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ABSTRACT

Let (Mn,∇, g) denote a statistical manifold equipped with a torsion-free linear connection ∇ and
a (pseudo-) Riemannian metric g. The tangent bundle TM of the statistical manifold (Mn,∇, g)
is endowed with a twisted Sasaki metric, denoted as G. The objective of this paper is to explore
conformal Ricci, conformal Yamabe, and conformal Ricci-Yamabe solitons on the tangent bundle
TM concerning the twisted Sasaki metric G.
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1. Introduction

The theory of statistical manifolds, also known as information geometry, originated in 1945 with the
conceptualization of a statistical model as a Riemannian manifold characterized by the Fisher information
matrix [25]. The field of information geometry subsequently evolved as an exploration of diverse geometric
structures inherent in statistical manifolds, representing models of probability distributions. The introduction
of the dual connection, alternatively termed the conjugate connection in affine geometry, was pioneered by
Amari in 1985 [6]. A statistical manifold is defined by a statistical model equipped with a Riemannian metric
and a pair of dual affine connections, encapsulating these geometric features.

In 1982, Hamilton [19] proposed the concept of Ricci flow and demonstrated its existence. This idea was
developed to address Thurston’s geometric conjecture, which posits that every closed three-manifold can
be geometrically decomposed. Additionally, Hamilton [19] classified all compact manifolds with a positive
curvature operator in dimension four. The Ricci flow equation is given by:

∂g

∂t
= −2S.

Here, S represents the Ricci tensor, g is the Riemannian metric, and t is time. Hamilton introduced the notion
of a Ricci soliton, which is a self-similar solution to the Ricci flow. A Ricci soliton [19, 20] is characterized by
moving only through a one-parameter family of diffeomorphism and scaling. The Ricci soliton equation is
given by:

LXg + 2S = 2λg.

Here LX is the Lie derivative, S is the Ricci tensor, g is the Riemannian metric, X is a vector field, and λ is a
scalar. The Ricci soliton is classified as shrinking, steady, or expanding based on whether λ is positive, zero, or
negative, respectively. In [17] the authors studied almost Ricci and Yamabe solitons on tangent bundle.

Fischer formulated the notion of conformal Ricci flow [16]. This variation of the classical Ricci flow equation
modifies the unit volume constraint to a scalar curvature constraint. The conformal Ricci flow on a smooth
closed connected oriented n-dimensional manifold M is defined by the equation [16]:

∂g

∂t
+ 2(S +

g

n
) = −pg.
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Here, p is a scalar non-dynamical field (time-dependent scalar field), r(g) is the scalar curvature of the
manifold, and n is the dimension of the manifold. The constraint r(g) = −1 is also imposed. In 2015, Basu
and Bhattacharyya [8] introduced the concept of the conformal Ricci soliton equation:

LXg + 2S =

[
2λ−

(
p+

2

n

)]
g (1.1)

Here, λ is a constant. This equation serves as a generalization of the Ricci soliton equation and also satisfies the
conformal Ricci flow equation.

The concept of the Yamabe flow was originally introduced by Hamilton [19] for the purpose of constructing
Yamabe metrics on compact Riemannian manifolds. On a Riemannian or pseudo-Riemannian manifold M , a
time-dependent metric g(., t) evolves according to the Yamabe flow if it satisfies the equation:

∂g

∂t
= −rg, g(0) = g0,

where r represents the scalar curvature of the manifold M . A Yamabe soliton [7], corresponding to a self-similar
solution of the Yamabe flow, is defined on a Riemannian or pseudo-Riemannian manifold (M, g) as

1

2
LXg = (r − λ)g. (1.2)

Using (1.1) and (1.2), authors defined the concept of a conformal Yamabe soliton in [26]: A Riemannian or
pseudo-Riemannian manifold (M, g) of dimension n is said to admit a conformal Yamabe soliton if

LXg +
1

2

[
2λ− 2r −

(
p+

2

n

)]
g = 0.

The conformal Yamabe soliton is categorized as expanding, steady, or shrinking based on whether λ is positive,
zero, or negative, respectively.

In [18], Guler and Crasmareanu introduced a novel geometric flow called the Ricci–Yamabe flow, which is
a scalar combination of Ricci and Yamabe flows. This flow, denoted as Ricci–Yamabe flow of the type (α, β), is
characterized by the parameters α and β. Specifically, the (α, β)-Ricci–Yamabe flow is defined as follows:

• Ricci flow [20] is represented when α = 1 and β = 0.
• Yamabe flow [19] is captured when α = 0 and β = 1.
• Einstein flow [14] is identified when α = 1 and β = −1.

A soliton to the Ricci–Yamabe flow is termed a Ricci–Yamabe soliton, provided it evolves solely through a
one-parameter group of diffeomorphism and scaling. For an n-dimensional Riemannian manifold (M, g) with
n > 2, the Riemannian metric g is considered to admit an (α, β)-Ricci–Yamabe soliton, or simply a Ricci–Yamabe
soliton denoted as (g,X,Λ, α, β), if it satisfies the equation:

LXg + 2αS = [2Λ− βr] g, (1.3)

where Λ, α, β are real scalars. Utilizing equations (1.3) and (1.1), the concept of a conformal Ricci–Yamabe
soliton is introduced as follows [27]: An n-dimensional Riemannian manifold (M, g) with n > 2 is considered
to possess a conformal Ricci–Yamabe soliton if it satisfies the equation:

LXg + 2αS +

[
2Λ− βr −

(
p+

2

n

)]
g.

The conformal Ricci–Yamabe soliton is categorized as expanding, steady, or shrinking based on whether Λ is
positive, zero, or negative, respectively.

In addition to these, many interesting studies on soliton structures in tangent bundles have been conducted
recently, and the different properties of soliton structures have been studied according to various metrics. For
example (See [2, 3, 11, 23])

The paper endeavors to provide characterizations of conformal Ricci, conformal Yamabe, and conformal
Ricci-Yamabe solitons on the tangent bundle TM over on statistical manifold according to the twisted Sasaki
metric G.

Throughout this paper, all manifolds, tensor fields and connections are always assumed to be differentiable
of class C∞.
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2. The twisted Sasaki metric on the tangent bundle over a statistical manifold

Statistical manifolds, with their broad applications in fields such as information science, information
theory, neural networks, and statistical mechanics, represent a geometric model where points correspond to
probability distributions [4, 5, 9, 12, 13, 21, 24, 29]. These manifolds are defined by a statistical structure
(∇, g) on a differentiable manifold M , where g denotes a (pseudo-) Riemannian metric, and ∇ represents a
torsion-free linear connection satisfying the property ∇g is totally symmetric. This structure, termed a statistical
manifold, extends the concept of (pseudo-) Riemannian manifolds, providing a broader geometric framework
for modeling probabilistic phenomena.

Given an arbitrary linear connection ∇ on a (pseudo-) Riemannian manifold (M, g), a (0, 3)-tensor field F is
introduced as

F (X,Y, Z) := (∇Zg)(X,Y ).

This tensor field F is denoted as the cubic form linked with the pair (∇, g) [15]. If we have a symmetric bilinear
form ρ defined on a manifold M , we term the pair (∇, ρ) as a Codazzi pair if the covariant derivative ∇ρ is
(totally) symmetric concerning vector fields X,Y, Z [28]:

(∇Zρ)(X,Y ) = (∇Xρ)(Z, Y ) = (∇Y ρ)(Z,X).

Expressed in terms of the cubic form F , this condition can be rephrased as:

F (X,Y, Z) = F (Z, Y,X) = F (Z,X, Y ),

which implies that the condition for (∇, g) to form a Codazzi pair is equivalent to F being entirely symmetric
with respect to all of its indices.

Consider an n-dimensional statistical manifold denoted as (Mn,∇, g). In this exposition, we employ the
C∞-category to thoroughly explicate various concepts, focusing on connected manifolds with a dimension
of n > 1. To facilitate our analysis, we introduce the tangent bundle of Mn, denoted as TM , with the natural
projection defined as π : TM → Mn . When utilizing a system of local coordinates

(
U, xi

)
in Mn, it induces a

corresponding system of local coordinates on TM , denoted as
(
π−1 (U) , xi, xi = ui

)
, where i ranges from n+ 1

to 2n. Here,
(
ui
)

represents the Cartesian coordinates within each tangent space TpM for all p ∈ U , noting that
p is any arbitrary point within U .

Consider the linear connection ∇ on the statistical manifold (Mn,∇, g). The tangent space of the tangent
bundle TM can be decomposed into two distributions: the horizontal distribution determined by ∇ and the
vertical distribution defined by ker π∗. In this context, the local frame is given by

Ei =
∂

∂xi
− usΓh

is

∂

∂uh
; i = 1, ..., n,

and
Ei =

∂

∂ui
; i = n+ 1, ..., 2n.

Here, Γh
is represents the Christoffel symbols of the linear connection ∇. The local frame {Eβ} = (Ei, Ei) is

commonly referred to as the adapted frame. Let A = Ai ∂
∂xi be a vector field. We can obtain the horizontal and

vertical lifts of A with respect to the adapted frame as follows [31]:

HA = AiEi,
V A = AiEi.

Within TM , the local 1−form system
(
dxi, δui

)
forms the dual frame of the adapted frame {Eβ}, where:

δui = H
(
dxi

)
= dui + usΓi

hsdx
h.

Lifting from the Riemannian manifold (Mn, g) to its tangent bundle TM , various Riemannian or pseudo-
Riemannian metrics have been formulated. These metrics, also known as g-natural metrics, are created by
naturally extending the Riemannian metric g to the tangent bundle TM [10]. In [1], the authors developed
a comprehensive family of Riemannian g-natural metrics based on six arbitrary functions that define the
norm of a vector u ∈ TM . The exploration of natural metrics on tangent bundles arises from the imperative
to comprehend the geometric and physical properties of entities in motion on a Riemannian manifold. These
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metrics offer a means to extend the geometric attributes of the base manifold to the tangent bundle, proving
indispensable in diverse fields such as physics, differential geometry, and mechanics. Now, let us introduce the
twisted Sasaki metric on the tangent bundle of a statistical manifold.

Definition 2.1. [22] Let (Mn,∇, g) be a statistical manifold equipped with a torsion-free linear connection ∇
and a (pseudo-) Riemannian metric g and a, b ∈ R. On the tangent bundle TM , the twisted Sasaki metric G is
defined by

i) G(HX,H Y ) = ag(X,Y ),

ii) G(V X,H Y ) = 0,

iii) G(V X,V Y ) = bg(X,Y )

for all vector fields X,Y on (Mn,∇, g).

For the linear connection ∇̃ of the twisted Sasaki metric G, we give the following proposition.

Proposition 2.1. [22] Let (Mn,∇, g) be a statistical manifold equipped with a torsion-free linear connection ∇ and a
(pseudo-) Riemannian metric g and (TM,G) be its tangent bundle with the twisted Sasaki metric G. The local expression
for the Levi-Civita connection ∇̃ associated with the twisted Sasaki metric G on TM can be stated as follows:

∇̃Ei
Ej =

(
Γk
ij

)
Ek +

(
1

2
ysR k

jis

)
Ek̄,

∇̃Ei
Ej̄ =

(
b

2α
ysR k

sji

)
Ek +

(
Γk
ij +

1

2
gkm (∇igmj)

)
Ek̄,

∇̃Eı̄
Ej =

(
b

2α
ysR k

sij

)
Ek +

(
1

2
gkm (∇jgmi)

)
Ek̄,

∇̃Eı̄
Ej̄ =

(
− b

2a
gkh (∇hgij)

)
Ek,

where R is the Riemannian curvature tensor of ∇.

Next, we give the Ricci curvature tensor and scalar curvature.

Proposition 2.2. [22] Let (Mn,∇, g) be a statistical manifold equipped with a torsion-free linear connection ∇ and
a (pseudo-) Riemannian metric g and (TM,G) be its tangent bundle with the twisted Sasaki metric G. Then the
corresponding Ricci curvature tensor is given locally by (R̃IJ = R̃ M

MIJ is Ricci curvature tensor.):

R̃ij = Rij +
b

4a
ysyp

[
R h

misR
m

phj +R h
msiR

m
jhp

]
− 1

4

(
∇ig

ml
)
(∇jgml)

−1

2
gml (∇i∇jgml) ,

R̃ij =
b

2a
ys∇mR m

sij +
b

4a
ys

[
R h

sij A
m
hm +R h

jsmAm
ih

]
,

R̃ij̄ =
b

2a
ys∇mR m

sji +
b

4a
ys

[
R h

sji A
m
hm +R h

ismAm
jh

]
,

R̃ij̄ =
b

4a

[
2Am

hiA
h
mj −Am

hmAh
ij

]
− b

2a

(
∇mAm

ij

)
− b2

4a2
ysypR m

sih R h
pjm,

where R is Riemannian curvature tensor of the linear connection ∇ and Ak
ij = gkl (∇igjl) .

Proposition 2.3. [22] Let (Mn,∇, g) be a statistical manifold equipped with a torsion-free linear connection ∇ and
a (pseudo-) Riemannian metric g and (TM,G) be its tangent bundle with the twisted Sasaki metric G. Then the
corresponding scalar curvature r̃ is locally given by

r̃ =
1

a
r +

b

4a2
∥R∥+ 1

4a
gij

[
Am

hiA
h
mj −Am

hmAh
ij

]
− 1

2a
gij

[
∇iA

m
jm +∇mAm

ij

]
.

where Ak
ij = gkl (∇igjl) and r,R are the scalar curvature and Riemannian curvature tensors of the torsion-free linear

connection ∇, respectively. Also in here ∥R∥ = ysypRsilhR
ilh

p .
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3. Main results

Let LṼ denotes the Lie derivative with respect to the vector field Ṽ . A vector field Ṽ with components (vh, vh)
is considered fibre-preserving if and only if vh depends solely on the variables (xh). Consequently, each fibre-
preserving vector field Ṽ on TM induces a vector field V = vh ∂

∂xh on M. We will start by stating the following
lemma, which will be used later.

Lemma 3.1. [30] Consider a statistical manifold (Mn, g,∇) equipped with a torsion-free linear connection ∇ and a
(pseudo-) Riemannian metric g and its tangent bundle TM . Let Ṽ be a fibre-preserving vector field on TM with the
components (vh, vh̄). Then, the Lie derivates of the adapted frame and the dual basis are given as follows:

i) LṼ Ei = −(Eiv
h)Eh +

[
ybvcR h

icb − vb̄Γ̃h
bi − (Eiv

h̄)
]
Eh̄,

ii) LṼ Ei =
[
vbΓ̃h

bi − (Eiv
h̄)
]
Eh̄,

iii) LṼ dx
i = (Ehv

i)dxh,

iv) LṼ δy
i = −

[
ycvbR i

bhc + vb̄Γ̃i
bh + (Ehv

i)
]
dxh −

[
vbΓ̃i

bh − (Eh̄v
i)
]
δyh.

Through the Lemma given above, we will give the following lemma that we will use later.

Lemma 3.2. [22] In the context of a statistical manifold (Mn, g,∇) and its tangent bundle (TM,G) equipped with the
twisted Sasaki metric G, the Lie derivative of twisted Sasaki metric G with respect to the fibre-preserving vector field X̃ is
given as follows:

LṼ G = a
[
LV gij + 2

(
Eiv

h
)
ghj

]
dxidxj

−2bghj

[
ysvbR h

bis + vb̄Γh
bi +

(
Eiv

h̄
)]

dxiδyj

+b
[
LV gij − 2vbΓh

bighj + 2ghj

(
Eiv

h̄
)]

δyiδyj

where LV gij denotes the components of the Lie derivative of LV g and Ṽ = vhEh + vh̄Eh̄. V = vh ∂
∂xh is a vector field on

Mn.

3.1. Conformal Ricci soliton on the tangent bundle over statistical manifold according to the twisted Sasaki metric

Consider a smooth manifold Mn, ( n ≥ 2). A conformal Ricci soliton on Mn is a triple (g, V, λ) that satisfies
the equation:

LV g + 2R =

[
2λ−

(
p+

2

n

)]
g,

where R is the Ricci tensor, p is a scalar non-dynamical field(time dependent scalar field), λ is constant, n is the
dimension of the manifold. The conformal Ricci soliton is categorized as either shrinking, steady, or expanding
based on whether λ is positive, zero, or negative, respectively. A conformal Ricci soliton on the tangent bundle
TM with the twisted Sasaki metric G over a statistical manifold (Mn, g,∇) is defined as [8]:

LṼ G+ 2R̃ =

[
2λ−

(
p+

1

n

)]
G, (3.1)

where R̃ is the Ricci tensor of G, Ṽ is a vector field on TM and λ is a smooth function on TM .

Theorem 3.1. In the context of a statistical manifold (Mn, g,∇) and its tangent bundle (TM,G) equipped with the
twisted Sasaki metric G, the quadruple (TM,G,C V, λ) is a conformal Ricci soliton if and only if the following conditions
are satisfied:

i) λ =
1

2n
gij(LV gij) +

1

n
(Eiv

i)− 1

4na
gij

(
∇ig

ml
)
(∇jgml)

− 1

2na
gijgml (∇i∇jgml)−

b

2na2
∥R∥+ r

na
+

p

2
+

1

2n
,

ii)
1

a
ghm (∇mRsijh) +

1

2a

(
∇lg

ml
)
R h

jis = 2ghj
[
vlR h

lis +∇i

(
∇sv

h
)]

iii) r =
b

4a
∥R∥ − n− 3

4a
gij

(
∇mgml

)
(∇iglj) .
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Here, the potential vector field CV =
(
vh, ys∇sv

h
)

is the complete lift of a vector field V = vh ∂
∂xh on Mn to TM and

Ak
ij = gkl (∇igjl) on Mn.

Proof. Considering equation (3.1), we derive:

LṼ Gij + 2R̃ij =

[
2λ−

(
p+

1

n

)]
Gij

which leads to:[
2λ−

(
p+

1

n

)]
agij = a

[
LV gij + 2

(
Eiv

h
)
ghj

]
+

b

2a
ysyp

[
R h

misR
m

phj +R h
msiR

m
jhp

]
−1

2

(
∇ig

ml
)
(∇jgml)− gml (∇i∇jgml) + 2Rij .

By contracting with gij in the last equation, we have the following equation:

2naλ− pna− 2a = agijLV gij + 2a
(
Eiv

i
)
− 1

2
gij

(
∇ig

ml
)
(∇jgml)

−gijgml (∇i∇jgml) + 2r − b

a
∥R∥ .

Multiplying both sides by 1
2na in the above equation, we derive:

λ =
1

2n
gij(LV gij) +

1

n
(Eiv

i)− 1

4na
gij

(
∇ig

ml
)
(∇jgml)

− 1

2na
gijgml (∇i∇jgml)−

b

2na2
∥R∥+ r

na
+

p

2
+

1

2n
. (3.2)

Similarly, from equation (3.1), we also infer:

LX̃Gij + 2R̃ij =

[
2λ−

(
p+

1

n

)]
Gij

0 = −2ghj

[
ysvbR h

bis + vbΓh
bi +

(
Eiv

h
)]

+
1

a
ys∇mR m

sij

+
1

2a
ys

[
R h

sijA
m
hm +R h

jsmAm
ih

]
.

If the equation vh = ys∇sv
h is used in this last equation, we get

1

a
ghm (∇mRsijh) +

1

2a

(
∇lg

ml
)
R h

jis = 2ghj
[
vlR h

lis +∇i

(
∇sv

h
)]

.

Again, from equation (3.1) we obtain

LṼ Gij + 2R̃ij =

[
2λ−

(
p+

1

n

)]
Gij ,

leading to: [
2λ−

(
p+

1

n

)]
bgij = b

[
LV gij − 2vlΓh

lighj + 2ghj
(
∂ı̄
(
ys∇sv

h
))]

− b

a

(
∇mAm

ij

)
+

b

2a

[
2Am

hiA
h
mj −Am

hmAh
ij

]
− b2

2a2
ysypR m

sihR
h

pjm.

Contracting with 1
2ng

ij in the above equation, we arrive to

λ =
1

2n
gijLV gij −

1

n
vlΓi

li +
1

n

(
∇iv

i
)
+

1

4na
gij

[
2Am

hiA
h
mj −Am

hmAh
ij

]
− 1

2na
gij

(
∇mAm

ij

)
− b

4na2
∥R∥+ p

2
+

1

2n
. (3.3)

From equations of (3.2) and (3.3) we have

r =
b

4a
∥R∥ − n− 3

4a
gij

(
∇mgml

)
(∇iglj) .

Thus, the proof is concluded.
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3.2. Conformal Yamabe soliton on tangent bundle over statistical manifold according to the twisted Sasaki metric

A Riemannian or pseudo-Riemannian manifold (M, g) of dimension n is considered to admit a conformal
Yamabe soliton if it satisfies the equation:

LV g +

[
2λ− 2r −

(
p+

2

n

)]
g = 0,

where LV g represents the Lie derivative of the metric g along the vector field V, r is the scalar curvature and λ
is a constant, p is a scalar non-dynamical field (time dependent scalar field), n is the dimension of the manifold.
The conformal Yamabe soliton is classified as shrinking, steady, or expanding, depending on whether λ is
positive, zero, or negative, respectively. Furthermore, the conformal Yamabe soliton defined on the tangent
bundle TM with the twisted Sasaki metric G over a statistical manifold (Mn, g,∇) can be expressed as:

LṼ G+

[
2λ− 2r̃ −

(
p+

1

n

)]
G = 0. (3.4)

Here, r̃ denotes the scalar curvature of G, Ṽ is a vector field on TM and λ is a smooth function defined on TM .

Theorem 3.2. In the context of a statistical manifold (Mn, g,∇) and its tangent bundle (TM,G) equipped with the
twisted Sasaki metric G, the quadruple (TM,G,C V, λ) is a conformal Yamabe soliton if and only if the following
conditions are satisfied:

i) λ =
−1

2n
gij(LV gij)−

1

n
(Eiv

i) + r̃ +
p

2
+

1

n
,

ii) ∇i

(
∇sv

i
)
= vlRls.

Here, the potential vector field CV =
(
vh, ys∇sv

h
)

is the complete lift of a vector field V = vh ∂
∂xh on Mn to TM

and Ak
ij = gkl (∇igjl) on Mn.

Proof. From equation (3.4), we have

LX̃Gij +

[
2λ− 2r̃ −

(
p+

1

n

)]
Gij = 0,

which yields:

LV gij + 2
(
Eiv

h
)
ghj +

[
2λ− 2r̃ −

(
p+

1

n

)]
gij = 0.

Transvecting with gij in the last equation, we obtain:

λ =
−1

2n
gij(LV gij)−

1

n
(Eiv

i) + r̃ +
p

2
+

1

2n
.

Additionally, from equation (3.4), we have:

LX̃Gij +

[
2λ− 2r̃ −

(
p+

1

n

)]
Gij = 0,

which implies:
ghj

[
ysvlR h

lis + Γh
li

(
ys∇sv

l
)
+
(
∂i − ypΓl

pi∂l
) (

ys∇sv
h
)]

= 0

ysghj
[
vlR h

lis +∇i

(
∇sv

h
)]

= 0.

Contracting with gij in the last equation, we have:

∇i

(
∇sv

i
)
= vlRls.

Thus, the proof is complete.
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3.3. Conformal Ricci-Yamabe soliton on tangent bundle over statistical manifold according to the twisted Sasaki metric

Güler and Crasmareanu [18] established the notion of Ricci-Yamabe flow on a Riemannian manifold
(Mn, g) , ( n ≥ 2), by investigating a scalar combination of the Ricci flow and Yamabe flow represented as:

∂g

∂t
(t) + 2αR(t) + βr(t)g(t) = 0.

Here, g denotes a Riemannian metric, R is the Ricci tensor, r is the scalar curvature tensor and α, β ∈ R.
A Riemannian or pseudo-Riemannian manifold (M, g) of dimension n is is deemed to exhibit a conformal

Ricci-Yamabe soliton if:

LV g + 2αR+

[
2λ− βr −

(
p+

2

n

)]
g = 0,

where r denotes the scalar curvature, R is Ricci tensor and λ, α, β are real scalars, p is a scalar non-dynamical
field (time dependent scalar field) and n signifies the dimension of the manifold. The conformal Ricci-Yamabe
soliton is is classified as shrinking, steady, or expanding based on the sign of λ (positive, zero, or negative,
respectively). The conformal Ricci-Yamabe soliton is said to be gradient if the soliton vector field Ṽ is the
gradient of a C∞ function f on M , then the equation (3.5) is called conformal gradient Ricci-Yamabe soliton.
The conformal Yamabe soliton on the tangent bundle TM with the twisted Sasaki metric G over a statistical
manifold (Mn, g,∇) is expressed as:

LṼ G+ 2αR̃+

[
2λ− βr̃ −

(
p+

1

n

)]
G = 0 (3.5)

where R̃ is the Ricci tensor, r̃ is the scalar curvature of G, Ṽ is a vector field on TM and λ is a smooth function
on TM .

Theorem 3.3. In the context of a statistical manifold (Mn, g,∇) and its tangent bundle (TM,G) equipped with the
twisted Sasaki metric G, the quadruple (TM,G,C V, λ) is a conformal Ricci-Yamabe soliton if and only if the following
conditions are satisfied:

i) λ = − 1

2n
gijLV gij −

1

n

(
Eiv

i
)
+

β

2
r̃ +

p

2
+

1

2n
,

ii) ∇i

(
∇sv

i
)
− vlRls =

α

2a
gmhgij (∇hRsijm) ,

iii) r =
1

4

(
∇jgml

)
(∇jgml) +

1

2
gml∇j (∇jgml)−

b

2a
∥R∥ .

Here, the potential vector field CV =
(
vh, ys∇sv

h
)

is the complete lift of a vector field V = vh ∂
∂xh on Mn to TM and

Ak
ij = gkl (∇igjl) on Mn.

Proof. From equation (3.5), we deduce:

LṼ Gij + 2αR̃ij +

[
2λ− βr̃ −

(
p+

1

n

)]
Gij = 0

which leads to:

0 = a
[
LV gij + 2

(
Eiv

h
)
ghj

]
+ 2α

[
Rij +

b

4α
ysyp

(
R h

misR
m

phj +R h
msiR

m
jhp

)
−1

4

(
∇ig

ml
)
(∇jgml)−

1

2
gml (∇i∇jgml)

]
+

[
2λ− βr̃ −

(
p+

1

n

)]
agij .

Contracting with 1
2nag

ij in the last equation, we get

λ = − 1

2n
gijLV gij −

1

n

(
Eiv

i
)
− α

na
r +

α

4na

(
∇jgml

)
(∇jgml)

− bα

2na2
∥R∥+ α

2na
gml

(
∇j (∇jgml)

)
+

β

2
r̃ +

p

2
+

1

2n
.
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Also from equation (3.5), we have

LṼ Gij + 2αR̃ij +

[
2λ− βr̃ −

(
p+

1

n

)]
Gij = 0

from which we can express:

0 =
α

a
ys∇mR m

sij − 2ghj

[
ysvlR h

lis + vlΓh
li +

(
Eiv

h
)]

+
α

2a
ys

[
R h

sijA
m
hm +R h

jsmAm
ih

]
. (3.6)

If we use the equality vh = ys∇sv
h, we infer:

0 = −2ghj
(
vlR h

lis +∇i

(
∇sv

h
))

+
α

a
∇mR m

sij +
α

2a

(
R h

sijA
m
hm +R h

jsmAm
ih

)
.

This is equivalent to the equation:

0 = −2ghj
(
vlR h

lis +∇i

(
∇sv

h
))

+
α

a
gmh (∇hRsijm) +

α

2a

(
∇lg

ml
)
Rjism.

Contracting with gij in the last equation, we get

∇i

(
∇sv

i
)
− vlRls =

α

2a
gmhgij (∇hRsijm) .

Similarly, from equation (3.5), we obtain

LX̃Gij + 2αR̃ij +

[
2λ− βr̃ −

(
p+

1

n

)]
Gij = 0

from which we obtain [
LV gij − 2vlΓh

lighj + 2ghj(Eiv
h)
]
+

[
2λ− βr̃ −

(
p+

1

n

)]
gij = 0.

Contracting with 1
2ng

ij in the last equation, we deduce:

λ = − 1

2n
gijLV gij +

1

n
vlΓi

li −
1

n

(
Eiv

i
)
+

β

2
r̃ +

p

2
+

1

2n
.

If we use the equality vh = ys∇sv
h, we get:

λ = − 1

2n
gijLV gij −

1

n

(
Eiv

i
)
+

β

2
r̃ +

p

2
+

1

2n
(3.7)

With help of (3.6) and (3.7), we have:

r =
1

4

(
∇jgml

)
(∇jgml) +

1

2
gml∇j (∇jgml)−

b

2a
∥R∥ .

So the proof is completed.
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