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Abstract: Hydrodynamically and thermally fully developed, steady, incompressible laminar flow with constant 
physical properties in eccentric curved annular square duct was investigated numerically. Inner and outer walls were 
assumed to be isothermal, but at different temperatures. For the Cartesian coordinate system, the continuity, 
momentum and energy equations included the curvature ratio were discretized by using control volume finite 
difference method and the dependent variables in the governing equations were solved by ADI method uses the 
TDMA. The Stone’s method was employed to solve the pressure-correction equation instead of ADI method. The 
upwind scheme and the central difference scheme were employed to represent the convection and diffusion terms, 
respectively. Solutions were obtained for air (Pr=0.7). Secondary flow streamlines, velocity and temperature fields, 
velocity profiles, the friction coefficients and average and local Nusselt numbers were presented depending on Dean 
number and annulus dimension ratio (a/b). It was observed that secondary flow resulting from centrifugal force highly 
affects the velocity and temperature fields. It has seen that curvature, annulus dimension ratio and core position affect 
heat transfer and friction factor. With the increasing annulus dimension ratio, it has been shown that the convective 
heat transfer is remarkably enhanced at both the inner and the outer walls. 
Keywords: Laminar flow, Heat transfer, Curved annular duct, Eccentric, Constant wall temperature.  
 
KAÇIK MERKEZLİ HALKA KESİTLİ EĞRİSEL KARE KANALLARDA ZORLANMIŞ 

TAŞINIMLA ISI TRANSFERİ 
 
Özet: Kaçık merkezli halka kesite sahip eğrisel kare kanallarda tam gelişmiş, sürekli, sıkıştırılamaz, sabit fiziksel 
özeliklere sahip laminer akış sayısal olarak incelenmiştir. İç ve dış duvarlarda birbirinden farklı olmak koşuluyla sabit 
yüzey sıcaklığı öngörülmüştür. Eğrilik oranının da içinde bulunduğu kartezyen koordinatlarda ifade edilmiş 
süreklilik, momentum ve enerji denklemleri sonlu fark kontrol hacim yöntemiyle ayrıklaştırılmış ve denklemlerdeki 
bağımlı değişkenler üç köşegenli bant matris algoritmasını kullanan ADI metoduyla çözülmüştür. Basınç-doğrultman 
denklemini çözmek için ADI metodu yerine Stone metodu kullanılmıştır. Taşınım ve yayınım terimleri sırasıyla 
yukarı fark ve merkezi fark yöntemiyle ayrıklaştırılmıştır. Çözümler hava için elde edilmiştir (Pr=0.7). İkincil akış 
akım çizgileri, hız ve sıcaklık alanları, hız profilleri, sürtünme faktörü ve ortalama ve yerel Nusselt sayıları Dean 
sayısı ve halka kesit boyut oranına (a/b) bağlı olarak gösterilmiştir. Merkezkaç kuvvetlerden kaynaklanan ikincil 
akışların hız ve sıcaklık alanlarını önemli ölçüde etkilediği gözlenmiştir. Eğriliğin, halka kesit boyut oranının ve 
içteki elemanın konumunun ısı transferi ve sürtünme faktörünü etkilediği görülmüştür. Boyut oranının artışıyla, ısı 
transferinin iç ve dış duvarlarda önemli düzeyde arttığı belirlenmiştir. 
Anahtar kelimeler: Laminer akış, Isı transferi, Eğrisel halka kesitli kanal, Kaçık merkezli, Sabit yüzey sıcaklığı. 
 
 
NOMENCLATURE 
 
a Width or height of the outer wall [m] 
A Cross-sectional area of the annular duct 

[m2] 
b Width or height of the inner wall [m] 
cA Case A 
cB Case B 
cw Core wall 
dP/dz Axial pressure gradient [Pa/m] 
dP+/dz+ Dimensionless axial pressure gradient 

dT/dz Axial temperature gradient [K/m] 
dT+/dz+ Dimensionless axial temperature gradient 
De Dean number, Eq. (19) 
Dh Hydraulic diameter [m] 
dw Duct wall 
f Friction factor 
l Circumferential length of channel wall 
l’ Circumferential length of core wall  
Nu Nusselt number 
P Pressure [Pa] 
P+ Dimensionless pressure, Eq. (6) 
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Pr Prandtl number, Eq. (6) 
Re Reynolds number, Eq. (18) 
r+ Dimensionless radius of curvature, Eq. (6) 
R Radius of curvature of a curved channel [m] 
S Source term 
T Temperature [K] 
T+ Dimensionless temperature, Eq. (6) 
u, v, w Velocity components in x-, y- and z-

directions [m/s] 

u+, v+, w+ Dimensionless velocity components in x-, 
y- and z-directions, Eq. (6) 

x, y, z Cartesian coordinates [m] 
x+, y+, z+ Dimensionless coordinates in x-, y- and z-

directions, Eq. (6) 
 
 
Greek symbols 

α Thermal diffusivity [m2/ s] 
Γ Diffusion coefficient 
μ Dynamic viscosity [kg/s m] 

ν Kinematic viscosity [m2/s] 
ρ Density [kg/m3] 
φ Dependent variable 
 
Subscripts 
c Value for a curved channel, cold 
h Hot 
i Inner 
L Local 
m Mean value 
o Outer 
 

INTRODUCTION 
 
Curved annular ducts have several applications in 
engineering such as double-pipe heat exchangers, air 
conditioning systems, cooling systems, gas turbines, 
chemical mixing and drying machinery. The secondary 
flows passages originate principally from the interaction 
between the centrifugal force, the pressure gradient, and 
the viscous forces. The flow in a curved annulus is 
significantly different from that in a curved pipe 
because of the presence of an inner pipe around which 
an additional inner wall boundary layer has to be 
established (Choi and Park, 1992). Kucuk and Asan 
(2009) numerically investigated fully developed laminar 
flow in a concentric curved annular duct under constant 
wall temperature boundary condition. They determined 
that viscous forces become more effective upon 
centrifugal forces while the annulus dimension ratio 
decreases. However, they found out that when the Dean 
number increases the centrifugal forces are more 
dominant than viscous forces. Also, they showed that 
the secondary flows resulting from centrifugal forces 
affect the distribution of the velocity and temperature 
fields. It is known that the Dean number and radius ratio 
highly affect the friction factor and the Nusselt number 
in curved circular annular ducts (Choi and Park, 1994; 
Petrakis and Karahalios, 1999). Petrakis and Karahalios 
(1997) presented numerical results for exponentially 
decaying flow in a gently curved annular pipe. They 
observed that the secondary flow exhibited two vortices 
rotating in opposite directions. They also found that the 
axial rigid core affected the flux through a cross section 
of the pipe. Garimella et al. (1988) experimentally 
studied forced convection heat transfer in coiled circular 
annular ducts. They concluded that coiling enhanced the 
heat transfer coefficients especially in the laminar 
region.  
 
As a consequence of literature review, it was seen that 
no study on eccentric curved annular ducts with 
rectangular cross section has been performed. The 
purpose of this study is to present numerical results for 
both hydrodynamically and thermally fully developed 

laminar flow in eccentric curved annular duct with 
square cross-section. Constant wall temperature is 
assumed at walls. 
 
ANALYSIS 
 
The physical configuration and the coordinate system of 
the problem are shown in Fig. 1. All physical properties 
of the fluid are assumed constant. The governing 
equations for steady, hydrodynamically and thermally 
fully developed, incompressible laminar flow in the 
cross section in a curved duct can be written as (Dong 
and Ebadian, 1992; Gyves and Irvine, 2000; Gyves, 
1997; Kucuk, 2003; Asan and Kucuk, 2007; Kucuk and 
Asan, 2009): 
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It is assumed that the radius of curvature (R) is large 

compared with the channel dimensions (R+x≈R). The 
model neglects all terms of the order 1/R and 1/R2, with 
the exception of the centrifugal force term as given by 
Gyves (1997), Gyves and Irvine (2000); Kucuk (2003), 
Asan and Kucuk (2007), Kucuk and Asan (2009) and 
Gyves et al.(1999). 

 

 
 

Figure 1. Problem geometry and coordinate system. 

 
Equations (1-5) can be written as follows by using the 
above assumptions and by substituting the 
dimensionless variables given as below (Gyves and 
Irvine, 2000). 
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Energy Equation 
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The equations are subjected to the following boundary 
conditions at the channel and core walls: 
 

0=== +++ wvu  at the channel and core walls       (12) 
 

0=+T     at the channel wall              (13) 
 

1=+T     at the core wall               (14) 
 
For hydrodynamically fully developed flow, the 
pressure gradient varies only in the cross-section of the 
curved channel. Therefore, the dimensionless axial 
pressure gradient remains constant at any axial position 
(Dong and Ebadian, 1991; Gyves and Irvine, 2000; 
Gyves et al. 1999; Dong and Ebadian, 1992). For 
thermally fully developed flow under axially and 
peripherally constant wall temperature boundary 
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condition the dimensionless axial temperature gradient 
is taken as zero at any axial position (Incropera and 
DeWitt, 1990; Çengel, 2003). 
 
The equations (7-11) can be expressed in a generic form 
for a property, φ, as in the following: 
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For each conservation equation, the general dependent 
variable, φ, the diffusion coefficient, Γφ and the source 
term, Sφ are defined in Table 1 for each conservation 
equation. The left hand side of general equation 
contains convection term, while the right hand side 
contains the diffusion and source terms. 
 
Table 1. Conservation equations variables 
Equation φ Γφ Sφ 
Continuity 1 0 0 
Momentum x u+ 1 
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Momentum z w+ 1 
+

+

−
dz
dP  

Energy T+ 1/Pr 

+

+
+−

dz
dTw  

 
The numerical solution procedure used in this study is 
based on the SIMPLE algorithm given by Patankar 
(1980). The equations are approximated with finite 
difference equations by the control volume-based finite 
difference method for the dependent variables, u+, v+, 
w+ and T+. The convection and diffusion terms are 
discretized by using the upwind scheme and the central 
difference scheme, respectively. The finite difference 
equations for the dependent variable of interest are 
solved by ADI (Alternating-Direction Implicit) method 
(Roache, 1982). This method uses the Tri-Diagonal 
Matrix Algorithm, TDMA, making successive sweeps 
over the computational field. Because the pressure-
correction equation is a Poisson equation, Alternating-
Direction Implicit solution of the difference equations is 
replaced by the Stone’s solution method (Stone, 1968). 
For given values of dimensionless radius of curvature, 
r+, the dimensionless axial pressure gradient, dP+/dz+, 
the dimensionless axial temperature gradient, dT+/dz+ 
and the Prandtl number, Pr, the distributions of  
dimensionless velocity components, u+, v+, w+, the 
dimensionless distributions of temperature, T+, and 
pressure, P+, are initially guessed at each nodal location. 

Momentum equations for u+ and v+ are then solved to 
get new velocity fields for u+ and v+. Generally, these 
transverse velocity fields with the initial guessed 
pressure field can not satisfy the continuity equation. 
Thus, the pressure correction equation is solved and 
then u+ and v+ and P+ are corrected accordingly. Then, 
u+ and v+ are updated and momentum equation for w+ is 
solved based on the corrected transversal velocity and 
pressure fields. A staggered grid system which is the 
components of  u+ and v+ are defined on the control 
volume surfaces located at the midpoint between the 
main nodal grid points and all other components of w+, 
T+ and P+ are defined at the main grid points  is 
employed. Considering both computational cost and 
convergence the relaxation factor is taken as 0.5, 0.5, 1, 
0.7 and 0.45 for u+, v+, w+, T+ and P+, respectively. To 
check the validity of the numerical results, grid study is 
performed and a uniform grid system of 100 x 100 is 
chosen for all the cases in this study. The solutions were 
assumed to converge when the following convergence 
criteria was satisfied for every variable at every point in 
the solution domain 
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where φ represents u+, v+, w+ and T+. 
 
The average dimensionless axial velocity is calculated 
as: 
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The average Nusselt number on the channel and core 
walls can be expressed as: 
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The friction factor is given by 
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RESULTS AND DISCUSSION 
 
In order to validate the present study, the results 
obtained are compared with the literature. The 
comparisons of the Dean number and friction factor 
ratio results obtained by Gyves (1997), Dong and 
Ebadian (1991), Cheng et al. (1976) and Komiyama et 
al. (1984) are given in Table 2 depending on the 
dimensionless axial pressure gradient. As can be seen in 
Table 2, there is very close agreement with the data 
available in the literature for Dean number and friction 
factor. Also, it seems that the Nusselt number is close 
agreement with the previous study by Hwang and Chao 
(1991) (Table 3). 

 
Table 2. Comparison of numerical results in the curved square channel for Dean number and friction factor ratio. 

dP+/dz+ r+ grid 

Dean number Friction factor ratio (fRec / fRes) 

Present 
Study 

T.W 
Gyves 
(1997) 

Cheng
et al. 

(1976)

Komiyama
et al. 

(1984) 

Dong and
Ebadian 
(1991) 

Present
Study

T.W 
Gyves 
(1997)

Cheng 
et al. 

(1976) 

Komiyama
et al. 

(1984) 

Dong and
Ebadian 
(1991) 

-3900 100 30×30 14.0 14.0 13.9 14.0 14.1 1.01 1.01 1.01 1.00 1.00 
100x100 13.9 ---- ---- ---- ---- 1.00 ---- ---- ---- ---- 

-9000 100 30×30 29.7 29.7 29.5 29.8 ---- 1.08 1.07 1.07 1.06 ---- 
100x100 30.0 ---- ---- ---- ---- 1.07 ---- ---- ---- ---- 

-19000 100 30×30 55.0 55.2 54.8 55.4 ---- 1.23 1.21 1.22 1.20 ---- 
100x100 55.5 ---- ---- ---- ---- 1.20 ---- ---- ---- ---- 

-39500 100 30×30 99.1 100.6 100.0 101.8 99.1 1.42 1.38 1.41 1.38 1.42 
100x100 100.8 ---- ---- ---- ---- 1.40 ---- ---- ---- ---- 

-70000 100 40×40 151.3 151.1 151.1 150.5 ---- 1.65 1.63 1.63 1.63 ---- 
100x100 151.6 ---- ---- ---- ---- 1.61 ---- ---- ---- ---- 

-110000 100 40×40 214.6 210.9 202.6 209.5 201.4 1.83 1.83 1.91 1.91 1.92 
100x100 215.2 ---- ---- ---- ---- 1.90 ---- ---- ---- ---- 

    
 
Table 3. Comparison of numerical results in the curved square channel for Nusselt number ratio 

Dean number Nuc/Nus 
Present study Hwang and Chao (1991) Present study Hwang and Chao (1991) 

0 0 1.00 1.00 
101.3 100 2.06 2.00 
214.6 223.6 2.79 2.95 

 
 

 

Flow and Isotherm Patterns 
 
The axial velocity contours are shown in Figs. 2 and 3 
in the eccentric curved annular square channel for the 
Case A and Case B, respectively. The annulus 
dimension ratio (a/b) is 5.5 and the grid is 100×100. It is 
seen that the maximum axial velocity occurs at the 
middle of line connecting the lower right corners and 
lower left corners of the channel and the core for Case 
A and  Case B, respectively, at the lowest Dean number 
(De=5.8) (Fig. 2a and 3a). It is observed that the 
maximum point of the axial velocity moves toward 
right-hand concave wall of the duct because of the 
centrifugal force generated by the curvature when the 

Dean number increases. Also, it is found that the 
maximum value of the axial velocity increases in the 
cross-section of the eccentric curved annular square 
duct as the Dean number increases. The rate of increase 
is higher in Case A than Case B. It is seen that when the 
Dean number increases, the axial velocity contours in 
the Case B differ from Case A. It is known that the 
effect of secondary flows increases at the region 
between the vertical symmetry line and right-hand 
concave wall of the duct because of the centrifugal force 
as the Dean number increases. So, it is considered that 
as the core is located in this region in Case B, the effect 
of the secondary flow is limited. 
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Figure 2. Axial velocity contours in eccentric curved annular square duct with ratio of a/b=5.5 for case A (x102): (a) De=5.8; (b) 
De=30.2; (c) De=56.9; (d) De=75.3; (e) De=102.9; (f) De=129.3; (g) De=156.6; (h) De=175.9; (i) De=207.1 
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Figure 3. Axial velocity contours in eccentric curved annular square duct with ratio of a/b=5.5 for case B (x102): (a) De=5.8; (b) 
De=29.9; (c) De=51.5; (d) De=76.6; (e) De=100.8; (f) De=129.1; (g) De=156.5; (h) De=175.9; (i) De=207.2 
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Figure 4. Temperature contours in eccentric curved annular square duct with ratio of a/b=5.5 for case A (Pr=0.7): (a) De=5.8;  (b) 
De=30.2; (c) De=56.9; (d) De=75.3; (e) De=102.9; (f) De=129.3; (g) De=156.6; (h) De=175.9; (i) De=207.1 
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The temperature contours are shown in Figs. 4 and 5 for 
eccentric curved annular square channel with a/b=5.5 
for Case A and Case B, respectively. Constant wall 
temperature boundary conditions are imposed at the 
duct and core walls. The temperature of the duct walls 
and the fluid is 300 K and the temperature of the core 
walls is 350 K. It is observed that the temperature 
gradient is high on the left and the upper side and right 
and upper side gap of the core for case A and Case B, 

respectively. It is found that the temperature contours 
are symmetrical and similar for Case A and Case B until 
De=30. After De=30, the temperatures contours become 
different from each others depending on velocity fields. 
It is seen that the hot fluid particles move towards left-
hand convex wall and the temperature contours become 
parallel in the upper region of horizontal symmetry line 
of the channel as the Dean number increases in Case B.
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Figure 5. Temperature contours in eccentric curved annular square duct with ratio of a/b=5.5 for case B (Pr=0.7): (a) De=5.8;  (b) 
De=29.9; (c) De=51.5; (d) De=76.6; (e) De=100.8; (f) De=129.1; (g) De=156.5; (h) De=175.9; (i) De=207.2 

 
 

The secondary flow streamlines are given in Figs. 6 and 
7 for Case A and Case B, respectively. The laminar flow 
in the eccentric curved annular channel is characterized 
by a secondary flow created by centrifugal force in the 
cross-section of the duct. The nature of this 
phenomenon depends on the Dean number which 
represents the ratio of the centrifugal force to the 
viscous force. While the fluid flows inside the channel, 
it is affected by centrifugal force generated by the 
curvature; therefore, the fluid particles on the center of 
the channel cross-section move towards right-hand 
concave wall of the duct. Due to the high pressure force 
occurring near the outer wall of the channel, the fluid 
particles in this section are peripherally enforced to 
move towards upper and lower duct walls. Since the 
streamwise velocity near the upper and lower wall of 
the channel is much smaller than that in the gap region 
because of the no-slip condition, the slower moving 
fluid particles near the upper and lower wall region have 
to move towards left hand convex wall to maintain the 
momentum balance between the centrifugal force and 
the pressure force. Therefore, it is seen that two main 
vortices occur in the duct cross-section. It is observed 
that one of them occurs on the upper region of the 
channel cross-section and it rotates in the counter-
clockwise direction and also surrounds peripherally to 
the core for Case A and Case B. In spite of this, it is 

realized that the other main vortex arises on the lower 
region of the duct cross-section and it rotates in the 
clockwise direction for both Case A and Case B. It is 
seen that the form of the secondary flow streamlines 
obtained in the Case A and Case B is similar to each 
other at the lowest Dean number (De=5.8) (Figs. 7a and 
6a). For high Dean number, it is realized that the 
secondary flows in Case A is more effective than Case 
B on the lower region of the duct. Contrary, the 
secondary flows in Case B is more effective than Case 
A on the upper region of the channel. It is determined 
that the main vortex settling on the lower region of the 
channel cross-section extends from the lower side to the 
upper side of the right-hand concave wall of the duct 
and the main vortex locating on the upper region is 
pushed toward the center of duct when De>129.3 in 
Case A. So, it can be said that the core position is 
remarkably important in curved annular ducts. It is 
observed that an additional vortex occur inside of the 
main vortex locating on the upper region of the duct 
cross-section for each case (Case A and Case B). It 
seems that this vortex rotates in the same direction with 
the main vortex and its form changes with increasing 
Dean number. As a result, it is found that the centrifugal 
and pressure forces and the core position are highly 
effective in the eccentric curved annular square ducts. 

 



 74

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y

 
0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

 
0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

 
0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

 
0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

 
         (a)                  (b)          (c)    (d)          (e) 

 

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y

 
                              (f)                     (g)              (h)    (i) 

Figure 6. Secondary flow streamlines in eccentric curved annular square duct with ratio of a/b=5.5 for case A (x10-5): (a) De=5.8; 
(b) De=30.2; (c) De=56.9; (d) De=75.3; (e) De=102.9; (f) De=129.3; (g) De=156.6; (h) De=175.9; (i) De=207.1 
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Figure 7. Secondary flow streamlines in eccentric curved annular square duct with ratio of a/b=5.5 for case B (x10-5): (a) De=5.8; 
(b) De=29.9; (c) De=51.5; (d) De=76.6; (e) De=100.8; (f) De=129.1; (g) De=156.5; (h) De=175.9; (i) De=207. 
 
 
The variations of the dimensionless axial velocity 
(w/wm) with the Dean number are demonstrated in Figs. 
8a and b for Case A and Case B with a/b=5.5 at y+=0.5 
horizontal symmetry line, respectively. It seems that 
when the Dean number increases the maximum value of 
w/wm decreases and shifts toward right-hand concave 
wall of the channel because of centrifugal force. It is 
realized that these variations occurring in the 
dimensionless axial velocity are formed by the 
secondary flow getting in the channel cross-section and 
the core position. 
 
The variations of dimensionless axial velocity (w/wm) 
with the Dean number are represented in Figs. 9a and b 

for Case A and Case B at x+=0.5 vertical symmetry line 
of the channel, respectively. It seems that the maximum 
value of w/wm decreases as the Dean number increases 
for both Case A and Case B. Also, it is found out that 
two different maximum point which one of them locates 
near the lower wall of the channel and the other settles 
near the upper wall of the duct occur in the duct cross-
section after De=102.9 in Case A. It is concluded that 
the flow field affected by the curvature and the core 
position highly affect the variation of dimensionless 
axial velocity at vertical symmetry line of the duct. 
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Figure 8. The effect of Dean number on dimensionless axial 
velocity distribution at y+=0.5 in eccentric curved annular 
square duct for a/b=5.5: (a) case A; (b) case B 
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Figure 9. The effect of Dean number on dimensionless axial 
velocity distribution at x+=0.5 in eccentric curved annular 
square duct for a/b=5.5: (a) case A; (b) case B 
 

Nusselt Number and Friction Factor  
 
The variations of the local Nusselt numbers computed 
peripherally with Eq. (20) on the duct walls for Case A 

and Case B with a/b=5.5 are shown in Figs. 10a and b, 
respectively. It is observed that the local Nusselt 
numbers are very low on the right-hand concave and 
lower walls of the duct in Case A and left hand convex 
and lower walls of the duct in Case B because of very 
low temperature gradient (see Figs. 4 and 5). However, 
the local Nusselt numbers are high on the left hand 
convex and upper walls of the channel in Case A and 
right hand and upper walls of the channel in Case B 
because of high temperature gradient (see Figs. 4 and 
5). It is seen that the local Nusselt numbers decrease on 
the upper wall of the channel and their maximum point 
moves toward left-hand convex wall of the duct when 
the Dean number increases for Case A. It seems that the 
maximum value of local Nusselt number decreases and 
the maximum point moves toward upper wall of the 
duct as Dean number increases for Case B.  It seems 
that the local Nusselt numbers increase up to De=102.9 
and decrease at De=207.1 on the right-hand concave 
wall of the duct for Case A. Also, the local Nusselt 
number increases at De=51.5 and then it decreases as 
the Dean number increases on the upper wall for Case 
B. It seems that the local Nusselt numbers increase until 
De=129.1 and then decrease on the left-hand convex 
wall of the channel (Fig. 10b). As a result, it is 
determined that the higher local Nusselt number occurs, 
the higher temperature gradient take places on the 
channel walls. Consequently, it is realized that the local 
Nusselt numbers change depending on the temperature 
field formed by the velocity field and affected by the 
secondary flows. 
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(b) 
Figure 10. The variation of local Nusselt number with Dean at 
the channel wall of eccentric curved annular square duct for 
a/b=5.5 and Pr=0.7: (a) case A; (b) case B 
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Figure 11. The variation of local Nusselt number with Dean at 
the core wall of eccentric curved annular square duct for 
a/b=5.5 and Pr=0.7: (a) case A; (b) case B 
 
The variations of the local Nusselt numbers calculated 
peripherally with Eq. (20) on the core walls for Case A 
and Case B with a/b=5.5 are presented in Figs. 11a and 
b, respectively. It is pointed out that the local Nusselt 
numbers have the maximum values on the corners of the 
core and decrease toward middle points of the core 
walls. The local Nusselt numbers obtained on the upper 
and left-hand walls are higher than that obtained on the 
lower and right-hand walls of the core in Case A 
because the high temperature gradient (see Fig. 4). 
However, the local Nusselt numbers occurring on the 
upper and right-hand walls are higher than that 
occurring on the lower and left-hand walls of the core in 
Case B because the low temperature gradient (see Fig. 
5). It is observed that on the lower wall of the core the 
local Nusselt numbers decrease (Fig. 11a) when the 
Dean number increases. It is found that the local Nusselt 
numbers increase on the right, left and upper walls of 
the core as the Dean number increases; however, the 
highest increasing occurs on the upper wall of the core 
in case A. (Fig. 11a). It is observed that the local 
Nusselt number increases when the Dean number 
increases on the all walls of the core in case B (Fig. 
11b) but the highest local Nusselt number is obtained on 
the right wall of the core. It seems that the local Nusselt 
numbers increase on the upper region and decrease on 
the lower region of the middle point of the left core wall 
when the Dean number increases and minimum value of 
the local Nusselt number occurs on this region (Fig. 
11b). As a result, it is concluded that the temperature 
gradient depending on temperature field directly affects 
the local Nusselt number. Also, it is point out that the 
velocity field and secondary flows also affect the local 
Nusselt number. 
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Figure 12. The variation of average Nusselt number with 
Dean number at core and channel wall of eccentric curved 
annular square duct for Pr=0.7: (a) case A; (b) case B 
 
The variations of the average Nusselt number computed 
by using Eqs.(21-22) on the walls of duct and core with 
the Dean number are shown in Figs. 12a and b for Case 
A and Case B, respectively. It is determined that for 
each annulus dimension ratio (a/b), the average Nusselt 
number increases when the Dean number increases on 
the core walls. Also, it is determined that the value of 
the average Nusselt number decreases when the annulus 
dimension ratio decreases on the core wall for each 
case. The rate of increase on the Nusselt number with 
Dean number on the core walls is higher in Case B than 
those in Case A. This results from the fact that the 
maximum velocity of the fluid moves towards right-
hand concave wall of the channel when Dean number 
increases (the core is placed into this maximum velocity 
field in Case B). So, the temperature gradient is higher 
in case B than that in Case A. It is found that the value 
of the average Nusselt number decreases when the 
annulus dimension ratio decreases on the channel wall. 
It seems that different variations occur in the average 
Nusselt number with Dean number for each case 
depending on the temperature field affected by velocity 
field on the channel wall. Because of breaking down of 
maximum flow field by the core, decreasing of Nusselt 
number with Dean number in case B is higher than 
those in Case A on the channel wall. 
 
The variations of the friction factor (fRe) with the Dean 
number are presented in Figs. 13a and b for the Case A 
and Case B, respectively. It is determined that the value 
of fRe increases when the Dean number increases. 
Besides this, it is seen that the value fRe increases when 
the values of the annulus dimension ratio decrease. In 
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Case B, as the core is placed near the right-hand 
concave wall- the maximum velocities move towards 
this region with increasing of Dean number- the flow 
field is broken down and the friction factor increases. 
For this reason as seen in Figs. 13 a and b, the friction 
factor (fRe) is higher in Case B than Case A by 
increasing of Dean number. It seems that at the high 
Dean number, the differences between values of fRe 
resulting from the ratio of a/b decrease and their values 
approach each other. After De>60, the effects of 
centrifugal and pressure forces on the flow field and 
heat transfer are more dominant than viscous forces. 
The effects of centrifugal and pressure forces on the 
flow field for De<60 is limited and for all a/b ratios this 
effect is almost the same. 
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Figure 13. The variation of friction factor with Dean number 
in eccentric curved annular square duct: (a) case A; (b) case B 
 
CONCLUSION 
 
Hydrodynamically and thermally fully developed, 
steady, incompressible laminar flow with constant 
physical properties in eccentric curved annular duct is 
numerically investigated under constant wall 
temperature boundary condition peripherally. Solutions 
are obtained for Dean number ranges from 2.8 to 207.2, 
Prandtl number 0.7. 
 
The laminar flow in the eccentric curved annular 
channel is characterized by a secondary flow created by 
centrifugal force in the cross-section of the duct for both 
Case A and Case B. The secondary flow resulting from 
centrifugal force highly affects the velocity and 
temperature fields. Because of the centrifugal force 
generated by the curvature, the maximum point of the 
axial velocity moves toward right-hand concave wall of 
the duct when the Dean number increases. The value of 

maximum velocity is higher in Case A than Case B 
because of the location of the core as Dean number 
increases. The curvature, annulus dimension ratio and 
core position affect heat transfer and friction factor. 
When the annulus dimension ratio increase the 
convective heat transfer is remarkably enhanced at both 
the inner and the outer walls. 
 
The temperature gradient depending on temperature and 
fields and secondary flows directly affects the local and 
average Nusselt number. The rate of increase on the 
Nusselt number with Dean number is higher in Case B 
than those in Case A on the core wall. However, the rate 
of decrease on the Nusselt number with Dean number is 
higher in case B than those in Case A on the channel 
wall. The average Nusselt number increases on both 
core and channel walls when the annulus dimension 
ratio increases for each case. The average Nusselt 
number is higher on the core wall than duct wall for 
each annulus dimension ratio. The average Nusselt 
number increases on the core walls as the Dean number 
increases. 
 
The friction factor (fRe) is higher in Case B than Case 
A by increasing of Dean number. After De>60, the 
effects of centrifugal and pressure forces on the flow 
field and heat transfer are more dominant than viscous 
forces. The effects of centrifugal and pressure forces on 
the flow field for De<60 is limited and for all a/b ratios 
this effect is almost the same. When the eccentric 
curved annular ducts are compared with each other the 
highest friction loses become in the ducts with lower 
annulus dimension ratio. 
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