Is1 Bilimi ve Teknigi Dergisi, 28, 2, 17-24, 2008
J. of Thermal Science and Technology

©2008 TIBTD Printed in Turkey

ISSN 1300-3615

FORCED CONVECTION FLOW OF VISCOUS DISSIPATIVE POWER-LAW FLUIDS
IN A PLANE DUCT
Part 2. Thermally Developing Flow

Mete AVCI* and Orhan AYDIN**
*Karadeniz Technical University, Department of Mechanical Engineering,
61080 Trabzon, mavci@ktu.edu.tr
**Karadeniz Technical University, Department of Mechanical Engineering,
61080 Trabzon, oaydin@ktu.edu.tr

(Gelis Tarihi: 01. 02. 2008, Kabul Tarihi: 12. 05. 2008)

Abstract: In this part of the study, we investigate the problem of hydrodynamically developed but thermally
developing laminar forced convection of a power-law fluid in a plane duct when the viscous dissipation is included.
The axial heat conduction in the fluid is neglected. Two different thermal boundary conditions are considered: the
constant heat flux (H1 boundary condition) and the constant wall temperature (T boundary condition). The combined
and interactive influences of the power-law index and the Brinkman number on the distributions for the developing
temperature profile and local Nusselt number are determined in the entrance region for the wall heating and cooling
cases at T and H1 boundary conditions.

Keywords: Non-Newtonian fluid, Power-law fluid, Thermally developing, Viscous dissipation, Plane duct, Constant
heat flux, Constant wall temperature.

BiR DUZLEMSEL KANAL ICERISINDEKI VISKOZ YAYILIMLI POWER-LAW
AKISKANLARIN ZORLANMIS TASINIM AKISI
Kisim 2. Termal Gelisen Akis

Ozet: Caligmanin bu boliimiinde, diizlemsel bir kanalda, hidrodinamik olarak tam gelismis termal olarak gelismekte
olan power-law akigkanin laminer zorlanmis taginimi, viskoz yayilim etkileri dahil edilerek incelenmistir. Akiskan
igerisindeki eksenel iletim ihmal edilmistir. Sabit 1s1 akist (H1 sinir kosulu) ve sabit yiizey sicakligi(T sinir kosulu)
olmak tizere iki farkli termal sinir kosulu ele alinmistir. Power-law indeksi ve Brinkman sayisinin, giris bolgesinde,
gelismekte olan sicaklik dagilimi ve yerel Nusselt sayisi iizerindeki etkisi, T ve H1 smir kosullarinda, sicak ve soguk
cidar durumlari i¢in belirlenmistir.

Anahtar kelimeler: Newtonyen olmayan akiskan, Power-law akiskan, Termal gelisen, Viskoz yayilim, Diizlemsel
kanal, Sabit 1s1 akisi, Sabit ylizey sicakligi.

NOMENCLATURE

Br Brinkman number, Eq. (6) Greek symbols

Br, modified Brinkman number, Eq. (16) o thermal diffusivity [m*/s]

¢ specific heat at constant pressure n consistency factor employed in equation (1)
k thermal conductivity [W/mK] p density [kg/m’]

n power-law index v kinematic viscosity [m’/s]

Nu Nusselt number 0 dimensionless temperature, Eq. (5,14)
qw wall heat flux [W/m?]

Re Reynolds number, Eq. (5) Subscripts

pPr Prandtl number, Eq. (5) e fluids entering

T temperature [K] m mean

u velocity [m/s] w wall

U dimensionless velocity

w width of the duct (=2w) (m)

Y dimensionless vertical coordinate

z axial direction [m]

Z dimensionless axial coordinate, Eq. (5)
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INTRODUCTION

The flow and heat transfer of non-Newtonian fluids
through ducts have wide potential applications in many
engineering areas including the chemical, petroleum,
polymer, food processing, pharmaceutical and
biochemical and biomedical engineering. The most non-
Newtonian fluids of practical interest are highly viscous
and, therefore, are often processed in the laminar flow
regime. Readers are referred to see the excellent reviews
by Irvine and Karni (1987) and Hartnett and Choi
(1998).

In the first part of this study (Aydin and Avci, 2008), it
was shown that the viscous dissipation had a
considerable effect on the hydrodynamically and
thermally fully developed flow and heat transfer of a
power-law fluid in a plane duct for the constant wall
temperature (T type) and the constant heat flux (H1
type) thermal boundary conditions at the wall. Now, we
will focus our interest on the hydrodynamically
developed, but thermally developing laminar flow
problem (the so-called Graetz problem) for the same
geometry, fluid type and thermal conditions.

However, in the existing convective heat transfer
literature on the non-Newtonian fluids, the effect of the
viscous dissipation has been generally disregarded.
There are only a few studies to be cited. Lawal and
Mujumdar (1984,1992) studied viscous dissipation
effect on heat transfer for power law fluids in arbitrary
cross-sectional ducts. Flores et al. (1991) studied the
Graetz problem for the case of a power-law fluid either
in the cylindrical geometry or the plane geometry by
considering a constant temperature at the duct wall in
the presence of viscous dissipation. Dang (1983)
studied the effect of viscous dissipation in the thermal
entrance region in a pipe using the uniform wall
temperature. Barletta (1997) studied the asymptotic
behavior of the temperature field for the laminar and
hydrodynamically developed forced convection of a
power-law fluid which flows in a circular duct taking
the viscous dissipation into account. The asymptotic
Nusselt number and the asymptotic temperature
distribution were evaluated analytically in the cases of
either uniform wall temperature or convection with an
external isothermal fluid. Wei and Luo (2003)
investigated a Graetz-Nusselt type problem of
incompressible non-Newtonian fluids with temperature
dependent power-law viscous dissipation by using a
Galerkin method with linear axisymmetric triangular
finite elements.

In a recent study, Aydm and Avci (2006) studied the
thermally developing laminar forced convection flow of
a Newtonian-fluid in plane duct considering the effect
of the viscous dissipation.

This chapter is followed by the Analysis, Results and
Discussion and Conclusions chapters.

ANALYSIS

The flow is considered to be hydrodynamically fully
developed but thermally developing. This problem is
traditionally termed as the “Graetz” problem. Steady,
laminar flow having constant properties (i.e. The
thermal conductivity and the thermal diffusivity of the
fluid are considered to be independent of temperature) is
considered. The axial heat conduction in the fluid and in
the wall is assumed to be negligible. The shear stress
and strain relationship for the power-law type Ostwald-
de Waele fluid is given as

n—1 ﬂ
dy

du
dy

(M
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where n represents the power-law index and the case of
n<l, n=1 and n>1 correspond pseudoplastic, Newtonian
and dilatant behaviors. The velocity profile for fully
developed plane duct flow is given as follows:

L:(2n+lj|:l_(ljwwn} o
u, n+l w

Since a fully developed velocity profile is assumed for
thermally developing flow, the energy equation
including viscous dissipation effect can be represented
by
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where p, ¢,, k and u are density, specific heat, thermal
conductivity and viscosity. The second term in the right
hand side is the viscous dissipation term.

Due to axisymmetry at the center, the thermal boundary
condition at y=0 can be written as:
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Two kinds of thermal boundary condition at wall are
considered in this study, namely: constant wall heat flux
(H1 type) and constant wall temperature (T type). They
are treated separately in the following:

Constant Wall Temperature (T Type)

Introducing the following dimensionless variables
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where u,, is the mean velocity in the plane duct and Re
is the Reynolds number based on this mean velocity
and the width of the duct, W, which is equal to 2 w. The
dimensionless variable Z is termed the Graetz number.
Then, Eq. 3 becomes
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where Br is the Brinkman number, which is defined as:
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For this T-type thermal boundary condition, the wall
temperature of the wall is kept isothermal in the
entrance region, which is mathematically shown as:

For z>0: T=T,

w

at y=w

(®)
In dimensionless form, the thermal boundary conditions
that will be applied in the solution of the energy

equations are given as:
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The local Nusselt number is obtained from
Nuy, = —% (10)
aY Y=05

It should be noted the Nusselt number being used here is
based on the difference between the wall and the inlet
temperatures, i.e., on Ty, — T,, and not on the difference
between the wall and the mean temperatures. Now the
mean temperature, i.e. the bulk mean temperature is
given by Oosthuizen and Naylor (1999).
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Rewriting this equation in terms of the dimensionless
variables:
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T,-T,

= (12)
T, -T, Udy

The Nusselt number based on the difference between
the wall and the mean temperature is then given by:
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T -T,
Nuy,, = Nu, ———==Nu (13)
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Constant Heat Flux (H1 Type)

Now, we will consider the constant heat flux case,
g, =c. In this case, the following dimensionless

temperature is used:

(g W k) (14)

With this definition, the energy equation can be written
in dimensionless form as:
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where Br, is the modified Brinkman number, which is
given as:
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The entrance condition at the beginning of the thermally
developing region in this case is defined:

Z=0: 6=0 a7n

and the wall thermal boundary condition is

W0 =, as)
6 y y=w

where q,, is positive when its direction is to the fluid
(wall heating), otherwise it is negative (wall cooling).
In dimensionless form, it can be written as:

o0 =1 (19)
oYy
For this case, the Nusselt number is given:
1

Ny = (20)
and
Nu, = ! 21
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For each case, the energy equation has been solved
numerically using the difference method. The details of
the solution procedure can be found in Oosthuizen and
Naylor (1999).



RESULTS AND DISCUSSION

In order to understand heat transfer processes taking
place, temperature profiles at certain locations are
required. For constant wall temperature at the wall, Fig.
1 depicts the variations in the temperature distributions
with the power-law index at different axial locations for
Br=-0.1, 0 and 0.1.

Four different values of the power-law index are
considered: n=0.5, 1, 1.5 and 2. Remember n=1
represents the Newtonian behavior while n<l and n>1
representing the pseudoplastic and dilatant behaviors,
respectively. As seen, in all the cases considered, with
an increase at the Brinkman number, dimensionless
temperature gradient decreases. The change of Br
significantly influences the temperature profile due to
the irreversible energy conversion originating from
viscous dissipation. Br=0 represents the case without the
viscous dissipation effect. Br=0.1 corresponds to the hot
wall or the wall heating (heat is being supplied across
the walls into the fluid) case (T, >T.), while the case of

Br=-0.1 representing the cold wall or the wall cooling
case (Tw<T.). Viscous dissipation affects the
temperature profile by playing a role like an energy
source. It increases the temperature of the bulk fluid. Its
effect becomes the most significant near the wall due to
the highest shear stress occurring there. As seen from
the figure, for the wall heating and cooling cases
(Br=0.1 and -0.1), the influence of the power-law index
on the temperature profile becomes more profound than
that for Br=0.

Figure 2 shows the variations in the temperature
distributions with the power-law index at different axial
locations for Bry=1, 0 and -1 for the constant heat flux
thermal boundary condition at the wall (H1 type). The
behaviors seen can be explained similarly to those in
Fig. 1.

For the T-type thermal boundary condition at the wall,
the behavior of Nuy,, in the downstream for different
values of the power-law index is shown in Fig. 3 for
different values of Br.
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Figure 1. Dimensionless temperature distributions in terms of the power-law index for different Br at the constant wall

temperature case.
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Figure 2. Dimensionless temperature distributions in terms of the power-law index for different Br, at the constant wall heat flux

case.

As seen, for the case without the viscous dissipation
effect, Nuw,, immediately settles to its fully developed
values obtained in the Part 1 [3], which validates the
numerical method used here. At Br=0, the case without
viscous dissipation, Nu decreases with increasing n for
n>1 (the dilatant behavior), while an enhancement in
heat transfer is observed (i.e. Nu increases) with
decreasing n for n<l (the pseudoplastic behavior). For
the wall heating case, at Br=0.01, we observe some
singularities. A decrease at n shifts the singularity point
ahead in the downstream. For Br=0.1, these singular
points are attained earlier. These singularities can be
explained in terms the competition between the heat
flux supplied by the wall and the viscous dissipation
generated heat. As seen initially, Nuy,, decreases up to
the singular point as a result of decreasing temperature
difference between the wall temperature and the bulk
fluid temperature resulting from the viscous dissipation
heat. For the cold or cooling wall situation, the viscous
dissipation leads to higher temperature differences
between the wall and the bulk fluid with the increasing
Br. Interestingly, in the downstream, initially, we obtain
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superior Nu values for the n>1-fluids than n<l, as
opposed the common behavior. Further downstream, we
finally reach the common behavior, an enhancement in
the heat transfer for the n<l-fluids with the decreases
for the n>1-fluids. Interestingly, it should be noted that
in the presence of the viscous dissipation (Br#0), the
steady-state value of the Nusselt number does not
change for any values of the Brinkman number at a
constant value of the power-law index. For n=0.5, 1, 1.5
and 2, Nu receives the following corresponding values,
respectively: 10.7800, 8.7413, 8.0543 and 7.7107 for
Br#0 while they are 3.9697, 3.7706, 3.6857 and 3.6391
for Br=0.

Figure 4 illustrates the behavior of Nuy, in the
downstream for different values of the power-law index
at different values of Br, for the constant heat flux case
at the wall. For Br;=0, Nu immediately receives its
steady state value for each n given in Part 1 [3], see Fig.
4a. Including the viscous dissipation decreases Nu for
each n as result of decreasing temperature differences
between the wall and the bulk fluid (Fig. 4b,c). And, an
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Figure 3. Variation of Nuy,, with n for different Br at the constant wall temperature case.

enhancement in the heat transfer is obtained for the
pseudoplastic fluids (n<1), while the opposite is true for
the dilatant fluids (n>1). For the cooling wall case, we
can easily observe increases at Nu values resulting from
decreased temperature differences due to viscous
heating inside the fluid. At Bry=-0.1, interestingly, the
pseuplastic fluid (n=0.5) gives lower Nu than the
Newtonian fluid (n=1), as opposed to the common
behavior (see Fig. 4e). For the dilatant fluids, at n=2,
just right after the entrance, a singularity at Nu is
observed (Fig. 4e).

Finally, it should be noted that comparisons are possible
for steady-state values of the pseudoplastic and dilatant
fluids in the presence of the viscous dissipation since we
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use a different Brinkman number definition, which is
based on the duct entrance temperature, than that in Part
1.

CONCLUSION

We have studied hydrodynamically developed, but
thermally developing forced convection flow of power-
law fluids in a plane duct (the Graetz problem) by
taking the effect of viscous dissipation into account. The
axial conduction in the fluid is neglected. Two types of
wall thermal boundary condition have been considered,
namely: constant heat flux (H1-type) and constant wall
temperature (T-type). Either wall heating or wall
cooling case is examined.
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Figure 4. Variation of Nuy, with n for different Br, at the constant wall heat flux case.
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