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Abstract: The homotopy analysis method (HAM) is used to analyze the thermal performance of annular fins with 
temperature-dependent thermal conductivity. Since the HAM algorithm contains a parameter that controls the 
convergence and accuracy of the solution, its results can be verified internally by calculating the residual error. The 
HAM solution appears in terms of algebraic expressions which are not only easy to compute but also give highly 
accurate results covering a wide range of values of the parameters rather than the small values dictated by the 
perturbation solution. In this work, the fin efficiency of nonlinear annular fins is obtained as a function of thermo-
geometric fin parameter, thermal conductivity parameter and radii ratio. The data from the present solutions is 
correlated for suitable ranges of problem parameters. The resulting correlation equations can assist thermal design 
engineers for designing of annular fins with temperature-dependent thermal conductivity.  
Keywords: Annular fin, Efficiency, Homotopy analysis method. 
 

ISIL İLETKENLİĞİ SICAKLIKLA DEĞİŞEN DAİRESEL KANATLARIN 
PERFORMANSININ HOMOTOPİ ANALİZ YÖNTEMİ İLE İNCELENMESİ 

 
Özet: Bu çalışmada, ısıl iletkenliği sıcaklıkla değişen dairesel kanatların ısıl performansını incelemek için homotopi 
analiz yöntemi kullanılmıştır. Yöntemin algoritması, çözümün doğruluğu ve yakınsaklığını kontrol eden bir parametre 
içerdiğinden, sonuçlar hatanın çözüm anında hesaplanmasıyla doğrulanabilir. HAM, pertürbasyon yöntemlerinin 
aksine çok geniş problem parametreleri aralıkları için yakınsak çözümler vermektedir. Bu çalışmada dairesel 
kanatların verimleri üç problem parametresi cinsinden elde edilmiştir. Çözümden elde edilen veri yardımıyla kanat 
verimi için korelasyon denklemleri üretilmiştir. Korelasyon denklemleri ısı iletim katsayıları sıcaklıkla değişen 
dairesel kanatların tasarımı için kullanılabilir.    
Anahtar Kelimeler: Dairesel kanat, Homotopi analiz yöntemi, Verim.
 
 
NOMENCLATURE 
 
A     cross-sectional area of the fin, (m2) 
Bi   Biot number, (=hri/k∞) 
h   heat transfer coefficient, [W/( m2K)] 
ћ         auxiliary parameter 
H        auxiliary function 
k thermal conductivity, [W/(mK)] 
b      fin length, (m)  
L auxiliary linear operator 
N nonlinear operator 
p embedding parameter 
Q heat transfer rate, (W) 
r radial coordinate, (m) 
t     fin thickness, (m) 
T temperature, (K) 
Greek symbols 
 a constant describing the variation of  thermal 

conductivity, [=κ( Tb-T∞)] 
η fin efficiency  
 

 
 
 
 
κ the slope of the thermal conductivity-

temperature curve, (1/K) 
 dimensionless coordinate, [=(r-ri)/ri] 
λ radii ratio, (=ro/ri) 
ψ    thermo-geometric fin parameter, (=2hri

2/tk∞) 
u a dependent variable 
θ  dimensionless temperature, [=(T-T∞)/( Tb-

T∞)] 
θm mth order approximation  
τ an independent variable  
χ  two-valued function 
Subscripts 
b base 
i inner 
o outer 
∞ ambient fluid 
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INTRODUCTION 
 
Extended surfaces are ubiquitous in engineering 
applications where there is a need to enhance heat 
transfer between a hot surface and an adjoining coolant. 
Applications in which fins of longitudinal and radial 
configurations and spines are employed range from 
small electronic components to large power and process 
heat exchangers. A considerable amount of research has 
been conducted into the variable thermal parameters 
which are associated with fins in operating in practical 
situations. An extensive review on this topic is 
presented by Aziz (1992) and Kraus et al. (2001). Aziz 
and Hug (1975) used the regular perturbation method 
and a numerical solution method to compute a closed 
form solution for a straight convective fin with 
temperature dependent thermal conductivity. Razelos 
and Imre (1983) considered the variation of the 
convective heat transfer coefficient from the base of a 
convecting fin to its tip. Yu and Chen (1999) assumed 
that the linear variation of the thermal conductivity and 
then, solved the nonlinear conducting-convecting-
radiating heat transfer equation by the differential 
transformation method. Convective straight fins with 
temperature dependent thermal conductivity have been 
studied by some researchers using different methods 
(Arslanturk, 2005; Coskun and Atay, 2008; Inc, 2008; 
Domairry and Fazeli, 2009; Joneidi et al., 2009). 
Arslanturk (2005) gave correlation equations for 
efficiency of straight fins with variable thermal 
conductivity by using Adomian decomposition method.  
In another study performed by Arslanturk (2009), 
correlation equations were given for optimal design of 
annular fins with temperature dependent thermal 
conductivity by using Adomian decomposition method. 
Coskun and Atay (2008) used variational iteration 
method and finite element method for analyzing the 
efficiency of straight fins. Homotopy analysis method is 
employed to evaluate the efficiency of convective 
straight fins (Inc, 2008; Domairry and Fazeli, 2009). 
The same problem has been solved by differential 
transformation method by Joneidi et al. (2009). 
Differential quadrature optimization of convective-
radiative fins based on two-dimensional heat transfer 
analysis was presented by Malekzadeh et al. (2007). 
 
The basic idea of homotopy in topology provided an 
idea to propose a general analytic method for nonlinear 
problems, namely homotopy analysis method (HAM) 
which is used for solving nonlinear fin problem in the 
present work, the method was proposed by Liao in 1992 
( Liao, 1992; Liao, 2003; Liao, 2004). The method is 
now widely used to solve many types of nonlinear 
problems (Abbasbandy, 2008; Khani et al., 2009a; 
Khani et al., 2009b; Sajid et al., 2009). Since the HAM 
algorithm contains a parameter that controls the 
convergence and accuracy of the solution, its results can 
be verified internally by calculating the residual error. 
 
In the present paper, the energy balance for a 
differential fin element is developed. The resulting 
nonlinear differential equation is solved by HAM to 

evaluate the temperature distribution within the fin. 
Using the temperature distribution, the efficiency of the 
fins is expressed through a term called thermo-
geometric fin parameter, Ψ, thermal conductivity 
parameter, β describing the variation of the thermal 
conductivity, and radii ratio λ. Since the resulting 
analytical expression for the fin efficiency is 
complicated, the data from the expression has been 
correlated for a wide range of problem parameters. The 
correlation equations of compact form are useful for 
designing of the annular fins with variable thermal 
conductivity. 
 
PROBLEM DESCRIPTION 
 
An annular fin with temperature-dependent thermal 
conductivity as shown in Fig. 1 is considered in this 
work. The fin of thickness t, base radius ri, and tip 
radius ro is exposed to a convective environment at the 
constant ambient temperature T∞ and heat transfer 
coefficient h. The base temperature Tb of the fin is 
constant, and the fin tip is insulated. Since the fin is 
assumed to be thin, the temperature distribution within 
the fin does not depend on axial direction. 

 
Figure 1. Schematic of an annular fin 

 
The energy balance equation is given 
 

)TT(hr2
dr
dTr)T(k

dr
dt 



       (1)       

 
The thermal conductivity of the fin material is assumed 
to be a linear function of temperature according to 
 

)]TT(1[k)T(k     (2) 
 
where k∞ is the thermal conductivity at the ambient fluid 
temperature of the fin, κ is the parameter describing the 
variation of thermal conductivity. 
 
In order to simplify the parameter studies, the following 
non-dimensional variables are defined: 
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By using the aforementioned non-dimensional variables, 
the governing equation and its associated boundary 
conditions become as follows: 
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1at0
d
d



  (4c) 

 
THE HOMOTOPY ANALYSIS METHOD 
 
In 1992, Liao (1992) employed the basic ideas of the 
homotopy in topology to propose a general analytic 
method for nonlinear problems, namely the homotopy 
analysis method. A systematically description of the 
basic ideas of the homotopy analysis method, can be 
found in the literature (Liao, 2003).  
 
Consider the following differential equation: 
 
  0)(uN     (5) 

 
Where N is a nonlinear operator, τ denotes an 
independent variable, and u(τ) is an unknown function. 
For simplicity, we ignore all boundary or initial 
conditions, which can be treated in a similar way. By 
means of generalizing the traditional homotopy method, 
Liao (2003) constructed the so-called zero-order 
deformation equation as 
 

   )p;(N)(Hp)(u)p;(L)p1( 0      (6) 
 
Where ]1,0[p  is the embedding parameter, 0 a 
nonzero auxiliary parameter, 0)(H  an auxiliary 
function, L an auxiliary linear operator, )(u 0  an initial 
guess of )(u   and )p;( is an unknown function. It is 
important to have enough freedom of choose auxiliary 
unknowns in HAM. Obviously, when p=0 and p=1, it 
holds 
 

)(u)0;( 0   and )(u)1;(       (7) 
 
Thus, as p increases from 0 to 1, the solution 

)p;( varies from the initial guess, )(u 0  , to the 
solution )(u  . Expanding )p;( in Taylor series with 
respect to p, we have 
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If the auxiliary linear operator, the initial guess, the 
auxiliary parameter and the auxiliary function are quite 
properly chosen, the series Eq. (8) converges at p=1. 
Then we have 
 







1m
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According to Eq. (8), the governing equation can be 
deduced from the zero-order deformation Eq. (5). The 
vector is defined as 
 

 )(u,),(u),(uu n10n  


              (11) 
 
Differentiating Eq (1) m times with respect to the 
embedding parameter p, and then setting p=0 and finally 
dividing them by !m , we will have the so-called mth-
order deformation equation as 
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It should be emphasized that 1mfor)(u m  is 
governed by the linear equation (12) with the linear 
boundary conditions coming from the original problem, 
which can be easily solved using a symbolic 
computation software such as Maple or Mathematica. 
 
THE FIN TEMPERATURE DISTRIBUTION 
 
Consider Eqs. (4a)-(4c) and let us solve them through 
HAM. Following the Homotopy analysis method, the 
linear operator is defined as 
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and nonlinear operator is defined as 
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According to the governing equation and the initial 
condition (4a)-(4c), the solution can be expressed by a 
set of base functions 
 
 ,3,2,1nn2   (17) 
 
In the form 







1n

n2
n2d)(  (18) 

where d2n is a coefficient to be determined. And 
 
  0ccL 21   

 
where c1 and c2 are constants that are obtained from 
boundary conditions when integrated from Eq. (21) 
according to the linear operator. 
 
To obey both the rule of solution expression and the rule 
of the coefficient ergodicity, the corresponding auxiliary 
function can be determined uniquely 1)(H  .  
Then  
 

   )p;(Np)(u)p;(L)p1( 0    
 
According to Eqs. (4a)-(4c) and the rule of solution 
expression Eq. (15) , it is straightforward that the initial 
approximation should be in the form 
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From Eqs. (13) and (16), we have 
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Following the homotopy analysis method 
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In this way, we derive θm(ξ) for m=1, 2, 3,.., 
successively. At the Jth-order approximation, we have 
the analytic solution of Eq. (4a), namely 
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RESULTS AND DISCUSSION 
 
We note that the explicit, analytic expression in Eq. (24) 
is the series solution of the problem. One can find the 
convergence region and rate of approximation by 
choosing the proper values of the auxiliary parameter ћ. 
To see this, the ћ-curves are plotted for different radii 
ratios, and thermal conductivity parameter in Fig. 2.  
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Figure 2. The ћ-curves for 5.0 , for 10th-order approximation of )1(   (a)  = -0.3  (b)  = 0.3. 
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Fig. 3 shows the residual error for Jth-order 
approximation as follows and clearly indicates that the 
HAM gives rapid convergence. From the Fig. 3, it can 
be seen that if an appropriate value for is taken, the 
residual error converge to zero. 
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 (25) 

In order to investigate the accuracy of the HAM 
solution with a finite number of terms, the problem is 
also solved numerically by using BVPFD subroutine in 
the IMSL library which solves a system of differential 
equations with boundary conditions at two points, using 
a variable order, variable step size finite difference 
method with deferred corrections and the corresponding 

results are compared with HAM solution. For the 
different values of the thermal conductivity parameters, 
the results of the present analysis are tabulated against 
the numerical solution in Table 1. A very good 
agreement between the results was observed, which 
confirms the validity of the HAM. The results of the 
comparison show that the difference is 0.05 % in the 
case of the strongest nonlinearity, i.e. β = - 0.3. Note we 
present HAM by 10th-order approximation of solution. 
 
Fin efficiency is calculated from following expression:  
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Figure 3. The residual error for Eq. (4a) when 5.0 ,  = 0.3  and λ= 2.0.   

 
Table 1. Comparison of the FDM and HAM results (λ=2.0, ψ=1.0) 

  β = -0.3  β = 0.0  β = 0.3 
ξ  FDM  HAM  FDM  HAM  Exact  FDM HAM 
0.0  1.00000  1.00000  1.00000  1.00000  1.00000  1.00000 1.00000 
0.1  0.88020  0.88020  0.90581  0.90582  0.90582  0.92201 0.92202 
0.2  0.78675  0.78673  0.82851  0.82851  0.82851  0.85658 0.85658 
0.3  0.71332  0.71336  0.76535  0.76536  0.76536  0.80211 0.80212 
0.4  0.65569  0.65582  0.71427  0.71428  0.71428  0.75734 0.75735 
0.5  0.61088  0.61108  0.67361  0.67362  0.67362  0.72124 0.72124 
0.6  0.57677  0.57701  0.64210  0.64212  0.64212  0.69296 0.69296 
0.7  0.55181  0.55205  0.61874  0.61876  0.61876  0.67181 0.67182 
0.8  0.53487  0.53510  0.60274  0.60275  0.60275  0.65724 0.65725 
0.9  0.52512  0.52533  0.59347  0.59348  0.59348  0.64876 0.64877 
1.0  0.52196  0.52217  0.59046  0.59048  0.59047  0.64601 0.64602 
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After some treatments, fin efficiency is written in terms 
of dimensionless problem parameters as follows. 
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Fig. 4 shows the fin efficiency as a function of thermo-
geometric fin parameter for different thermal 
conductivity parameters and radii ratios. From the Fig.4, 
it has been observed that the thermal conductivity 
parameter has a strong influence over the fin 
performance. In order to use the present solutions by 
thermal design engineers, the fin efficiency expressed as 
a function of thermo-geometric fin parameter, ψ, and 
radii ratio, λ, for an attained thermal conductivity 
parameter, β. With this correlation equation for the fin 
efficiency, it is assumed that the equation has the 

following form for an attained thermal conductivity 
parameter. The ranges of problem parameters are taken 
as 0.1 < ψ < 2.5 and 1.3 < λ < 3.5, in the correlation 
equations. The coefficients in Eq. 28 are tabulated in 
Table 2 for the fin efficiency. 
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The correlation coefficients for each of the correlations 
are higher than 0.9991. These correlations found as the 
result of multiple regression analysis represent the fin 
efficiency of annular fins and can be used the designing 
of annular fins with temperature dependent thermal 
conductivity.
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Figure 4. Fin efficiency as a function of thermo-geometric fin parameter for t different thermal conductivity parameter and radii 

ratio. 
     
 
 

Table 2. Coefficients in Eq. 28 for the fin efficiency. 
 β= -0.3 β= -0.2 β= -0.1 β=0.0 β=0.1 β=0.2 β=0.3 
A 0.60792 0.60877 0.61213 0.61938 0.62828 0.63628 0.64567 
B 0.03968 0.04249 0.04477 0.04681 0.04847 0.04953 0.05026 
C -1.29777 -1.34036 -1.38184 -1.42871 -1.47527 -1.51401 -1.55363 
D 1.33981 1.39471 1.44450 1.49914 1.55168 1.59383 1.63827 
E -0.61488 -0.63777 -0.65723 -0.67859 -0.69847 -0.71369 -0.73079 
F -0.73564 -0.70262 -0.67107 -0.63696 -0.60366 -0.57578 -0.54824 
G 0.37212 0.34334 0.31790 0.29283 0.26971 0.25101 0.23346 
H 0.00947 0.01241 0.01486 0.01756 0.01997 0.02144 0.02279 
I -1.29531 -1.33785 -1.37920 -1.42646 -1.47351 -1.51219 -1.55193 
J 1.31379 1.36772 1.41699 1.47059 1.52202 1.56420 1.60875 
K -0.58265 -0.60690 -0.62786 -0.64928 -0.66880 -0.68510 -0.70295 
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CONCLUSIONS 

Convective annular fins with temperature-dependent 
thermal conductivity were analyzed using the homotopy 
analysis method. The HAM supplies reliable results in 
the form of analytical approximation converging very 
rapidly. The nonlinear differential equation which 
governs the fin temperature distribution was solved and 
then the fin efficiency was calculated. The results are 
expressed in terms of suitable dimensionless parameters 
and presented in terms of regression equations obtained 
by standard statistical techniques. These results can be 
used for designing straight fins with variable thermal 
conductivity. 
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