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Abstract: In this study, an analysis of laminar forced convection in a plane duct for a power-law fluid with constant 
thermophysical properties is performed by taking the viscous dissipation into account. This part of the study, Part 1, 
examines both hydrodynamically and thermally fully developed flow case. Two different thermal boundary 
conditions are considered: the constant heat flux (H1 boundary condition) and the constant wall temperature (T 
boundary condition). The combined and interactive influences of the power-law index and the Brinkman number on 
temperature distribution and the Nusselt numbers are analytically determined both for the wall heating and cooling 
cases at T and H1 boundary conditions. Singularities are observed in Nu-Br-n behaviors and these are discussed in 
terms of the energy balance. 
Keywords: Non-Newtonian fluid, Power-law fluid, Viscous dissipation, Plane duct, Constant heat flux, Constant wall 
temperature.  
 

BİR DÜZLEMSEL KANAL İÇERİSİNDEKİ VİSKOZ YAYILIMLI POWER-LAW 
AKIŞKANLARIN ZORLANMIŞ TAŞINIM AKIŞI 

Kısım 1. Hidrodinamik ve Termal Olarak Tam Gelişmiş Akış 
 
Özet: Bu çalışmada, sabit termofiziksel özelliklere sahip power-law akışkanın düzlemsel kanal içerisindeki laminer 
zorlanmış taşınımı, viskoz yayılım etkileri dahil edilerek, analiz edilmiştir. Çalışmanın bu bölümünde, birinci kısım, 
hidrodinamik ve termal açıdan tam gelişmiş akış incelenmektedir. Sabit ısı akısı (H1 sınır koşulu) ve sabit yüzey 
sıcaklığı(T sınır koşulu) olmak üzere iki farklı termal sınır koşulu ele alınmıştır. Power-law indeksi ve Brinkman 
sayısının sıcaklık dağılımı ve Nusselt sayısı üzerindeki etkisi, T ve H1 sınır koşullarında, sıcak ve soğuk cidar 
durumları için analitik olarak belirlenmiştir. Nu-Br-n davranışlarında süreksizlikler gözlenmiş ve bu süreksizlikler 
enerji dengesi açısından tartışılmıştır.  
Anahtar kelimeler: Newtonyen olmayan akışkan, Power-law akışkan, Viskoz yayılım, Düzlemsel kanal, Sabit ısı 
akısı, Sabit yüzey sıcaklığı. 
 
 
NOMENCLATURE 
 
Br Brinkman number, Eq. (8) 
Brq modified Brinkman number, Eq. (11) 
cp specific heat at constant pressure 
k thermal conductivity [W/mK] 
n power-law index 
Nu Nusselt number 
qw wall heat flux [W/m2] 
T temperature [K] 
u velocity [m/s] 
y coordinate in vertical direction [m] 
Y dimensionless vertical coordinate  
w half width of the duct [m] 
z axial direction [m] 
 

 
Greek symbols 
α thermal diffusivity [m2/s] 
η  consistency factor employed in Eq. (1) 
ρ density [kg/m3] 
υ kinematic viscosity [m2/s]  
θ dimensionless temperature, Eq. (7) 
θq dimensionless temperature modified, Eq. (13) 
 
Subscripts  
c centerline 
m mean 
w wall 
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INTRODUCTION 
 
The non-Newtonian fluids exhibit nonlinear relation 
between the shear stress and the shear rate, as opposed 
to the linear one of the Newtonian fluids. The flow and 
heat transfer of non-Newtonian fluids through ducts 
have wide potential applications in many engineering 
areas including the chemical, petroleum, polymer, food 
processing, pharmaceutical and biochemical and 
biomedical engineering. The most non-Newtonian fluids 
of practical interest are highly viscous and, therefore, 
are often processed in the laminar flow regime. Readers 
are referred to see the excellent reviews by Irvine and 
Karni (1987) and Hartnett and Choi (1998). 
 
Viscous dissipation changes the temperature 
distributions by playing a role like an energy source, 
which, in result, influences heat transfer rates. It is very 
important when the viscosity is high or for high shear 
flows. Its effect depends greatly on the thermal 
boundary conditions applied at the wall.  This effect has 
been studied for the case of Newtonian fluids by several 
researchers (Brinkman, 1951; Tyagi, 1996; Ou and 
Cheng, 1973; Lin et al., 1983; Basu and Roy, 1985; 
Liou and Wang, 1990; Barletta and Zanchini, 1997; 
Zanchini, 1997; Barletta and Rossi di Schio, 1999) on 
the thermal boundary conditions applied at the wall. The 
work of Brinkman (1951) appears to be the first 
theoretical work dealing with viscous dissipation.  
 
When compared to those available for the Newtonian 
fluids, there are only a few studies regarding the viscous 
dissipation effect for non-Newtonian flows. Lawal and 
Mujumdar (1992)  studied viscous dissipation effect on 
heat transfer for power law fluids in arbitrary cross-
sectional ducts.  Dang (1983) studied the effect of 
viscous dissipation in the thermal entrance region in a 
pipe using the uniform wall temperature. Barletta (1997) 
studied the asymptotic behavior of the temperature field 
for the laminar and hydrodynamically developed forced 
convection of a power-law fluid which flows in a 
circular duct taking the viscous dissipation into account. 
The asymptotic Nusselt number and the asymptotic 
temperature distribution were evaluated analytically in 
the cases of either uniform wall temperature or 
convection with an external isothermal fluid. Pinho and 
Oliveira (2000) investigated the forced convection of 
Phan-Thien-Tanner fluid in laminar pipe and channel 
flows including the effects of viscous dissipation. It was 
shown that the beneficial effects of fluid elasticity were 
enhanced by viscous dissipation. The effect of viscous 
dissipation on the laminar forced convection in a 
circular duct for a Bingham fluid under different 
thermal boundary conditions was studied by Vradis et 
al. (1993), Min et al. (1997) and Khatyr et al. (2003). 
The asymptotic temperature profile and the asymptotic 
Nusselt number were determined for various axial 
distributions of wall heat flux which yielded a thermally 
developed region. 
 
In a recent study, Aydın and Avcı (2006) investigated 
the effect of viscous dissipation on both 

hydrodynamically and thermally fully developed 
laminar forced convective flow in a plane duct. The 
effect of the Brinkman number on the temperature 
profile and the Nusselt number was obtained for the 
constant wall heat flux and the constant wall 
temperature thermal boundary conditions considering 
either wall heating (the fluid is heated) case or wall 
cooling (the fluid is cooled) cases.  
 
Here, our aim is to investigate the effect of viscous 
dissipation on hydrodynamically and thermally fully 
developed flow of the power-law type Ostwald-de 
Waele fluid in a plane duct covering a broad range of 
the Brinkman number. Here, we will also discuss the 
possible definitions of the Brinkman number arising 
from definitions of different dimensionless parameters. 
 
ANALYSIS 
 
We consider steady, laminar hydrodynamically and 
thermally fully developed flow with constant properties 
(i.e. The thermal conductivity and the thermal 
diffusivity of the fluid are considered to be independent 
of temperature). The axial heat conduction in the fluid 
and in the wall is neglected. Two different forms of the 
thermal boundary conditions are applied, which are 
shown in Fig. 1. 
 
 
 
 
 
 
 
 
Figure 1. Schematic diagram of the flow domain. 
 
The shear stress and strain relationship for the power-
law type Ostwald-de Waele fluid is given as 
 

1n

yz
du du
dy dy

τ η
−

=     (1) 

 
where n represents the power-law index and the case of 
n<1, n=1 and n>1 correspond pseudoplastic, Newtonian 
and dilatant behaviors The velocity profile for fully 
developed plane duct flow is given as follows: 
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The energy balance equation including the effect of the 
viscous dissipation is given by 
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where the second term in the right hand side is the 
viscous dissipation term. Due to axisymmetry at the 
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center, the thermal boundary condition at y=0 can be 
written as: 
 

0

0
y

T
y

=

∂
=

∂
     (4) 

 
Both the constant wall heat flux (H1-type) and the 
constant wall temperature (T-type) of the wall thermal 
boundary condition are separately examined. 
 
For the constant heat flux at wall, the thermal boundary 
condition can be written as: 
 

w
y w

Tk q
y

=

∂
=

∂
     (5) 

 
where qw is positive when its direction is to the fluid 
(wall heating), otherwise it is negative (wall cooling). 
For the uniform wall heat flux case, the first term in the 
right hand side of Eq. (3) is 
 

wd TT
z dz

∂
=

∂
     (6) 

 
By introducing the following dimensionless quantities 
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Eq. (3) can be written as 
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where 
( )
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  and Br is the 

Brinkman number given as: 
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For the solution of the dimensionless energy transport 
equation given in Eq. (8), the dimensionless boundary 
conditions are given as follows: 
 

1θ =  
0

0
YY

θ

=

∂
=

∂
 at  Y = 0 

0θ =    at  Y = 1               (10) 
 
The solution of Eq. (8) under the thermal boundary 
conditions given in Eq. (10) is 
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Since we have developed the above equation for the 
constant wall heat case, as it is usual in the existing 
literature, we can also use the modified Brinkman 
number which is in the following: 
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In terms of the modified Brinkman number given above, 
the temperature distribution is obtained as: 
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Note that, as seen in Eq. (13), the definition of the 
dimensionless temperature is different to the earlier one, 
which in follows, leads to the modified Brinkman 
number. In fully developed flow, it is usual to use the 
mean fluid temperature, Tm, rather than the center line 
temperature when defining the Nusselt number. This 
mean or bulk temperature is given by: 
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The dimensionless mean temperature is obtained as: 
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In terms of Brq defined in Eq. (12), the mean 
temperature is obtained as: 
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When the constant temperature is considered at the wall, 

since 0wd T
d z

= , the first term in the right hand side of 

Eq. (3) is 
 

w c

w c
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                (17) 

 
Substituting this result into Eq. (3) and introducing the 
dimensionless quantities given in Eq. (7), we obtain the 
following dimensionless equation: 
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Brinkman number. The boundary conditions given in 
Eq. (10) is also valid for this case. Actually, no simple 
closed form solution can be obtained for this equation. 
However, the variation of θ can be quite easily obtained 
to any required degree of accuracy by using an iterative 
procedure (Oosthuizen and Naylor, 1999). The 
temperature profile for the constant heat flux case is 
used as the first approximation and Eq. (18) is then 
integrated to obtain θ. This iterative procedure is 
repeated until an acceptable convergence is obtained. 
From the engineering interest, it is important to 
determine the forced convective heat transfer 
coefficient, h, from which we can determine the heat 
transfer rate. h can expressed as: 
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The Nusselt number is defined in order to obtain h: 
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which is based on the distance between plates. 
Performing necessary substitutions, we obtain: 
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In terms of the modified Brinkman number, Brq, 
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RESULTS AND DISCUSSION 
 

We have studied the problem of hydrodynamically and 
thermally fully developed flow of a power-law fluid in a 
duct considering two different thermal boundary 
conditions at the duct wall, namely: The constant heat 
flux (H1-type) and the constant wall temperature (T-
type). For each boundary condition both wall heating 
(the hot wall) case or wall cooling (the cold wall) case 
are examined. In fact, when the viscous dissipation is 
excluded from the analysis, the solution will be 
independent of whether there is wall heating or cooling 
at the wall. However, in the presence of the viscous 
dissipation, it always contributes to internal heating of 
the fluid, hence the solution will differ according to the 
process taking place. 
  
Figure 2a and b depict the dimensionless temperature 
distributions for different values of Br (Br=-0.1,0,0.1) at 
n=0.5, 1 and 2 for the wall with the constant heat flux 
and that with the constant wall temperature, 
respectively. As seen, in all the cases considered, with 
an increase at the Brinkman number, dimensionless 
temperature gradient decreases. Remember positive 
values of Br correspond to wall heating (heat is being 
supplied across the walls into the fluid) case (Tw>Tc), 
while the opposite is true for negative values of Br. 
Viscous dissipation affects the temperature profile by 
playing a role like an energy source. It increases the 
temperature of the bulk fluid. Its effect becomes the 
most significant near the wall due to the highest shear 
stress occurring there.  
 
For the constant heat flux cases, as explained earlier, 
definitions of two different dimensionless temperatures 
resulted in Brinkman and modified Brinkman numbers. 
Figure 3a illustrates the variation of the Nusselt number 
with the power-law index for different Brinkman 
numbers. As seen for Br=0, the case without viscous 
dissipation, Nu decreases with increasing n for n>1 (the 
dilatant behavior), while an enhancement in heat 
transfer (i.e. Nu increases) with decreasing n for n<1 
(the pseudoplastic behavior). As seen, for the lower 
values of the Brinkman numbers either the wall heating 
case or the wall cooling case, Br=0.01 and -0.01, Nu 
versus n is very similar to that at Br=0. Therefore, we 
can neglect the effect of Br on Nu for its lower values. 
Increasing dissipation increases the bulk temperature of 
the fluid due to internal heating of the fluid. For the wall 
heating case, this increase in the fluid temperature 
decreases the temperature difference between the wall 
and the fluid. As a result, at Br=0.1, we obtain lower Nu 
values. And, as seen, the decreasing effect of the 
Brinkman number intensifies for the dilatant fluids 
(n>1). For the cold wall or the cooling wall situation, 
the viscous dissipation leads to higher temperature 
differences between the wall and the bulk fluid with the 
increasing Br. In fact, wall cooling is applied to reduce 
the bulk temperature of the fluid, while the effect of the 
viscous dissipation is increasing the bulk temperature of 
the fluid. As seen for Br=-0.1, either in the 
pseudoplastic region or in the dilatant region, a shift of 
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n from n=1 increases heat transfer due to the viscous 
dissipation. Figure 3b shows the variation of the Nusselt 
number with the power-law index for different modified 
Brinkman numbers. The behaviors observed in the 
figure are similar to those in Fig. 3a and can be 
explained in the same way. For the constant wall 
temperature case at the wall, Fig. 4 illustrates the 
variation of the Nusselt number with the power-law 
index for different Brinkman numbers.  

As expected, at n=1, lower values are observed for Nu 
when compared to the constant wall heat flux case as a 
result of decreased temperature gradient at the wall. For 
the H1- and T-types boundary conditions, we compared 
our results against those by Cotta and Ozisik (1986), 
Shah and London (1978) respectively, who considered 
the case without the viscous dissipation. As seen from 
Table 1, our results present a good agreement with 
those.   

 
 
 
 
 
 
 
 
 
 
 
 
 

      (a) 
 
 
 
 
 
 
 
 
 
 
 
 

 
         (b) 

 

Figure 2. The fully developed dimensionless temperature profile for (a) H1-type (b) T-type. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. The effect of power law index on fully developed Nusselt number for H1-type at different  values of (a) Br (b) Brq. 
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Figure 4. The effect of power law index on fully developed 
Nusselt number for T-type at different values of Br. 
 
Table 1. Comparison of Nusselt numbers for H1-type and     
T-type (Br=Brq=0). 

 H1-type T-type 
n Present Cotta and 

Özışık, 
1986 

Present Shah and 
London, 

1978 
1/3 4.5743 4.5743 4.1140 4.1138 
1 4.1177 4.1176 3.7706 3.7704 
3 3.8886 3.8886 3.5886 3.5888 

 
In order to see the effect of the Brinkman number in a 
broader range, the variation of the Nusselt number with 
the Brinkman number is determined and plotted for 
different values of the power-law index in Fig. 5a.  For 
n=1, the Newtonian-fluid case, a singularity is observed 
at Br=64/9, which is explicit when Eq. (21) is closely 
examined. An increase at Br (i.e. the wall heating case) 
decreases Nu in the range of 0 < Br < 64/9. This is 
because the temperature difference which drives the 
heat transfer decreases. At Br = 64/9, there is a balance 
between the heat supplied by the wall into the fluid and 
the internal heat generation by the viscous heating. For 
Br>64/9, the internally generated heat by the viscous 
dissipation overcomes the wall heat. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
Figure 5. The influence of (a) Br (b) Brq  on Nu at various 
power law index for the H1-type. 
 
For the cold wall case, Br < 0, the Nusselt number 
increases with an increase at Br as a result of increasing 
temperature difference between the wall and the bulk 
fluid. For n<1, the singularity point arises at higher Br 
values, while it is reached at lower Br values for n>1. 
Similarly, again for the hot wall or the wall heating 
situation, Fig. 5b illustrates the variation of Nu with Brq. 
The behavior observed can be explained similarly to 
that for Br. For Brq = -17/27, a singularity is observed, 
which is an expected result from Eq. (22). However, a 
different shift behavior of the singularity point 
according to n than Fig. 5a is observed.   
 
For the constant wall temperature condition, Fig. 6 
illustrates the variation of Nu with Br for different 
values of n. The behavior observed can be explained 
similarly to that for the constant wall heat flux 
condition. Again, singularities are observed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The influence of Br on Nu at various power law 
index for the T-type. 
 
Tables 2 and 3 summarize some typical results of this 
study. 

0.25 1.00 1.75 2.50

n

2.5

3.0

3.5

4.0

4.5

5.0

5.5
N

u

   Br    
 -0.1
 -0.01
  0.0
  0.01
  0.1

Br

-4 -2 0 2 4 6

N
u

-10

-5

0

5

10

15

n=0.5
n=1.0
n=2.0

(a) 

Br

-10 -5 0 5 10 15 20 25

N
u

-200

-150

-100

-50

0

50

100

150

200

n=0.5
n=1.0
n=2.0

(a) 

(b)

Brq

-4 -3 -2 -1 0 1 2 3 4

N
u

-30

-20

-10

0

10

20

30

n=0.5
n=1.0
n=2.0

(b) 



 15

Table 2. The Nusselt number values with Br, Brq for H1-type. 
 Br Brq 

n -0.10 -0.01 0.00 0.01 0.10 -0.10 -0.01 0.00 0.01 0.10 
0.50 4.6881 4.4096 4.3784 4.3471 4.0633 4.9693 4.4311 4.3784 4.3269 3.9130 
1.00 4.5210 4.1585 4.1176 4.0767 3.7034 4.8951 4.1841 4.1176 4.0533 3.5533 
2.00 4.7051 4.0285 3.9512 3.8736 3.1551 5.6842 4.0755 3.9512 3.8343 3.0280 

 

Table 3. The Nusselt number values with Br for T-type. 
 Br 

n -0.10 -0.01 0.00 0.01 0.10 
0.50 4.1191 3.9846 3.9697 3.9548 3.8180 
1.00 3.9545 3.7891 3.7706 3.7512 3.5799 
2.00 3.9658 3.6725 3.6391 3.6050 3.2865 

 
CONCLUSION 
 
The problem of hydrodynamically and thermally fully 
developed forced convection flow of a power-law fluid 
in a plane duct has been studied by taking the effect of 
viscous dissipation into account. Two types of wall 
thermal boundary condition have been considered both 
axially and peripherally, namely: constant heat flux 
(H1-type) and constant wall temperature (T-type).  Both 
wall heating and wall cooling case are examined. The 
Nusselt number has been obtained for different values 
of the Brinkman number, Br and the, n. The variation of 
the Nusselt number with the Brinkman number 
presented some singularities. These singularities have 
been shown to originate from the thermal energy 
balance between the wall heat and the viscous 
dissipation heat during the thermal transport and 
structure of the related formulations. For the wall 
heating case, the Brinkman number has been shown to 
decrease the Nusselt number while the opposite is true 
for the wall cooling case. The second part of this study 
analyzes the effect of viscous dissipation for the 
hydrodynamically fully developed but thermally 
developing flow. 
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