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Abstract: Hydrodynamically and thermally fully developed, steady, incompressible laminar flow with constant
physical properties in eccentric curved annular square duct was investigated numerically. Inner and outer walls were
assumed to be isothermal, but at different temperatures. For the Cartesian coordinate system, the continuity,
momentum and energy equations included the curvature ratio were discretized by using control volume finite
difference method and the dependent variables in the governing equations were solved by ADI method uses the
TDMA. The Stone’s method was employed to solve the pressure-correction equation instead of ADI method. The
upwind scheme and the central difference scheme were employed to represent the convection and diffusion terms,
respectively. Solutions were obtained for air (Pr=0.7). Secondary flow streamlines, velocity and temperature fields,
velocity profiles, the friction coefficients and average and local Nusselt numbers were presented depending on Dean
number and annulus dimension ratio (a/b). It was observed that secondary flow resulting from centrifugal force highly
affects the velocity and temperature fields. It has seen that curvature, annulus dimension ratio and core position affect
heat transfer and friction factor. With the increasing annulus dimension ratio, it has been shown that the convective
heat transfer is remarkably enhanced at both the inner and the outer walls.
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KACIK MERKEZLi HALKA KESITLi EGRISEL KARE KANALLARDA ZORLANMIS
TASINIMLA ISI TRANSFERI

Ozet: Kagik merkezli halka kesite sahip egrisel kare kanallarda tam gelismis, siirekli, sikistirilamaz, sabit fiziksel
ozeliklere sahip laminer akis sayisal olarak incelenmistir. i¢ ve dis duvarlarda birbirinden farkli olmak kosuluyla sabit
ylizey sicakligt Ongoriilmiistiir. Egrilik oranmin da iginde bulundugu kartezyen koordinatlarda ifade edilmis
stireklilik, momentum ve enerji denklemleri sonlu fark kontrol hacim yontemiyle ayriklastirilmis ve denklemlerdeki
bagimli degiskenler {i¢ kdsegenli bant matris algoritmasini kullanan ADI metoduyla ¢6ziilmiistiir. Basing-dogrultman
denklemini ¢6zmek i¢in ADI metodu yerine Stone metodu kullanilmustir. Taginim ve yayinim terimleri sirasiyla
yukar1 fark ve merkezi fark yontemiyle ayriklastirilmistir. Coziimler hava icin elde edilmistir (Pr=0.7). ikincil akis
akim cizgileri, hiz ve sicaklik alanlari, hiz profilleri, siirtiinme faktorii ve ortalama ve yerel Nusselt sayilar1 Dean
sayisi ve halka kesit boyut oranina (a/b) bagli olarak gosterilmistir. Merkezka¢ kuvvetlerden kaynaklanan ikincil
akislarin hiz ve sicaklik alanlarmi 6nemli 6lgiide etkiledigi gozlenmistir. Egriligin, halka kesit boyut oranmnin ve
icteki elemanin konumunun 1s1 transferi ve siirtiinme faktoriini etkiledigi goriilmiistiir. Boyut oraninin artistyla, 1s1
transferinin i¢ ve dig duvarlarda 6nemli diizeyde arttig1 belirlenmistir.

Anahtar kelimeler: Laminer akis, Is1 transferi, Egrisel halka kesitli kanal, Kagik merkezli, Sabit yiizey sicaklig1.

NOMENCLATURE dT/dz Axial temperature gradient [K/m]
dT*/dz* Dimensionless axial temperature gradient
a Width or height of the outer wall [m] De Dean number, Eq. (19)
A Cross-sectional area of the annular duct Dy, Hydraulic diameter [m]
[m?] dw Duct wall
b Width or height of the inner wall [m] f Friction factor
cA Case A I Circumferential length of channel wall
cB Case B I’ Circumferential length of core wall
cwW Core wall Nu Nusselt number
dP/dz Axial pressure gradient [Pa/m] P Pressure [Pa]
dP*/dz* Dimensionless axial pressure gradient P* Dimensionless pressure, Eq. (6)
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Pr Prandtl number, Eq. (6)
Re Reynolds number, Eq. (18)
re Dimensionless radius of curvature, Eq. (6)

R Radius of curvature of a curved channel [m]
S Source term

T Temperature [K]

T Dimensionless temperature, Eq. (6)

u Velocity components in x-, y- and z-
directions [m/s]

us,v,w" Dimensionless velocity components in x-,
y- and z-directions, Eq. (6)
X, Y, Z Cartesian coordinates [m]
*,y",z" Dimensionless coordinates in x-, y- and z-

directions, Eq. (6)

Greek symbols
INTRODUCTION

Curved annular ducts have several applications in
engineering such as double-pipe heat exchangers, air
conditioning systems, cooling systems, gas turbines,
chemical mixing and drying machinery. The secondary
flows passages originate principally from the interaction
between the centrifugal force, the pressure gradient, and
the viscous forces. The flow in a curved annulus is
significantly different from that in a curved pipe
because of the presence of an inner pipe around which
an additional inner wall boundary layer has to be
established (Choi and Park, 1992). Kucuk and Asan
(2009) numerically investigated fully developed laminar
flow in a concentric curved annular duct under constant
wall temperature boundary condition. They determined
that viscous forces become more -effective upon
centrifugal forces while the annulus dimension ratio
decreases. However, they found out that when the Dean
number increases the centrifugal forces are more
dominant than viscous forces. Also, they showed that
the secondary flows resulting from centrifugal forces
affect the distribution of the velocity and temperature
fields. It is known that the Dean number and radius ratio
highly affect the friction factor and the Nusselt number
in curved circular annular ducts (Choi and Park, 1994;
Petrakis and Karahalios, 1999). Petrakis and Karahalios
(1997) presented numerical results for exponentially
decaying flow in a gently curved annular pipe. They
observed that the secondary flow exhibited two vortices
rotating in opposite directions. They also found that the
axial rigid core affected the flux through a cross section
of the pipe. Garimella et al. (1988) experimentally
studied forced convection heat transfer in coiled circular
annular ducts. They concluded that coiling enhanced the
heat transfer coefficients especially in the laminar
region.

As a consequence of literature review, it was seen that
no study on eccentric curved annular ducts with
rectangular cross section has been performed. The
purpose of this study is to present numerical results for
both hydrodynamically and thermally fully developed
Energy Equation

Thermal diffusivity [m?%/s]
Diffusion coefficient
Dynamic viscosity [kg/s m]
Kinematic viscosity [m?/s]
Density [kg/m’]
Dependent variable

SV kR MR

Subscripts

Value for a curved channel, cold
Hot

Inner

Local

Mean value

Outer

laminar flow in eccentric curved annular duct with
square cross-section. Constant wall temperature is
assumed at walls.

ANALYSIS

The physical configuration and the coordinate system of
the problem are shown in Fig. 1. All physical properties
of the fluid are assumed constant. The governing
equations for steady, hydrodynamically and thermally
fully developed, incompressible laminar flow in the
cross section in a curved duct can be written as (Dong
and Ebadian, 1992; Gyves and Irvine, 2000; Gyves,
1997; Kucuk, 2003; Asan and Kucuk, 2007; Kucuk and
Asan, 2009):
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It is assumed that the radius of curvature (R) is large
a
X
Flow

compared with the channel dimensions (R+x=R). The
model neglects all terms of the order 1/R and 1/R?, with
the exception of the centrifugal force term as given by
Gyves (1997), Gyves and Irvine (2000); Kucuk (2003),
Asan and Kucuk (2007), Kucuk and Asan (2009) and
Gyves et al.(1999).

ps

Figure 1. Problem geometry and coordinate system.

Equations (1-5) can be written as follows by using the
above assumptions and by substituting the
dimensionless variables given as below (Gyves and
Irvine, 2000).

NN SRRV S LY
D, Dy, D, v
4 v pv? /D
T+—T_T°, Pr=", r+:i
Ti _TO o Dh
Continuity Equation
out  ov*
ax+ + ay+ :0 (7)
Momentum Equations
Lout L out Pt w?
u a + v ay+ = a + + +
X X r
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The equations are subjected to the following boundary
conditions at the channel and core walls:

62T+
8y+2

+

ut =v* =w" =0 at the channel and core walls  (12)
T"=0 at the channel wall (13)
T =1 at the core wall (14)
For hydrodynamically fully developed flow, the

pressure gradient varies only in the cross-section of the
curved channel. Therefore, the dimensionless axial
pressure gradient remains constant at any axial position
(Dong and Ebadian, 1991; Gyves and Irvine, 2000;
Gyves et al. 1999; Dong and Ebadian, 1992). For
thermally fully developed flow under axially and
peripherally constant wall temperature boundary



condition the dimensionless axial temperature gradient
is taken as zero at any axial position (Incropera and
DeWitt, 1990; Cengel, 2003).

The equations (7-11) can be expressed in a generic form
for a property, ¢, as in the following:

ox™*
+ 65+ [F¢
For each conservation equation, the general dependent
variable, ¢, the diffusion coefficient, I'y and the source
term, S, are defined in Table 1 for each conservation
equation. The left hand side of general equation

contains convection term, while the right hand side
contains the diffusion and source terms.

olug), obrg)_ o
ox* oyt ox’
(15)

Table 1. Conservation equations variables

Equation ) T, Sy
Continuity 1 0 0
Momentum x u” 1 dPt w2
- +
dx*  r”
Momentum y v’ 1 dp+
dy*
Momentum z w' 1 dpP~*
dz*
-
Energy T 1/Pr . T+
dz*

The numerical solution procedure used in this study is
based on the SIMPLE algorithm given by Patankar
(1980). The equations are approximated with finite
difference equations by the control volume-based finite
difference method for the dependent variables, u’, v,
w' and T'. The convection and diffusion terms are
discretized by using the upwind scheme and the central
difference scheme, respectively. The finite difference
equations for the dependent variable of interest are
solved by ADI (Alternating-Direction Implicit) method
(Roache, 1982). This method uses the Tri-Diagonal
Matrix Algorithm, TDMA, making successive sweeps
over the computational field. Because the pressure-
correction equation is a Poisson equation, Alternating-
Direction Implicit solution of the difference equations is
replaced by the Stone’s solution method (Stone, 1968).
For given values of dimensionless radius of curvature,
r', the dimensionless axial pressure gradient, dP"/dz",
the dimensionless axial temperature gradient, dT"/dz"
and the Prandtl number, Pr, the distributions of
dimensionless velocity components, u’, v', w', the
dimensionless distributions of temperature, T', and
pressure, P, are initially guessed at each nodal location.
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Momentum equations for u" and v' are then solved to
get new velocity fields for u” and v". Generally, these
transverse velocity fields with the initial guessed
pressure field can not satisfy the continuity equation.
Thus, the pressure correction equation is solved and
then u" and v and P* are corrected accordingly. Then,
u” and v' are updated and momentum equation for w" is
solved based on the corrected transversal velocity and
pressure fields. A staggered grid system which is the
components of u' and v' are defined on the control
volume surfaces located at the midpoint between the
main nodal grid points and all other components of w',
T" and P’ are defined at the main grid points is
employed. Considering both computational cost and
convergence the relaxation factor is taken as 0.5, 0.5, 1,
0.7 and 0.45 foru”, v\, w', T" and P, respectively. To
check the validity of the numerical results, grid study is
performed and a uniform grid system of 100 x 100 is
chosen for all the cases in this study. The solutions were
assumed to converge when the following convergence
criteria was satisfied for every variable at every point in
the solution domain

¢new — ¢0Id

new

<107 (16)

+ o+ + +
where ¢ representsu’, v, w and T .

The average dimensionless axial velocity is calculated
as:

. ”w+dx+dy+

(17)
”dx*dy*
The Reynolds number is given as:
w,, D
Re=—""1 —w* (18)
v
The Dean number is defined as:
De = ¢ (19)
’r +
The local Nusselt numbers can be obtained from

gradients of temperatures at the channel walls with the
following relationships:

.
- or for horizontal —walls
ay+
Nu, = (20)
+
- or for vertical —walls
ox*t



The average Nusselt number on the channel and core
walls can be expressed as:

j Nu dI
NI e Y Q1)
j dl
1-2-3-4-1
j, o Nugdr’
Ny = =234 ' (22)
j dl
1-2'-3'-4'-1'
The friction factor is given by
dPy .
fRe=—2—2U2" 23)
Wi,

RESULTS AND DISCUSSION

In order to validate the present study, the results
obtained are compared with the literature. The
comparisons of the Dean number and friction factor
ratio results obtained by Gyves (1997), Dong and
Ebadian (1991), Cheng et al. (1976) and Komiyama et
al. (1984) are given in Table 2 depending on the
dimensionless axial pressure gradient. As can be seen in
Table 2, there is very close agreement with the data
available in the literature for Dean number and friction
factor. Also, it seems that the Nusselt number is close
agreement with the previous study by Hwang and Chao
(1991) (Table 3).

Table 2. Comparison of numerical results in the curved square channel for Dean number and friction factor ratio.

Dean number Friction factor ratio (fRe. / fRey)
dP*/dz | | grid |Present T.W | Cheng |Komiyama|Dong gnd Present T.W | Cheng |Komiyama|Dong ?nd
Study Gyves| etal. et al. Ebadian Study Gyves | etal. et al. Ebadian
(1997 (1976) | (1984) (1991) (1997) | (1976) | (1984) (1991)
30x30 | 14.0 | 140 | 13.9 14.0 14.1 1.01 1.01 1.01 1.00 1.00
-3900 1100 100x100| 13.9 | ---- o — o 1.00 o — — —
30x30 | 29.7 | 29.7 | 29.5 29.8 — 1.08 | 1.07 1.07 1.06 —
-9000 1100 100x100{ 30.0 | ---- -—-- — -—-- 1.07 — — — —
30x30 | 55.0 | 552 | 54.8 55.4 — 1.23 1.21 1.22 1.20 —
-19000 100 100x100| 55.5 | ---- -—-- — -—-- 1.20 — — — —
30x30 | 99.1 |100.6| 100.0 101.8 99.1 142 | 1.38 1.41 1.38 1.42
-395001100 100x100| 100.8 | ---- i — o 1.40 S S — —
40x40 | 151.3 [151.1| 151.1 150.5 — 1.65 | 1.63 1.63 1.63 —
-70000 1100 100x100| 151.6 | ---- e — o 1.61 S S — —
40x40 | 214.6 [210.9| 202.6 209.5 201.4 1.83 1.83 1.91 1.91 1.92
-110000| 100 100x100| 215.2 | ---- — — — 1.90 — — — —
Table 3. Comparison of numerical results in the curved square channel for Nusselt number ratio
Dean number Nu./Nug
Present study| Hwang and Chao (1991) Present study Hwang and Chao (1991)
0 0 1.00 1.00
101.3 100 2.06 2.00
214.6 223.6 2.79 2.95

Flow and Isotherm Patterns

The axial velocity contours are shown in Figs. 2 and 3
in the eccentric curved annular square channel for the
Case A and Case B, respectively. The annulus
dimension ratio (a/b) is 5.5 and the grid is 100x100. It is
seen that the maximum axial velocity occurs at the
middle of line connecting the lower right corners and
lower left corners of the channel and the core for Case
A and Case B, respectively, at the lowest Dean number
(De=5.8) (Fig. 2a and 3a). It is observed that the
maximum point of the axial velocity moves toward
right-hand concave wall of the duct because of the
centrifugal force generated by the curvature when the
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Dean number increases. Also, it is found that the
maximum value of the axial velocity increases in the
cross-section of the eccentric curved annular square
duct as the Dean number increases. The rate of increase
is higher in Case A than Case B. It is seen that when the
Dean number increases, the axial velocity contours in
the Case B differ from Case A. It is known that the
effect of secondary flows increases at the region
between the vertical symmetry line and right-hand
concave wall of the duct because of the centrifugal force
as the Dean number increases. So, it is considered that
as the core is located in this region in Case B, the effect
of the secondary flow is limited.
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Figure 2. Axial velocity contours in eccentric curved annular square duct with ratio of a/b=5.5 for case A (x10%): (a) De=5.8; (b)
De=30.2; (c) De=56.9; (d) De=75.3; (e) De=102.9; (f) De=129.3; (g) De=156.6; (h) De=175.9; (i) De=207.1
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Figure 3. Axial velocity contours in eccentric curved annular square duct with ratio of a/b=5.5 for case B (x10?): (a) De=5.8; (b)
De=29.9; (c) De=51.5; (d) De=76.6; (e) De=100.8; (f) De=129.1; (g) De=156.5; (h) De=175.9; (i) De=207.2
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Figure 4. Temperature contours in eccentric curved annular square duct with ratio of a/b=5.5 for case A (Pr=0.7): (a) De=5.8; (b)
De=30.2; (c) De=56.9; (d) De=75.3; (e) De=102.9; (f) De=129.3; (g) De=156.6; (h) De=175.9; (i) De=207.1
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The temperature contours are shown in Figs. 4 and 5 for
eccentric curved annular square channel with a/b=5.5
for Case A and Case B, respectively. Constant wall
temperature boundary conditions are imposed at the
duct and core walls. The temperature of the duct walls
and the fluid is 300 K and the temperature of the core
walls is 350 K. It is observed that the temperature
gradient is high on the left and the upper side and right
and upper side gap of the core for case A and Case B,

respectively. It is found that the temperature contours
are symmetrical and similar for Case A and Case B until
De=30. After De=30, the temperatures contours become
different from each others depending on velocity fields.
It is seen that the hot fluid particles move towards left-
hand convex wall and the temperature contours become
parallel in the upper region of horizontal symmetry line
of the channel as the Dean number increases in Case B.
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Figure 5. Temperature contours in eccentric curved annular square duct with ratio of a/b=5.5 for case B (Pr=0.7): (a) De=5.8; (b)
De=29.9; (c) De=51.5; (d) De=76.6; (¢) De=100.8; (f) De=129.1; (g) De=156.5; (h) De=175.9; (i) De=207.2

The secondary flow streamlines are given in Figs. 6 and
7 for Case A and Case B, respectively. The laminar flow
in the eccentric curved annular channel is characterized
by a secondary flow created by centrifugal force in the
cross-section of the duct. The nature of this
phenomenon depends on the Dean number which
represents the ratio of the centrifugal force to the
viscous force. While the fluid flows inside the channel,
it is affected by centrifugal force generated by the
curvature; therefore, the fluid particles on the center of
the channel cross-section move towards right-hand
concave wall of the duct. Due to the high pressure force
occurring near the outer wall of the channel, the fluid
particles in this section are peripherally enforced to
move towards upper and lower duct walls. Since the
streamwise velocity near the upper and lower wall of
the channel is much smaller than that in the gap region
because of the no-slip condition, the slower moving
fluid particles near the upper and lower wall region have
to move towards left hand convex wall to maintain the
momentum balance between the centrifugal force and
the pressure force. Therefore, it is seen that two main
vortices occur in the duct cross-section. It is observed
that one of them occurs on the upper region of the
channel cross-section and it rotates in the counter-
clockwise direction and also surrounds peripherally to
the core for Case A and Case B. In spite of this, it is
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realized that the other main vortex arises on the lower
region of the duct cross-section and it rotates in the
clockwise direction for both Case A and Case B. It is
seen that the form of the secondary flow streamlines
obtained in the Case A and Case B is similar to each
other at the lowest Dean number (De=5.8) (Figs. 7a and
6a). For high Dean number, it is realized that the
secondary flows in Case A is more effective than Case
B on the lower region of the duct. Contrary, the
secondary flows in Case B is more effective than Case
A on the upper region of the channel. It is determined
that the main vortex settling on the lower region of the
channel cross-section extends from the lower side to the
upper side of the right-hand concave wall of the duct
and the main vortex locating on the upper region is
pushed toward the center of duct when De>129.3 in
Case A. So, it can be said that the core position is
remarkably important in curved annular ducts. It is
observed that an additional vortex occur inside of the
main vortex locating on the upper region of the duct
cross-section for each case (Case A and Case B). It
seems that this vortex rotates in the same direction with
the main vortex and its form changes with increasing
Dean number. As a result, it is found that the centrifugal
and pressure forces and the core position are highly
effective in the eccentric curved annular square ducts.
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Figure 6. Secondary flow streamlines in eccentric curved annular square duct with ratio of a/b=5.5 for case A (x107): (a) De=5.8;
(b) De=30.2; (c) De=56.9; (d) De=75.3; (¢) De=102.9; (f) De=129.3; (g) De=156.6; (h) De=175.9; (i) De=207.1
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The variations of the dimensionless axial velocity
(W/wp,) with the Dean number are demonstrated in Figs.
8a and b for Case A and Case B with a/b=5.5 at y'=0.5
horizontal symmetry line, respectively. It seems that
when the Dean number increases the maximum value of
w/wy, decreases and shifts toward right-hand concave
wall of the channel because of centrifugal force. It is
realized that these variations occurring in the
dimensionless axial velocity are formed by the
secondary flow getting in the channel cross-section and
the core position.

The variations of dimensionless axial velocity (w/wy,)
with the Dean number are represented in Figs. 9a and b
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(h) i)
Figure 7. Secondary flow streamlines in eccentric curved annular square duct with ratio of a/b=5.5 for case B (x10™): (a) De=5.8;
(b) De=29.9; (c) De=51.5; (d) De=76.6; (e) De=100.8; (f) De=129.1; (g) De=156.5; (h) De=175.9; (i) De=207.

for Case A and Case B at x'=0.5 vertical symmetry line
of the channel, respectively. It seems that the maximum
value of w/w,, decreases as the Dean number increases
for both Case A and Case B. Also, it is found out that
two different maximum point which one of them locates
near the lower wall of the channel and the other settles
near the upper wall of the duct occur in the duct cross-
section after De=102.9 in Case A. It is concluded that
the flow field affected by the curvature and the core
position highly affect the variation of dimensionless
axial velocity at vertical symmetry line of the duct.
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Figure 8. The effect of Dean number on dimensionless axial
velocity distribution at y'=0.5 in eccentric curved annular
square duct for a/b=5.5: (a) case A; (b) case B
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Figure 9. The effect of Dean number on dimensionless axial
velocity distribution at x'=0.5 in eccentric curved annular
square duct for a/b=5.5: (a) case A; (b) case B

Nusselt Number and Friction Factor

The variations of the local Nusselt numbers computed
peripherally with Eq. (20) on the duct walls for Case A
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and Case B with a/b=5.5 are shown in Figs. 10a and b,
respectively. It is observed that the local Nusselt
numbers are very low on the right-hand concave and
lower walls of the duct in Case A and left hand convex
and lower walls of the duct in Case B because of very
low temperature gradient (see Figs. 4 and 5). However,
the local Nusselt numbers are high on the left hand
convex and upper walls of the channel in Case A and
right hand and upper walls of the channel in Case B
because of high temperature gradient (see Figs. 4 and
5). It is seen that the local Nusselt numbers decrease on
the upper wall of the channel and their maximum point
moves toward left-hand convex wall of the duct when
the Dean number increases for Case A. It seems that the
maximum value of local Nusselt number decreases and
the maximum point moves toward upper wall of the
duct as Dean number increases for Case B. It seems
that the local Nusselt numbers increase up to De=102.9
and decrease at De=207.1 on the right-hand concave
wall of the duct for Case A. Also, the local Nusselt
number increases at De=51.5 and then it decreases as
the Dean number increases on the upper wall for Case
B. It seems that the local Nusselt numbers increase until
De=129.1 and then decrease on the left-hand convex
wall of the channel (Fig. 10b). As a result, it is
determined that the higher local Nusselt number occurs,
the higher temperature gradient take places on the
channel walls. Consequently, it is realized that the local
Nusselt numbers change depending on the temperature
field formed by the velocity field and affected by the
secondary flows.

30

De=207.1
De=102.9 \ f [

- De=56.9

De=5.8 I\

25 4 ——

i
/! !
10 A il (!
i I
. i i
///
0 AL X
1 2 3 4 1
Circumferential Points
@
30
De=207.2
— — — —  De=156.4 =
25 | ————- De=129.1 / \
——————— De=100.8 \
— ===  De=76.6
—_— De=51.5
20 A
CEREE
10 4
54
0 U T u
1 2 3 4 1
Circumferential Points

Figure 10. The variation of local Nusselt number with Dean at
the channel wall of eccentric curved annular square duct for
a/b=5.5 and Pr=0.7: (a) case A; (b) case B
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Figure 11. The variation of local Nusselt number with Dean at
the core wall of eccentric curved annular square duct for
a/b=5.5 and Pr=0.7: (a) case A; (b) case B

The variations of the local Nusselt numbers calculated
peripherally with Eq. (20) on the core walls for Case A
and Case B with a/b=5.5 are presented in Figs. 11a and
b, respectively. It is pointed out that the local Nusselt
numbers have the maximum values on the corners of the
core and decrease toward middle points of the core
walls. The local Nusselt numbers obtained on the upper
and left-hand walls are higher than that obtained on the
lower and right-hand walls of the core in Case A
because the high temperature gradient (see Fig. 4).
However, the local Nusselt numbers occurring on the
upper and right-hand walls are higher than that
occurring on the lower and left-hand walls of the core in
Case B because the low temperature gradient (see Fig.
5). It is observed that on the lower wall of the core the
local Nusselt numbers decrease (Fig. 11a) when the
Dean number increases. It is found that the local Nusselt
numbers increase on the right, left and upper walls of
the core as the Dean number increases; however, the
highest increasing occurs on the upper wall of the core
in case A. (Fig. 1la). It is observed that the local
Nusselt number increases when the Dean number
increases on the all walls of the core in case B (Fig.
11b) but the highest local Nusselt number is obtained on
the right wall of the core. It seems that the local Nusselt
numbers increase on the upper region and decrease on
the lower region of the middle point of the left core wall
when the Dean number increases and minimum value of
the local Nusselt number occurs on this region (Fig.
11b). As a result, it is concluded that the temperature
gradient depending on temperature field directly affects
the local Nusselt number. Also, it is point out that the
velocity field and secondary flows also affect the local
Nusselt number.
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Figure 12. The variation of average Nusselt number with
Dean number at core and channel wall of eccentric curved

annular square duct for Pr=0.7: (a) case A; (b) case B

The variations of the average Nusselt number computed
by using Eqs.(21-22) on the walls of duct and core with
the Dean number are shown in Figs. 12a and b for Case
A and Case B, respectively. It is determined that for
each annulus dimension ratio (a/b), the average Nusselt
number increases when the Dean number increases on
the core walls. Also, it is determined that the value of
the average Nusselt number decreases when the annulus
dimension ratio decreases on the core wall for each
case. The rate of increase on the Nusselt number with
Dean number on the core walls is higher in Case B than
those in Case A. This results from the fact that the
maximum velocity of the fluid moves towards right-
hand concave wall of the channel when Dean number
increases (the core is placed into this maximum velocity
field in Case B). So, the temperature gradient is higher
in case B than that in Case A. It is found that the value
of the average Nusselt number decreases when the
annulus dimension ratio decreases on the channel wall.
It seems that different variations occur in the average
Nusselt number with Dean number for each case
depending on the temperature field affected by velocity
field on the channel wall. Because of breaking down of
maximum flow field by the core, decreasing of Nusselt
number with Dean number in case B is higher than
those in Case A on the channel wall.

The variations of the friction factor (fRe) with the Dean
number are presented in Figs. 13a and b for the Case A
and Case B, respectively. It is determined that the value
of fRe increases when the Dean number increases.
Besides this, it is seen that the value fRe increases when
the values of the annulus dimension ratio decrease. In



Case B, as the core is placed near the right-hand
concave wall- the maximum velocities move towards
this region with increasing of Dean number- the flow
field is broken down and the friction factor increases.
For this reason as seen in Figs. 13 a and b, the friction
factor (fRe) is higher in Case B than Case A by
increasing of Dean number. It seems that at the high
Dean number, the differences between values of fRe
resulting from the ratio of a/b decrease and their values
approach each other. After De>60, the effects of
centrifugal and pressure forces on the flow field and
heat transfer are more dominant than viscous forces.
The effects of centrifugal and pressure forces on the
flow field for De<60 is limited and for all a/b ratios this
effect is almost the same.
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Figure 13. The variation of friction factor with Dean number
in eccentric curved annular square duct: (a) case A; (b) case B

CONCLUSION

Hydrodynamically and thermally fully developed,
steady, incompressible laminar flow with constant
physical properties in eccentric curved annular duct is
numerically  investigated under constant wall
temperature boundary condition peripherally. Solutions
are obtained for Dean number ranges from 2.8 to 207.2,
Prandtl number 0.7.

The laminar flow in the eccentric curved annular
channel is characterized by a secondary flow created by
centrifugal force in the cross-section of the duct for both
Case A and Case B. The secondary flow resulting from
centrifugal force highly affects the velocity and
temperature fields. Because of the centrifugal force
generated by the curvature, the maximum point of the
axial velocity moves toward right-hand concave wall of
the duct when the Dean number increases. The value of
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maximum velocity is higher in Case A than Case B
because of the location of the core as Dean number
increases. The curvature, annulus dimension ratio and
core position affect heat transfer and friction factor.
When the annulus dimension ratio increase the
convective heat transfer is remarkably enhanced at both
the inner and the outer walls.

The temperature gradient depending on temperature and
fields and secondary flows directly affects the local and
average Nusselt number. The rate of increase on the
Nusselt number with Dean number is higher in Case B
than those in Case A on the core wall. However, the rate
of decrease on the Nusselt number with Dean number is
higher in case B than those in Case A on the channel
wall. The average Nusselt number increases on both
core and channel walls when the annulus dimension
ratio increases for each case. The average Nusselt
number is higher on the core wall than duct wall for
each annulus dimension ratio. The average Nusselt
number increases on the core walls as the Dean number
increases.

The friction factor (fRe) is higher in Case B than Case
A by increasing of Dean number. After De>60, the
effects of centrifugal and pressure forces on the flow
field and heat transfer are more dominant than viscous
forces. The effects of centrifugal and pressure forces on
the flow field for De<60 is limited and for all a/b ratios
this effect is almost the same. When the eccentric
curved annular ducts are compared with each other the
highest friction loses become in the ducts with lower
annulus dimension ratio.
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