer 
shell which are defined as ρ=q+(τ2)/q-(τ2) and Γ=q- 
(τ1)/q-(τ2), respectively, are computed for hollow 
spherical medium of τ1=1.0, τ2=2.0 (Case A), τ1=1.0, 
τ2=4.0  (Case B), and τ1=4.0, τ2=5.0   (Case C). These 
parameters are computed for constant scattering albedo 
values ranging from Ω0=0.1 to Ω0=0.9, and for coeffi-
cient of linear anisotropy values of a1=-1 (back scatter-
ing), a1=0 (isotropic scattering) and a1=1 (forward scat-
tering). 
 
Benchmark Problem 2 (BMP-2).  The medium is 
inhomogeneous via the space-dependent scattering 
albedo. As in BMP-1, the medium is also cold and is 
subject to the externally isotropic unit incidence of ra-
diation on the outer shell (Iw2=1) with the same optical 
dimensions. For the three hollow spherical geometries 
(Cases A, B and C), the following space-dependent 
scattering albedos are considered: linear albedo varia-
tions of Ω0(τ)=0.25+τ/3F1  and Ω0(τ)=0.75-τ/3F1 and 
quadratic albedo variations of Ω0(τ)=0.4-
4τ/15F1+τ2/2F2 and Ω0(τ)=1-16τ/15F1+τ2/2F2  where 
Fn=(τ2

n+3- τ1
n+3)/( τ2

3- τ1
3). Similarly the effect of the 

coefficient of linear anisotropy values of a1=-1 (back 
scattering), a1=0 (isotropic scattering) and a1=1 (for-
ward scattering) on the numerical solutions is investi-
gated.  The space-dependent albedos are chosen such 
that the scattering property of the medium increases 
from the inner to the outer shell or vice versa. The aver-
age value of Ω0(τ) over the medium is equal to 0.5 in all 
the cases.  
  
Numerical Solution Techniques 
 
In this study, τ1≤τ≤τ2 interval is equally divided into N 
grid elements in numerical solutions of both the RITE 
and the SKN equations. The RITEs are solved using 
subtraction of singularity technique (Altaç, 2002a; Al-
taç, 2002b; Altaç and Tekkalmaz, 2003; Döner and 
Altaç, 2006). The numerical integrations are carried out 
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using Simpson’s rule, which has a fourth order trunca-
tion error, while the integrals which possess singular 
points at τ=τ′ are evaluated analytically. The resulting 
system of linear equations is solved using Gauss elimi-
nation technique. The SKN equations, however, were 
solved iteratively as described in Altaç (2002a). The 
convergence criterion based on relative errors for all 
methods was ζ<10-6.  The direct numerical solution 
techniques can very well be implemented as discussed 
in Altaç (2002a). 
 
Several cases of grid configurations, ranging from 200 
to 800, were considered to ensure grid independent 
solutions. In Table 1, the transmissivity and reflectivity 
values for outer shell, along with the cpu-time for 800 
grids, using the exact RITE, DOM S8, S12, S16 and SKN 
solutions up to the third order, are listed for Ω0=0.7 of 
Case A, B and C of BMP-1. The DOM solutions were 
obtained by the quadratures provided by Lee (1962). It 
is observed that the RITE solutions converge five sig-
nificant figure accuracy with 400 grids while the SKN 

solutions required 800 grids since a second order finite 
difference formulations were used in discretization of 
the SKN equations.  
 
For Case A and 800 intervals, absolute errors of the 
reflectivity and transmissivity with respect to the exact 
solution yield, respectively, 1.1% and 0.61% for S8,       
–0.75% and 0.75% for S12, –0.57% and 0.36% for S16. 
On the other hand, these errors are 1.3% and –0.24% for 
SK1, -0.63% and –1.23% for SK2 and –0.64% and          
–1.11% for SK3 approximations, respectively. The order 
of magnitude of the errors for DOM and SKN methods 
are almost the same. The errors in transmissivity are 
slightly higher than those of the DOM. The cpu-times 
for the exact, DOM S8, S12 and S16 are 17.5313, 0.0469, 
0.0625 and 0.0938 seconds, respectively, while these 
values for SK1, SK2 and SK3 are 0.2031, 0.4219 and 
0.5313 seconds. 
 
For Case B and 800 grid intervals, the reflectivity and 
transmissivity errors yield, respectively, –1.16% and  

 
Table 1. Grid sensitivity and cpu-time analysis for Ω0=0.7 of Cases A, B and C of BMP-1. 

 N=200 N=400 N=800 

Case A  ρ  Γ  ρ  Γ  ρ  Γ  cpu-time (s) 

Exact 0.46060 0.53670 0.46060 0.53669 0.46060 0.53669 17.531 

S8 0.47159 0.53060 0.47159 0.53060 0.47159 0.53060 0.047 

S12 0.46812 0.53207 0.46812 0.53207 0.46812 0.53207 0.062 

S16 0.46628 0.53313 0.46628 0.53313 0.46628 0.53313 0.093 

SK1 0.44758 0.53912 0.44757 0.53911 0.44757 0.53911 0.203 

SK2 0.46686 0.54899 0.46686 0.54898 0.46686 0.54898 0.422 

SK3 0.46696 0.54785 0.46696 0.54785 0.46696 0.54784 0.531 

Case B        

Exact 0.37219 0.16063 0.37217 0.16063 0.37216 0.16063 18.812 

S8 0.38372 0.15871 0.38372 0.15871 0.38372 0.15871 0.047 

S12 0.38010 0.15886 0.38010 0.15886 0.38010 0.15886 0.109 

S16 0.37820 0.15913 0.37820 0.15913 0.37820 0.15913 0.156 

SK1 0.36168 0.16925 0.36164 0.16923 0.36163 0.16922 0.375 

SK2 0.37221 0.16677 0.37217 0.16674 0.37216 0.16674 0.672 

SK3 0.37269 0.16764 0.37265 0.16762 0.37264 0.16761 0.875 

Case C        

Exact 0.29797 0.44162 0.29797 0.44162 0.29797 0.44162 17.766 

S8 0.30982 0.43563 0.30982 0.43563 0.30982 0.43563 0.047 

S12 0.30607 0.43751 0.30607 0.43751 0.30607 0.43751 0.062 

S16 0.30414 0.43846 0.30414 0.43846 0.30414 0.43846 0.109 

SK1 0.28387 0.43581 0.28387 0.43580 0.28387 0.43580 0.187 

SK2 0.29868 0.44375 0.29867 0.44375 0.29867 0.44375 0.359 

SK3 0.29873 0.44296 0.29873 0.44296 0.29873 0.44296 0.468 
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0.19% for S8, –0.79% and 0.18% for S12, –0.6% and 
0.15% for S16 while these errors turn out to be 1.05% 
and –0.86% for SK1, 0.0% and –0.611% for SK2 and      
–0.05% and –0.69% for SK3, respectively. In this case, 
the reflectivity values obtained with SK2 and SK3 are 
better than those of the DOM solutions; on the other 
hand, the transmissivity values obtained with the DOM 
are about 0.5% better those of the SKN approximations. 
The cpu-times for the exact, DOM S8, S12 and S16 are 
18.8125, 0.0469, 0.1094 and 0.1563 seconds, respec-
tively. For SK1, SK2 and SK3, the cpu-times are 0.375, 
0.6719 and 0.875 seconds. Finally, for Case C and 800 
grid intervals, the reflectivity and transmissivity result 
in absolute errors of –1.18% and 0.6% for S8, –0.81% 
and 0.41% for S12, –0.62% and 0.32% for S16 respec-
tively. The absolute errors become 1.41% and 0.58% for 
SK1, –0.07% and –0.21% for SK2 and –0.08% and         
–0.13% for SK3, respectively. In this case, the accuracy 
of SK2 and SK3 approximations are better than the DOM 
yielding about 0.7% and 0.2% less errors for the reflec-
tivity and transmissivity, respectively. The cpu-times 
are for the exact, DOM S8, S12 and S16 are 17.7656, 
0.0469, 0.0625 and 0.1094 seconds, respectively. For 
SK1, SK2 and SK3, the cpu-times are 0.1875, 0.3593 and 
0.46885 seconds. 
 
The cpu-times of the DOM and the SKN methods are 
significantly lower than those of the exact RITE solu-
tions. The cpu time is clearly affected by the initial 
guesses made for the quantities involved. In this study, 
the initial guesses for all quantities were taken to be 
zero. For radiation, convection and/or conduction com-
bined heat transfer problems, the exact solution strategy 
becomes inapropriate because of its excessive computa-
tion time while the computation times of the DOM and 
SKN methods are competitive. On the other hand, it is 
worth mentioning that the DOM quadratures for the 
plane parallel and spherical geometries requires only N 
directions whereas the number of discrete directions in 
one dimensional cylindrical geometry and multi-
dimensional geometries are N(N+2) which results in 
significant increase in the cpu-time for high order DOM 
solutions. 
 
Homogeneous Medium 
 
The hemispherical reflectivity and transmissivities for 
Cases A, B and C were computed with the exact RITEs 
and the SKN method are comparatively presented in 
Table 2. In all the cases, for mostly absorbing medium 
(Ω0<0.2), the SK1 approximation yields both reflectivity 
and transmissivity values of at least three significant 
digit accurate values (absolute errors of less than 
0.02%) with those of the exact RITE solutions. As ex-
pected, the SK2 solutions exhibit improvement over SK1 
solutions yielding 5 to 6 significant accurate values 
(absolute errors of less than 0.007%). The highest errors 
are observed in Ω0=0.9 cases. For Case A and for 
Ω0=0.9, the absolute errors for the reflectivity and 
transmissivity with SK1 approximation results in 
1.421%, –0.177%; 1.303%, –0.242% and 1.126%,         
–0.137%, respectively, for backward, isotropic and 

forward scattering medium. On the other hand, these 
errors for SK2 approximation yield -0.369%, –1.415%;   
–0.629%, –1.229% and –1.007%, –0.707%, respec-
tively, for backward, isotropic and forward scattering 
medium. For Case B and for Ω0=0.9, the absolute errors 
for the reflectivity and transmissivity with SK2 ap-
proximation, for backward, isotropic and forward scat-
tering medium, are –0.216%, –3.552%; –0.375%,          
–3.096% and –0.647%, –1.752%, respectively while, for 
Case C, these errors become –0.205%, –6.16%;             
–0.296%, –0.593% and –0.439%, –0.527%. The magni-
tude of the SKN errors are about the same order with 
high order DOM errors presented in Table 1. The abso-
lute errors medium with scattering albedos of less than 
0.9 are much less.  
 
The incident radiation and the net radiative heat flux 
profiles for the whole solution domain are obtained with 
the exact RITE, SK1, SK2 and SK3 for Case A (BMP-1 
and Ω0=0.5) and qualitatively presented for isotropic, 
forward and backward scattering medium in Figure 2. 
The incident radiation profiles of the SKN solutions 
exhibit very good agreement with those of RITE in all 
scattering cases. While the incident energy profiles of 
the SK1 approximation slightly deviate from the exact 
solutions, the deviations in the SK2 and SK3 approxima-
tions are much smaller in magnitude. On the other hand, 
the net radiative heat flux profiles show deviations of 
larger magnitude near the inner shell with the SK2 and 
SK3 solutions. However, the deviations from the SK1 
solutions are smaller. 
 
In Figure 3, the exact RITE and the SKN solutions of the 
net radiative heat flux profiles of Case B and C, for 
Ω0=0.5 and for isotropic, forward and backward anisot-
ropic scattering medium are depicted. In both cases, the 
SKN solutions are in excellent agreement with those of 
exact RITE, with only exception that, at the inner shell 
surface, the SK1 approximation exhibits slight deviations 
in isotropic and forward scattering medium of Case B 
(Figs. 3(b) and (c)). This phenomenon is also observed 
in Case A. Both cases are geometries of small inner 
optical radius. As it is obvious from Case C (τ1=4), the 
deviations throughout the medium is diminished. This 
trend was observed in other cases with small inner shell 
radius (τ1<1). 
 
As the scattering albedo increases, the reflectivity and 
transmissivity values yield one or two significant accu-
racy in mostly scattering medium (Ω0>0.7). Recalling 
Eqs. (16) and (17), for mostly absorbing medium 
(Ω0→0), the integral equation is weakly coupled with 
the incident energy function G(τ). In fact, to obtain the 
incident energy and the net heat flux for pure absorbing 
(Ω0=0) medium, Equation (16) is no longer an integral 
equation; it contains the analytical solution in the inte-
gral form. Therefore, as  Ω0→1, the integral equations 
become strongly coupled, and the accuracy of synthetic 
kernels, or; in other words, the influence of the good-
ness and order of the synthetic kernels relatively effects 
the SKN solutions. 
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Table 2. The SKN  and the exact solutions of ρ and Γ for BMP-1 and for various optical dimensions and Ω0, a1 values. 

 1 1a = −  1 0a =  1 1a =  
0Ω  Case A ρ  Γ  ρ  Γ  ρ  Γ  
 

0.1 
Exact 
SK1

 

SK2
 

0.14581 
0.14564 
0.14581 

0.31730 
0.31732 
0.31740 

0.14108 
0.14094 
0.14112 

0.32366 
0.32372 
0.32376 

0.13626 
0.13614 
0.13633 

0.33021 
0.33029 
0.33025 

 
0.3 

Exact 
SK1

 

SK2
 

0.23316 
0.23144 
0.23333 

0.35233 
0.35259 
0.35358 

0.22045 
0.21890 
0.22090 

0.37226 
0.37280 
0.37340 

0.20695 
0.20560 
0.20782 

0.39389 
0.39454 
0.39446 

 
0.5 

Exact 
SK1

 

SK2
 

0.34088 
0.33512 
0.34184 

0.40445 
0.40530 
0.40930 

0.32261 
0.31736 
0.32454 

0.43931 
0.44077 
0.44363 

0.30240 
0.29788 
0.30584 

0.47889 
0.48041 
0.48124 

 
0.7 

Exact 
SK1

 

SK2
 

0.48132 
0.46711 
0.48501 

0.48557 
0.48734 
0.49972 

0.46060 
0.44757 
0.46689 

0.53669 
0.53911 
0.54898 

0.43676 
0.42550 
0.44683 

0.59687 
0.59824 
0.60394 

 
0.9 

Exact 
SK1

 

SK2
 

0.68002 
0.64867 
0.69299 

0.62157 
0.62378 
0.65994 

0.66044 
0.63137 
0.67912 

0.68867 
0.69036 
0.72087 

0.63694 
0.61132 
0.66367 

0.76975 
0.76791 
0.78903 

 Case B       
 

0.1 
Exact 
SK1

 

SK2
 

0.06660 
0.06649 
0.06659 

0.04177 
0.04180 
0.04179 

0.05996 
0.05983 
0.05995 

0.04412 
0.04414 
0.04414 

0.05313 
0.05299 
0.05312 

0.04664 
0.04661 
0.04665 

 
0.3 

Exact 
SK1

 

SK2
 

0.14853 
0.14738 
0.14843 

0.05179 
0.05225 
0.05211 

0.13016 
0.12882 
0.13006 

0.06036 
0.06071 
0.06069 

0.11012 
0.10870 
0.11005 

0.07081 
0.07060 
0.07097 

 
0.5 

Exact 
SK1

 

SK2
 

0.25325 
0.24932 
0.25299 

0.07240 
0.07458 
0.07397 

0.22620 
0.22179 
0.22600 

0.09109 
0.09302 
0.09263 

0.19503 
0.19034 
0.19496 

0.11633 
0.11660 
0.11708 

 
0.7 

Exact 
SK1

 

SK2
 

0.40193 
0.39234 
0.40165 

0.12293 
0.13160 
0.12946 

0.37216 
0.36163 
0.37216 

0.16063 
0.16922 
0.16674 

0.33620 
0.32511 
0.33679 

0.21460 
0.22011 
0.21778 

 
0.9 

Exact 
SK1

 

SK2
 

0.66813 
0.65012 
0.67029 

0.30197 
0.34430 
0.33749 

0.64996 
0.63115 
0.65371 

0.37814 
0.42233 
0.40910 

0.62749 
0.60835 
0.63396 

0.48426 
0.52514 
0.50178 

 Case C       
 

0.1 
Exact 
SK1

 

SK2
 

0.05234 
0.05221 
0.05223 

0.26751 
0.26745 
0.26752 

0.04566 
0.04552 
0.04566 

0.27349 
0.27349 
0.27351 

0.03881 
0.03867 
0.03881 

0.27968 
0.27968 
0.27969 

 
0.3 

Exact 
SK1

 

SK2
 

0.12660 
0.12516 
0.12657 

0.29254 
0.29190 
0.29274 

0.10750 
0.10597 
0.10749 

0.31131 
0.31095 
0.31149 

0.08686 
0.08534 
0.08690 

0.33197 
0.33174 
0.33210 

 
0.5 

Exact 
SK1

 

SK2
 

0.21789 
0.21277 
0.21788 

0.33094 
0.32855 
0.33171 

0.18786 
0.18248 
0.18796 

0.36399 
0.36228 
0.36470 

0.15365 
0.14827 
0.15394 

0.40250 
0.40107 
0.40305 

 
0.7 

Exact 
SK1

 

SK2
 

0.33704 
0.32355 
0.33740 

0.39225 
0.38535 
0.39451 

0.29797 
0.28387 
0.29867 

0.44162 
0.43580 
0.44375 

0.25097 
0.23679 
0.25223 

0.50205 
0.49648 
0.50384 

 
0.9 

Exact 
SK1

 

SK2
 

0.50720 
0.47465 
0.50925 

0.49791 
0.47892 
0.50407 

0.46120 
0.42731 
0.46416 

0.56562 
0.54787 
0.57155 

0.40270 
0.36832 
0.40709 

0.65209 
0.63405 
0.65736 

 
Inhomogeneous Medium 
 
For linearly and quadratically varying scattering albedos 
in isotropic, forward and backward  anisotropic scatter-
ing medium, the exact RITE and the SKN solutions of 
the hemispherical reflectivity and transmissivity values 
of the outer shell boundary of Cases A, B and C are 
tabulated in Table 3.  For Case A, the reflectivity and 
transmissivity values obtained with SK2 approximation 

yield two to three significant digit accuracies (absolute 
errors of less than 0.6%). In general, the SK2 solutions 
show better performance than SK1 approximation. On 
the other hand, absolute errors of reflectivity and trans-
missivity values using SK2 approximation are less than 
0.38% and 0.082% for Case B and C, respectively. 
These errors from the SKN approximation are also influ-
enced by the inner boundary condition and the accuracy 
of the synthetic kernels used. 
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(e) (f) 

Figure 2. Profiles of the incident radiation and net radiative heat flux for Case A of forward anisotropic (a, b), isotropic (c, d), and 
backward anisotropic (e, f) scattering media (Ω0=0.5). 
 
The exact RITE and the SKN solutions of the net radia-
tive heat flux for Case B and C and Ω0(τ)=0.25+τ/3F1  
for isotropic, forward and backward scattering are de-
picted in Figure 4.  This space-dependent scattering 
albedo choice represents an increase from 0.25 at the 
inner shell to 0.58 at the outer shell; that is scattering is 
higher at near the inner shell. The agreement between 
the exact and the SKN solutions are excellent for N≥2. 

However, in Case B, we observe sight deviations (Fig. 
4(b) and (c)) near the inner shell. The magnitude of the 
difference from the exact values is small affecting only 
the second significant digits. In Figure 5, the exact 
RITE and the SKN solutions of the net radiative heat flux 
for Case B and C and Ω0(τ)=0.75–τ/3F1 for isotropic, 
forward and backward scattering medium are presented. 
The scattering albedo at the outer shell is 0.667 and 
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declines to 0.42 at the inner surface. Therefore, the 
effect of the scattering albedo gradient within the me-
dium on the SKN approximation is sought. The net radia-
tive heat flux profiles of the exact and the SKN  solutions 

are in good agreement. In Case B, the deviations near 
the inner shell are also observed here (Fig. 5(b) and (c)).  
The nature of this deviation is discussed in the next 
section. 
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(c) (f) 

Figure 3. Profiles of the net radiative heat flux for Case B and C of forward anisotropic (a, d), isotropic (b, e), and backward ani-
sotropic (c, f) scattering media (Ω0=0.5). 
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Table 3. The SKN The SKN  and the exact solutions of ρ and Γ for BMP-2 and for various optical dimensions and Ω0, a1 values. 

0 ( )Ω τ   1 1a = −  1 0a =  1 1a =  
Case A  ρ  Γ  ρ  Γ  ρ  Γ  

10.25 3F+ τ  
Exact 
SK1

 

SK2
 

0.35331 
0.34621 
0.35389 

0.39883 
0.39912 
0.40279 

0.33406 
0.32739 
0.33555 

0.43226 
0.43315 
0.43575 

0.31278 
0.30674 
0.31567 

0.47008 
0.47113 
0.47118 

10.75 3F− τ  
Exact 
SK1

 

SK2
 

0.32901 
0.32434 
0.33032 

0.41074 
0.41201 
0.41661 

0.31174 
0.30767 
0.31411 

0.44698 
0.44884 
0.45225 

0.29263 
0.28940 
0.29663 

0.48828 
0.49005 
0.49125 

2
1 20.4 4 15 2F F− τ + τ  

Exact 
SK1

 

SK2
 

0.35971 
0.35190 
0.36006 

0.39679 
0.39688 
0.40040 

0.33993 
0.33253 
0.34116 

0.42970 
0.43041 
0.43290 

0.31808 
0.31126 
0.32067 

0.46690 
0.46781 
0.46851 

2
1 21 16 15 2F F− τ + τ  

Exact 
SK1

 

SK2
 

0.33016 
0.32545 
0.33140 

0.41073 
0.41210 
0.41663 

0.31274 
0.32739 
0.31505 

0.44707 
0.43315 
0.45236 

0.29348 
0.29022 
0.29742 

0.48848 
0.49034 
0.49145 

Case B        

10.25 3F+ τ  
Exact 
SK1

 

SK2
 

0.28402 
0.27802 
0.28360 

0.06605 
0.06724 
0.06688 

0.25422 
0.24765 
0.25385 

0.08196 
0.08295 
0.08274 

0.21950 
0.21267 
0.21927 

0.10310 
0.10280 
0.10340 

10.75 3F− τ  
Exact 
SK1

 

SK2
 

0.22463 
0.22231 
0.22451 

0.08144 
0.08511 
0.08428 

0.20049 
0.19771 
0.20043 

0.10332 
0.10670 
0.10611 

0.17295 
0.16995 
0.17305 

0.13320 
0.13458 
0.13472 

2
1 20.4 4 15 2F F− τ + τ  

Exact 
SK1

 

SK2
 

0.29873 
0.29142 
0.29816 

0.06560 
0.06666 
0.06646 

0.26751 
0.25960 
0.26700 

0.08134 
0.08212 
0.08217 

0.23104 
0.22286 
0.23068 

0.10222 
0.10160 
0.10258 

2
1 21 16 15 2F F− τ + τ  

Exact 
SK1

 

SK2
 

0.22621 
0.22370 
0.22605 

0.08492 
0.08910 
0.08851 

0.20175 
0.19878 
0.20166 

0.10794 
0.11170 
0.11150 

0.17390 
0.17070 
0.17401 

0.13949 
0.14088 
0.14155 

Case C        

10.25 3F+ τ  
Exact 

1SK  

2SK  

0.22323 
0.21769 
0.22316 

0.33038 
0.32799 
0.33112 

0.19255 
0.18674 
0.19258 

0.36327 
0.36155 
0.36394 

0.15759 
0.15179 
0.15781 

0.40156 
0.40012 
0.40207 

10.75 3F− τ  
Exact 
SK1

 

SK2
 

0.21262 
0.20789 
0.21269 

0.33154 
0.32914 
0.33236 

0.18325 
0.17826 
0.18342 

0.36476 
0.36304 
0.36551 

0.14979 
0.14481 
0.15015 

0.40348 
0.40204 
0.40407 

2
1 20.4 4 15 2F F− τ + τ  

Exact 
SK1

 

SK2
 

0.22650 
0.22069 
0.22637 

0.33008 
0.32468 
0.33079 

0.19542 
0.18934 
0.19540 

0.36288 
0.36115 
0.36352 

0.16000 
0.15393 
0.16017 

0.40105 
0.39960 
0.40153 

2
1 21 16 15 2F F− τ + τ  

Exact 
SK1

 

SK2
 

0.21368 
0.20888 
0.21373 

0.33143 
0.32903 
0.33224 

0.18417 
0.17911 
0.18433 

0.36463 
0.36292 
0.36537 

0.15056 
0.14551 
0.15090 

0.40332 
0.40189 
0.40390 

 
On The Accuracy of SKN Approximation 
 
The SKN equations, Eq. (24), and the boundary condi-
tion, Eq. (26), which are derived in this study are 
mathematically accurate and complete for homogeneous 
solid spherical geometry only. The SKN formulation is 
also correct in cases where the extinction coefficient is 
constant, and the scattering coefficient, as in BMP-2, 
are functions of space.  The causes of the errors in the 
SKN approximation for homogeneous and inhomogene-
ous medium of described nature were covered in detail 
in Altaç, (2002a) and Altaç, (2002b) so we will not 
reiterate these arguments which are also valid for this 

study. But it should be pointed out that the magnitude of 
this type of errors are reduced by simply increasing the 
order of the approximation or using more accurate quad-
rature sets over the solution domain (Altaç, 2002a; Al-
taç, 2002b). 
 
The SKN formulation is not exact for inhomogeneous 
medium where the extinction coefficient is a function of 

space since optical path is defined as 
-

0
( )x dx

′
τ = β∫

r r
. 

In this case, extra terms appear in the SKN equations as 
well as in its boundary conditions. When the SKN equa-
tions  for  inhomogeneous  medium  are  written  in   the   



 

 34

  

1.0 2.0 3.0 4.0
τ

-0.20

-0.16

-0.12

-0.08

-0.04

0.00

q(
τ)

a1 = -1, Ω0 = 0.25+τ/3F1
Exact
SK1
SK2
SK3

 
4.0 4.2 4.4 4.6 4.8 5.0

τ
-0.20

-0.16

-0.12

-0.08

q(
τ)

a1 = -1, Ω0 = 0.25+τ/3F1
Exact
SK1
SK2
SK3

 

(a) (d) 

1.0 2.0 3.0 4.0
τ

-0.20

-0.16

-0.12

-0.08

-0.04

0.00

q(
τ)

a1 = 0, Ω0 = 0.25+τ/3F1
Exact
SK1
SK2
SK3

 
4.0 4.2 4.4 4.6 4.8 5.0

τ
-0.24

-0.20

-0.16

-0.12

-0.08

q(
τ)

a1 = 0, Ω0 = 0.25+τ/3F1
Exact
SK1
SK2
SK3

 
(b) (e) 

1.0 2.0 3.0 4.0
τ

-0.20

-0.16

-0.12

-0.08

-0.04

0.00

q(
τ)

a1 = 1, Ω0 = 0.25+τ/3F1
Exact
SK1
SK2
SK3

 
4.0 4.2 4.4 4.6 4.8 5.0

τ
-0.24

-0.20

-0.16

-0.12

-0.08

q(
τ)

a1 = 1, Ω0 = 0.25+τ/3F1

Exact
SK1
SK2
SK3

 
(c) (f) 

Figure 4. Profiles of the net radiative heat flux for spherical shell of radii τ1=1.0 τ2=4.0and, τ1=4.0 τ2=5.0, forward anisotropic (a, 
d), isotropic (b, e), and backward anisotropic (c, f) scattering in inhomogenous media (Ω0(τ)=0.25+τ/3F1 ). 
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(c) (f) 

Figure 5. Profiles of the net radiative heat flux for spherical shell of radii τ1=1.0 τ2=4.0 and, τ1=4.0 τ2=5.0, forward anisotropic (a, 
d), isotropic (b, e), and backward anisotropic (c, f) scattering in inhomogenous media (Ω0(τ)=0.75-τ/3F1). 
 
dimensioned form, the coefficient of the Laplacian takes 

( )n nD G−∇ ⋅ ∇r  form where 2( ) / ( )n nD = μ βr r  (Spinrad 
and Altaç, 1990).  However, it was shown that the SKN method, remarkably, yields very good results even if the 
medium had a step-wise varying extinction coefficient 
(Altaç, 2002b).  Similarly, when the SKN equations are 
specifically derived for hollow spherical medium using 
Eqs. (16) and (17), extra terms which are in the integral 
forms appear in Eq. (20) and Eqs. (24—27). This yields 

complicated boundary conditions and thus numerical 
solution becomes more involved. To preserve the sim-
plicity of the SKN equations and the boundary conditions 
for the hollow sphere, these extra terms are “deliber-
ately” neglected. And so this question arises, “why do 
we still get very good results by neglecting these extra 
terms?”. To answer the question, we need to look at the 
general forms of the extra terms, which contain expo-
nentials in the form of exp(-x/μn) as in the approximate 
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kernels—Eqs. (12)-(15). Noting that the Gauss quadra-
ture abscissas for (0,1) interval are less than unity 
(μn<1), provided that x>0, as the order of approximation 
is increased the exponential terms decay very quickly 
(exp(-x/μn)→0). The extra terms for most of the syn-
thetic components will approach zero except for the 
components corresponding μn ≈1. However, the weight 
of the largest abscissa of the Gauss quadratures is also 
the smallest which in turn the errors of this component 
are reduced; for example, the SK3 quadrature μn 
=(0.1127, 0.5, 0.8873) and wn= (0.2777, 0.4444, 
0.2777). Therefore, the deviations or fluctuations in the 
extinction coefficient or extra terms do not significantly 
affect the solution.  
 
One other approximation, which was introduced in this 
study, involves the derivation of the inner boundary 
condition. Equation (25) is obtained by neglecting the 
exponential terms in Eqs. (12-15)  that contain λ(τ1,τ′). 
This approximation will be valid if τ1 and τ2 are suffi-
ciently large. The deviations that we observe in Case A 
and B of BMP-1 and 2 are mainly due to the inner shell 
boundary condition. For a larger inner shell radius 
and/or larger optical radius, τ2-τ1, the incident energy 
and heat flux profiles improve, as in Case B and C, 
impliying the decaying exponetial terms (exp(-
λ(τ1,τ′)/μn)→0). For that reason, in homogeneous and/or 
inhomogeneous problems of Case C, we do not observe 
the deviations near inner shell. It is possible, however, 
to improve the inner shell boundary condition further by 
including the extra terms into the boundary conditions 
which will surely increase the cpu time. 
 
CONCLUSION 
 
The SKN method was applied for the solution of thermal 
radiative transfer problems in hollow spherical partici-
pating homogeneous/inhomogeneous medium. The 
hemispherical reflectivity and transmissivity values for 
the outer shell boundary were computed with the SKN 
method and the exact RITE. Quantitative comparison of  
solutions reveal that as the scattering albedo of the me-
dium increases, solutions of one or two significant digit 
accuracy (absolute errors of less than 1.5%) are ob-
tained. For absorbing medium, three to four significant 
digit accuracies (absolute errors of less than 0.5%) are 
common. A qualitative comparison of the incident en-
ergy and the net radiative heat flux solutions within the 
computational domain was also analyzed. Highly accu-
rate solutions for optically thin systems and/or absorb-
ing dominated medium can be obtained at very low 
order approximations. The heat flux and incident energy 
profiles of small inner shell radius geometries results in 
deviations near the inner boundary which is due to the 
approximation made for the inner boundary condition. 
This approximation yields better results for large inner 
shell radius (such as Case C) and/or larger optical thick-
ness (such as Case B). 
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