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Abstract: In this part of the study, we investigate the problem of hydrodynamically developed but thermally 
developing laminar forced convection of a power-law fluid in a plane duct when the viscous dissipation is included. 
The axial heat conduction in the fluid is neglected. Two different thermal boundary conditions are considered: the 
constant heat flux (H1 boundary condition) and the constant wall temperature (T boundary condition). The combined 
and interactive influences of the power-law index and the Brinkman number on the distributions for the developing 
temperature profile and local Nusselt number are determined in the entrance region for the wall heating and cooling 
cases at T and H1 boundary conditions.  
Keywords: Non-Newtonian fluid, Power-law fluid, Thermally developing, Viscous dissipation, Plane duct, Constant 
heat flux, Constant wall temperature. 

 
BİR DÜZLEMSEL KANAL İÇERİSİNDEKİ VİSKOZ YAYILIMLI POWER-LAW 

AKIŞKANLARIN ZORLANMIŞ TAŞINIM AKIŞI 
Kısım 2. Termal Gelişen Akış 

 
Özet: Çalışmanın bu bölümünde, düzlemsel bir kanalda, hidrodinamik olarak tam gelişmiş termal olarak gelişmekte 
olan power-law akışkanın laminer zorlanmış taşınımı, viskoz yayılım etkileri dahil edilerek incelenmiştir. Akışkan 
içerisindeki eksenel iletim ihmal edilmiştir. Sabit ısı akısı (H1 sınır koşulu) ve sabit yüzey sıcaklığı(T sınır koşulu) 
olmak üzere iki farklı termal sınır koşulu ele alınmıştır. Power-law indeksi ve Brinkman sayısının,  giriş bölgesinde, 
gelişmekte olan sıcaklık dağılımı ve yerel Nusselt sayısı üzerindeki etkisi,  T ve H1 sınır koşullarında, sıcak ve soğuk 
cidar durumları için belirlenmiştir.  
Anahtar kelimeler: Newtonyen olmayan akışkan, Power-law akışkan, Termal gelişen, Viskoz yayılım, Düzlemsel 
kanal, Sabit ısı akısı, Sabit yüzey sıcaklığı. 
 
 
NOMENCLATURE 
 
Br Brinkman number, Eq. (6) 
Brq modified Brinkman number, Eq. (16) 
cp specific heat at constant pressure 
k thermal conductivity [W/mK] 
n power-law index 
Nu Nusselt number 
qw wall heat flux [W/m2] 
Re Reynolds number, Eq. (5) 
Pr Prandtl number, Eq. (5) 
T temperature [K] 
u velocity [m/s] 
U dimensionless velocity 
W width of the duct (=2w) (m) 
Y dimensionless vertical coordinate 
z axial direction [m] 
Z dimensionless axial coordinate, Eq. (5) 

 
 
Greek symbols 
α thermal diffusivity [m2/s] 
η  consistency factor employed in equation (1) 
ρ density [kg/m3] 
υ kinematic viscosity [m2/s]  
θ dimensionless temperature, Eq. (5,14) 
 
Subscripts  
e fluids entering 
m mean 
w wall 
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INTRODUCTION 
 
The flow and heat transfer of non-Newtonian fluids 
through ducts have wide potential applications in many 
engineering areas including the chemical, petroleum, 
polymer, food processing, pharmaceutical and 
biochemical and biomedical engineering. The most non-
Newtonian fluids of practical interest are highly viscous 
and, therefore, are often processed in the laminar flow 
regime. Readers are referred to see the excellent reviews 
by Irvine and Karni (1987) and Hartnett and Choi 
(1998). 
 
In the first part of this study (Aydın and Avcı, 2008), it 
was shown that the viscous dissipation had a 
considerable effect on the hydrodynamically and 
thermally fully developed flow and heat transfer of a 
power-law fluid in a plane duct for the constant wall 
temperature (T type) and the constant heat flux (H1 
type) thermal boundary conditions at the wall. Now, we 
will focus our interest on the hydrodynamically 
developed, but thermally developing laminar flow 
problem (the so-called Graetz problem) for the same 
geometry, fluid type and thermal conditions.  
 
However, in the existing convective heat transfer 
literature on the non-Newtonian fluids, the effect of the 
viscous dissipation has been generally disregarded. 
There are only a few studies to be cited. Lawal and 
Mujumdar (1984,1992) studied viscous dissipation 
effect on heat transfer for power law fluids in arbitrary 
cross-sectional ducts. Flores et al. (1991) studied the 
Graetz problem for the case of a power-law fluid either 
in the cylindrical geometry or the plane geometry by 
considering a constant temperature at the duct wall in 
the presence of viscous dissipation.  Dang (1983) 
studied the effect of viscous dissipation in the thermal 
entrance region in a pipe using the uniform wall 
temperature. Barletta (1997) studied the asymptotic 
behavior of the temperature field for the laminar and 
hydrodynamically developed forced convection of a 
power-law fluid which flows in a circular duct taking 
the viscous dissipation into account. The asymptotic 
Nusselt number and the asymptotic temperature 
distribution were evaluated analytically in the cases of 
either uniform wall temperature or convection with an 
external isothermal fluid. Wei and Luo (2003) 
investigated a Graetz-Nusselt type problem of 
incompressible non-Newtonian fluids with temperature 
dependent power-law viscous dissipation by using a 
Galerkin method with linear axisymmetric triangular 
finite elements. 
 
In a recent study, Aydın and Avcı (2006) studied the 
thermally developing laminar forced convection flow of 
a Newtonian-fluid in plane duct considering the effect 
of the viscous dissipation. 
 
This chapter is followed by the Analysis, Results and 
Discussion and Conclusions chapters. 
 
 

ANALYSIS 
 
The flow is considered to be hydrodynamically fully 
developed but thermally developing. This problem is 
traditionally termed as the “Graetz” problem. Steady, 
laminar flow having constant properties (i.e. The 
thermal conductivity and the thermal diffusivity of the 
fluid are considered to be independent of temperature) is 
considered. The axial heat conduction in the fluid and in 
the wall is assumed to be negligible. The shear stress 
and strain relationship for the power-law type Ostwald-
de Waele fluid is given as 
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τ η
−

=     (1) 

 
where n represents the power-law index and the case of 
n<1, n=1 and n>1 correspond pseudoplastic, Newtonian 
and dilatant behaviors. The velocity profile for fully 
developed plane duct flow is given as follows: 
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Since a fully developed velocity profile is assumed for 
thermally developing flow, the energy equation 
including viscous dissipation effect can be represented 
by 
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where ρ, cp, k and µ are density, specific heat, thermal 
conductivity and viscosity. The second term in the right 
hand side is the viscous dissipation term.  
 
Due to axisymmetry at the center, the thermal boundary 
condition at y=0 can be written as: 
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Two kinds of thermal boundary condition at wall are 
considered in this study, namely: constant wall heat flux 
(H1 type) and constant wall temperature (T type). They 
are treated separately in the following: 
 
Constant Wall Temperature (T Type) 
 
Introducing the following dimensionless variables 
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where um is the mean velocity in the plane duct and Re 
is the Reynolds number  based on this mean velocity 
and the width of the duct, W, which is equal to 2 w. The 
dimensionless variable Z is termed the Graetz number. 
Then, Eq. 3 becomes 
  

2
12

( 1) / ( 1)/
2

2 1 2
n

n n n nnU Br Y
Z nY
θ θ +
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where Br is the Brinkman number, which is defined as: 
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For this T-type thermal boundary condition, the wall 
temperature of the wall is kept isothermal in the 
entrance region, which is mathematically shown as: 
 
For 0z > :   wT T=    at   y w=    (8) 
 
In dimensionless form, the thermal boundary conditions 
that will be applied in the solution of the energy 
equations are given as: 
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Y
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0.5Y = :  0θ =     (9) 
 
The local Nusselt number is obtained from  
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It should be noted the Nusselt number being used here is 
based on the difference between the wall and the inlet 
temperatures, i.e., on Tw – Te, and not on the difference 
between the wall and the mean temperatures. Now the 
mean temperature, i.e. the bulk mean temperature is 
given by Oosthuizen and Naylor (1999). 
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Rewriting this equation in terms of the dimensionless 
variables: 
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The Nusselt number based on the difference between 
the wall and the mean temperature is then given by: 
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Constant Heat Flux (H1 Type) 
 
Now, we will consider the constant heat flux case, 

wq c= . In this case, the following dimensionless 
temperature is used: 
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With this definition, the energy equation can be written 
in dimensionless form as: 
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where Brq is the modified Brinkman number, which is 
given as: 
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The entrance condition at the beginning of the thermally 
developing region in this case is defined: 
 

0Z = : 0θ =                  (17) 
 
and the wall thermal boundary condition is  
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where qw is positive when its direction is to the fluid 
(wall heating), otherwise it is negative (wall cooling).  
In dimensionless form, it can be written as: 
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For this case, the Nusselt number is given: 
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and  
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For each case, the energy equation has been solved 
numerically using the difference method. The details of 
the solution procedure can be found in Oosthuizen and 
Naylor (1999). 
 
 
 
 



 20

RESULTS AND DISCUSSION 
 

In order to understand heat transfer processes taking 
place, temperature profiles at certain locations are 
required. For constant wall temperature at the wall, Fig. 
1 depicts the variations in the temperature distributions 
with the power-law index at different axial locations for 
Br=-0.1, 0 and 0.1.  
 
Four different values of the power-law index are 
considered: n=0.5, 1, 1.5 and 2. Remember n=1 
represents the Newtonian behavior while n<1 and n>1 
representing the pseudoplastic and dilatant behaviors, 
respectively. As seen, in all the cases considered, with 
an increase at the Brinkman number, dimensionless 
temperature gradient decreases. The change of Br 
significantly influences the temperature profile due to 
the irreversible energy conversion originating from 
viscous dissipation. Br=0 represents the case without the 
viscous dissipation effect. Br=0.1 corresponds to the hot 
wall or the wall heating (heat is being supplied across 
the walls into the fluid) case (Tw>Tc), while the case of 

Br=-0.1 representing the cold wall or the wall cooling 
case (Tw<Tc). Viscous dissipation affects the 
temperature profile by playing a role like an energy 
source. It increases the temperature of the bulk fluid. Its 
effect becomes the most significant near the wall due to 
the highest shear stress occurring there. As seen from 
the figure, for the wall heating and cooling cases 
(Br=0.1 and -0.1), the influence of the power-law index 
on the temperature profile becomes more profound than 
that for Br=0.  
 
Figure 2 shows the variations in the temperature 
distributions with the power-law index at different axial 
locations for Brq=1, 0 and -1 for the constant heat flux 
thermal boundary condition at the wall (H1 type). The 
behaviors seen can be explained similarly to those in 
Fig. 1. 
 
For the T-type thermal boundary condition at the wall, 
the behavior of NuWm  in the downstream for different 
values of the power-law index is shown in Fig. 3 for 
different values of Br.  
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Figure 1. Dimensionless temperature distributions in terms of the power-law index for different Br at the constant wall 
temperature case. 
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Figure 2. Dimensionless temperature distributions in terms of the power-law index for different Brq at the constant wall heat flux 
case. 
 
As seen, for the case without the viscous dissipation 
effect, NuWm immediately settles to its fully developed 
values obtained in the Part 1 [3], which validates the 
numerical method used here. At Br=0, the case without 
viscous dissipation, Nu decreases with increasing n for 
n>1 (the dilatant behavior), while an enhancement in 
heat transfer is observed (i.e. Nu increases) with 
decreasing n for n<1 (the pseudoplastic behavior). For 
the wall heating case, at Br=0.01, we observe some 
singularities. A decrease at n shifts the singularity point 
ahead in the downstream. For Br=0.1, these singular 
points are attained earlier. These singularities can be 
explained in terms the competition between the heat 
flux supplied by the wall and the viscous dissipation 
generated heat. As seen initially, NuWm decreases up to 
the singular point as a result of decreasing temperature 
difference between the wall temperature and the bulk 
fluid temperature resulting from the viscous dissipation 
heat. For the cold or cooling wall situation, the viscous 
dissipation leads to higher temperature differences 
between the wall and the bulk fluid with the increasing 
Br. Interestingly, in the downstream, initially, we obtain 

superior Nu values for the n>1-fluids than n<1, as 
opposed the common behavior. Further downstream, we 
finally reach the common behavior, an enhancement in 
the heat transfer for the n<1-fluids with the decreases 
for the n>1-fluids. Interestingly, it should be noted that 
in the presence of the viscous dissipation (Br≠0), the 
steady-state value of the Nusselt number does not 
change for any values of the Brinkman number at a 
constant value of the power-law index. For n=0.5, 1, 1.5 
and 2, Nu receives the following corresponding values, 
respectively: 10.7800, 8.7413, 8.0543 and 7.7107 for 
Br≠0 while they are 3.9697, 3.7706, 3.6857 and 3.6391 
for Br=0. 
 
Figure 4 illustrates the behavior of NuWm  in the 
downstream for different values of the power-law index 
at different values of Brq for the constant heat flux case 
at the wall. For Brq=0, Nu immediately receives its 
steady state value for each n given in Part 1 [3], see Fig. 
4a. Including the viscous dissipation decreases Nu for 
each n as result of decreasing temperature differences 
between the wall and the bulk fluid (Fig. 4b,c). And, an 
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Figure 3. Variation of NuWm with n for different Br at the constant wall temperature case. 
 
enhancement in the heat transfer is obtained for the 
pseudoplastic fluids (n<1), while the opposite is true for 
the dilatant fluids (n>1). For the cooling wall case, we 
can easily observe increases at Nu values resulting from 
decreased temperature differences due to viscous 
heating inside the fluid. At Brq=-0.1, interestingly, the 
pseuplastic fluid (n=0.5) gives lower Nu than the 
Newtonian fluid (n=1), as opposed to the common 
behavior (see Fig. 4e). For the dilatant fluids, at n=2, 
just right after the entrance, a singularity at Nu is 
observed (Fig. 4e). 
 
Finally, it should be noted that comparisons are possible 
for steady-state values of the pseudoplastic and dilatant 
fluids in the presence of the viscous dissipation since we 

use a different Brinkman number definition, which is 
based on the duct entrance temperature, than that in Part 
1. 
 
CONCLUSION 

 
We have studied hydrodynamically developed, but 
thermally developing forced convection flow of power-
law fluids in a plane duct (the Graetz problem) by 
taking the effect of viscous dissipation into account. The 
axial conduction in the fluid is neglected. Two types of 
wall thermal boundary condition have been considered, 
namely: constant heat flux (H1-type) and constant wall 
temperature (T-type).  Either wall heating or wall 
cooling case is examined. 
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Figure 4. Variation of NuWm with n for different Brq at the constant wall heat flux case. 
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