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Abstract: Cooling tower performance calculations are usually performed numerically. In this paper, a simple 
differential equation for counter flow wet cooling tower is solved analytically taking into consideration the non-linear 
dependency of the saturated air enthalpy on temperature. The method allows analytical calculation of cooling tower 
performance with large cooling ranges. The analytically obtained values are compared with the well-known 
logarithmic mean enthalpy method (LMED) and corrected LMED method. It is seen that analytically obtained values 
are much more accurate than the values obtained using these two methods. The analytical results are also compared 
with experimental ones and it is seen that there is a good agreement between them. 
Keywords: Cooling tower, Cooling range, Analytical solution, Numerical calculation. 

 
YÜKSEK SICAKLIK FARKLARINDA ISLAK SOĞUTMA KULELERİ ETKİNLİĞİNİN 

ANALİTİK OLARAK HESABI 
 
Özet: Soğutma kulesi hesaplamaları genellikle sayısal olarak yapılmaktadır. Bu makalede, karşıt akışlı ıslak soğutma 
kulesi için basit bir diferansiyel denklem doymuş hava antalpisinin sıcaklığa lineer olmayan bağımlılığı göz önüne 
alınarak analitik olarak çözülmüştür. Bu metod soğutma kulesi etkinliğinin büyük sıcaklık farklarında analitik olarak 
hesaplanmasına olanak vermektedir. Analitik olarak hesaplanan değerler çok iyi bilinen logaritmik ortalama antalpi 
farkı (LMED) ve düzeltilmiş-LMED metodlarıyla karşılaştırılmıştır. Bu çalışmada analitik olarak elde edilen 
değerlerin bu iki metodla elde edilen değerlere göre çok daha iyi neticeler verdiği görülmüştür. Analitik olarak 
hesaplanan değerler ayrıca deneysel değerlerle karşılaştırılmış ve neticelerin birbirleriyle uyum içinde olduğu 
görülmüştür. 
Anahtar kelimeler: Soğutma kulesi, Sıcaklık farkı, Analitik çözüm, Sayısal hesaplama. 
 
 
Nomenclature 
A  cross-sectional area of cooling tower [m2] 
a  constant in eq. (26)  

pc  specific heat [J/kgK] 
D  constant in eqs. (30) and (33) 
DS  determinant given by eq. (28) 
d  diameter [m]  
F  wetted area [m2] 
H  height of the packing in cooling tower [m] 
h  enthalpy [kJ/kg] 
I  integral given by eq. (19) 
M  mass flow rate [kg/s] 
Me  Merkel number defined in eq. (62) 
N  number of transfer unit, defined by eq. (9) 
Q  heat transferred, [kW] 
T  temperature [K] 
x  absolute humidity [kg H2O/kg dry air] 
z  coordinate in vertical direction (bottom : 

0z ) 
Greek letters 
  convective heat transfer coefficient [W/m2K] 

  convective mass transfer coefficient [m/s] 
  efficiency of cooling tower, defined by eq. (24) 
  density [kg/m3] 
  dimensionless temperature, defined by eq. (8) 
Subscripts 
a  dry air 

wa,  air at air-water surface 
e  equivalent 
i  inlet 
l  latent 
m  mean 
max  maximum 
min  minimum 
o  outlet, reference, initial 
s  sensible 
T  total 
w  water, at air-water surface 

2/1  at 5.0  
Superscripts 
* dimensionless 
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INTRODUCTION 
 
Cooling towers are commonly used devices for heat 
rejection into ambient air in many industrial 
applications such as condensers of refrigeration 
machines, power generation plants and the textile 
industry. 
 
Cooling tower theory was first given by Merkel, (1925). 
Effectiveness-NTU and logarithmic mean enthalpy 
methods were described by Jaber and Webb, (1989). 
They took the nonlinearity of the saturated air enthalpy 
versus temperature into consideration with a correction 
factor. Kloppers and Kröger, (2005) analyzed the 
derivation of heat and mass transfer equations in counter 
flow wet cooling towers in detail. They described 
Merkel, NTU and Poppe methods and concluded that 
Poppe method yields higher Merkel numbers. El-
Dessouky et al. (1997) concluded that the effect of 
water evaporation on the cooling tower performance is 
not conservative but it can be as low as 1.3 % so that the 
assumption of constant water flow rate is justified. 
 
Mohiuddin and Kant, (1996) explained different 
numerical methods for the analysis of wet cooling 
towers. Khan et al. (2003) showed through numerical 
analysis that most of the heat transfer occurs by 
evaporation. The ratio of heat transfer by evaporation to 
total heat transfer was 90% at the top and 62.5% at the 
bottom of cooling tower packing. 
 
Assuming linear dependency of saturation enthalpy of 
air on temperature, Halasz (1999) showed that cooling 
tower efficiency depends on two dimensionless 
numbers. However, the results were corrected with a 
coefficient of linearization. It can be concluded from his 
results that his method is applicable only if the cooling 
range is less than 10 oC. Bedekar et al. (1998) presented 
experimentally-obtained results on cooling tower 
performance for different inlet water temperatures and 
different water flow rates. They showed that tower 
characteristics and tower efficiencies are influenced by 
water inlet temperature. Experimental and numerical 
results for different filling materials in pilot-scale and 
industrial cooling towers were given by Milosavljevic 
and Heikkilae (2001). Cooling towers were extensively 
described by Berliner (1975) and Kröger (2004). 
 
In this work, the Merkel equation for counter flow wet 
cooling tower is solved analytically. The non-linearity 
of the saturated air enthalpy on the temperature is taken 
into consideration. The analytically derived equations 
allow for the description of cooling towers with large 
cooling ranges. With the presented method, water 
temperature and air enthalpy along the cooling tower 
packing can also be calculated analytically. The 
analytically and numerically obtained results are 
compared with each other. The analytical results are 
also compared with the experimental results given by 
Milosavljevic and Heikkilae (2001). 
 

DERIVATION OF GOVERNING EQUATIONS 
 
In the present analysis, countercurrent flow of air and 
water to be cooled in vertical direction in a cooling 
tower is considered. The wetted packing surface area is 
F and the wetted surface area in the height of dz is dF. 
The total amount of heat transferred in dz is Qd  . 

Tw

M w

dz
dQ

M a

h a,w

h a

z

 
 

Figure 1. Water-air counter flow in cooling tower 
 
The amount of heat transferred in the height of dz 
(figure 1) can be written for water and air, respectively, 
as: 
 wwpw dTcMQd      (1) 

 aa dhMQd       (2) 
 

wM  and aM  are mass flow rates of water and dry air, 

respectively. Water mass flow rate ( wM ) is assumed to 
be constant, that means evaporated water mass flow rate 
is very low compared to the water mass flow rate. Tw is 
the water temperature and ha is the enthalpy of air. Q  

consists of two parts, namely sensible ( sQ ) and latent 

( lQ ) heats. For the length dz, one can write; 
 
 ls QdQdQd       (3) 

where sQd   and lQd   can be calculated by considering 
heat and mass transfer between water and air: 
 
  dFTTQd awas      (4) 

   dFhQd glawwwal ,,     (5) 
 

aw,  and ww,  are partial densities of water vapor in the 
air and at the water-air interface, respectively. hgl is 
latent heat of evaporation. a  and a  are convective 
heat and mass transfer coefficients between the water-
air interface and air (air side), respectively. 
If one assumes further that Lewis number is unity, one 
obtains the following well-known Merkel equation 
(Berliner 1975 and Kröger 2004): 
 

  


w

wo

T

T awa

w

pwwap

a

hh
dT

cM
F

c ,



  (6) 
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The amount of heat transferred from water is given as; 
 
  wowiwpw TTcMQ      (7) 
 
Dimensionless temperature  , number of transfer units 
N and equivalent temperature difference eawT ,  are 
defined as follows: 
 

 
wowi

wow

TT
TT




     (8) 

 
Q

TF
N eawTa


,


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   (9) 
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hh
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,


                 (10) 

 
The following equation can be obtained from eq. (6) 
using the dimensionless quantities:  
 

 
 
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 
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dhh
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FN               (11) 

 
Here FT and F are total wetted surface and wetted 
surface between 0 and z in the cooling tower, 
respectively. With the definitions of, 
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the following equation is obtained from eq. (11): 
 

  


 

0
*
,

**
,

*
,

*

1 woaawoawa hhhh
dzN             (16) 

Defining I  as 
 

  







0
*
,

**
,

*
, 1 woaawoawa hhhh

dI               (17) 

it follows from eq. (16) 
 

*zNI                  (18) 
 

For the total cooling tower, one gets from eqs. (17) and 
(18) 

  


1

0
*
,

**
,

*
, 1 woaawoawa hhhh

dI                (19) 

NI                   (20) 

 
In the above equations water inlet and outlet are denoted 
by indices wi and wo, respectively. iah ,  is the enthalpy 
of air entering the cooling tower. 
 
Description of enthalpies dependent on temperature 

 
*
,wah  and *

ah  should be defined as a function of   for 
the determination of the I  values from eq. (17). 
 
From eqs. (1) and (2), one gets 

 
a

pww

w

a

M
cM

dT
dh




                 (21) 

 
After integration, it follows 

  oww
a

pww
iaa TT

M
cM

hh ,, 



              (22) 

 
This equation can be rewritten in the dimensionless 
form as: 
 *

ah                 (23) 
where  

 
maxQ
Q



                 (24) 

  iawiaa hhMQ ,,max                  (25) 
 
Here   and maxQ  are the efficiency of the cooling tower 
and the maximum possible heat flow, respectively. 
 
For different inlet and outlet temperatures, *

,wah  can be 
determined as a function of   as follows: 
 
    aah wa  2*

, 1                (26) 
 
This function fulfills the boundary conditions 0*

, wah  

at 0  and 1*
, wah  at 1 . Eq. (26) is plotted in 

figure 2. For a=1, the relation is linear. For a=0, a 
parabolic (quadratic) relation is obtained. Normally, a 
will have values between these limiting values. 
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Figure 2. Demonstration of *

,wah  as a function of . 
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ANALYTICAL SOLUTION 
 
Using eqs. (23) and (26), it follows from eq. (17) that 
 

      




 


0
*
,

*
,

2 11 woawoa haha
dI (27) 

 
This integral can be solved analytically. 
Defining DS as follows, 
 

     2*
,

*
, 114 ahhaDS woawoa            (28) 

 
the following solution of eq. (27) is obtained for DS>0; 
 

    
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*
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Where 
 
 DSD                  (30) 
 
The value of I follows from eq. (29) with 1 : 
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     (31) 

 
From the above equations, one can see that I and 
therefore N are dependent on *

,woah  and  . The 
maximum allowable values of max  can be calculated if 
D=0. For this case, one gets then from eq. (28) 
 

 
*
,

*
,

max 1

12

woa

woa

h

haa




                (32) 

 
If DS<0, it would mean that  > max  and this is not 
realistic. 
 

The minimum possible air mass flow rate min,aM  can be 
determined from eqs. (24) and (25). 
 

  iawia
a hh

QM
,,max

min, 




               (33) 

 
From eqs. (18) and (20), the dependency of   on *z  
can be written: 

 
I
I

z *                 (34) 

 
 
Determination of a  in equation (26) 
 
One can use the values of *

2/1,,wah  at 5.0  from eq. 
(26) 
 14 *

2/1,,  waha                 (35) 
 
Another way of determination of a  is that both 
integration values of the enthalpy wah ,  between wiah ,  
and woah ,  should be equal to the value obtained using 
eq. (26). Then the following equation can be written for 
a: 

    
1

0

2
1

0

*
, 1  daadh wa               (36) 

 
From this equation, one obtains then 

 26
1

0

*
,   dha wa                (37) 

 
Determination of a  for an exponential function 
 

The enthalpy of saturated air between 10-90 oC 
taken from ASHRAE [12] is given in figure 3. ha,w can 
be described with the function 

 Tcbh wa exp,                  (38) 
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10 20 30 40 50 60 70 80 90

T (oC)

ha,w

(kJ/kg)

 
Figure 3. Saturated air enthalpy dependent on temperature. 
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b and c values are given in table 1. It can be seen from 
this table that, one can determine b and c with 
R2>0.9994 between 20-70 oC.  
 
Therefore, eq. (39) can be written: 

 














woa

wia
woawa h

h
hh

,

,
,,                (39) 

 
Logarithms of the functions (38) and (39) are linear 
functions of T and  , respectively. Therefore, they are 

similar functions. Besides, eq. (39) fulfills the limiting 
conditions for 0  and 1 . 
This equation can be rewritten in dimensionless form 
using eq. (12) as  

  1
1

1 *
*

*
, 





io

io
wa h

h
h                (40) 

where  

woa

wia
io h

h
h

,

,*                  (41) 

 
Table 1. Determination of b and c in eq. (38) for temperatures between 10-90 oC. 

 
To-Ti (oC) b c R2 

10-70 18.678 0.0539 0.9981 
10-90 16.564 0.0576 0.9932 
20-80 19.366 0.0537 0.9985 
30-90 15.168 0.0589 0.9876 
20-70 20.501 0.0522 0.9997 
30-50 21.923 0.0506 1.0000 
30-60 21.750 0.0509 1.0000 
30-70 20.907 0.0518 0.9996 
40-50 22.385 0.0502 1.0000 
40-60 21.756 0.0509 0.9999 
40-70 20.299 0.0523 0.9994 

 
 
If *

2/1,,wah  is calculated from eq. (40) and this value is 
inserted in eq. (35), the following equation for a is 
obtained: 

 14
,,

,, 





woawia

woagaw

hh
hh

a                (42) 

where gawh ,  is the geometric mean enthalpy 

 woawiagaw hhh ,,,                 (43) 
Inserting eq. (40) in eq. (37), the following equation for 
a is yielded: 
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Here, wlah ,  is the logarithmic mean enthalpy of 
saturated air between inlet and outlet saturated air 
enthalpies 
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It is clear that a  must have no negative values for the 
validity of the calculations. For a parabolic function, if 
the Simpson integral method is applied to eq. (37), eq. 
(35) would be obtained again. Therefore, eq. (35) will 
be applied for the calculations if saturation enthalpy of 
air (ha,w) can not be described by eq. (38) in the given 
cooling range. 
 
 
 
 

RESULTS AND DISCUSSION 
 
Comparison between analytical and numerical 
results 
 
Numerical values of I obtained according to eq. (19) are 
calculated using Simpson Integral Method. Comparison 
between analytical and numerical methods are presented 
in tables 2 and 3 for the water inlet and outlet 
temperatures between 10-90 oC and for different cooling 
ranges between 4 and 16 oC. For each water inlet 
temperature and cooling range two different air mass 
flow rates are chosen. High and low   values are 
selected for comparison in tables 2 and 3, respectively. 
In these tables, the difference between the analytically 
(eq. 31) and numerically obtained I values (eq. (19)) is 
named as error Er: 

100
numerical

numericalanalytical

I
II

Er


 [%]              (46) 

Depending on the determination of a according to eqs. 
(35), (42) and (44), Er is designated as Er1/2, ErG and 
ErL, respectively. 
It can be seen from these tables that eq. (35) (Er1/2) 
always yields better results. However for temperatures 
between 20-70 oC, logarithmic and geometric mean 
values used in eqs. (42) and (44) yield as good values as 
obtained using eq. (35). Geometric mean values yield 
slightly better results than logarithmic mean values. 
However using geometric mean values one always has 
an error of less than -4.54 % and +1.73 % even for very 
high max/  values till 0.9 and cooling ranges between 
0-16 oC. 
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Table 2. Errors between numerically (exact) and analytically obtained values for high   values. 
 

io TT   (oC) oah ,  (kJ/kg) Q  (kW) aM  (kg/s) max    ErG  (%) ErL  (%) 2/1Er  (%) 
10-14 11.15 500 20.0 1.000 0.886 0.71 0.71 -0.69 
10-18 11.15 500 15.0 1.000 0.836 4.3 4.3 -0.08 
10-26 11.15 500 9.0 0.991 0.798 14.6 14.8 -0.23 
20-24 36.43 500 16.0 1.000 0.869 0.40 0.40 -0.29 
20-28 36.43 500 11.0 1.000 0.849 2.20 2.21 -0.11 
20-36 36.43 500 7.0 0.986 0.716 5.80 5.90 0.13 
30-34 75.86 500 12.0 1.000 0.884 0.12 0.12 -0.23 
30-38 75.86 500 8.0 1.000 0.835 0.94 0.95 -0.11 
30-46 75.86 750 7.0 0.969 0.718 2.60 2.70 0.49 
40-44 99.38 1,000 11.0 1.000 0.871 -0.41 -0.41 -0.43 
40-48 99.38 2,000 15.0 1.000 0.891 -0.20 -0.20 -0.19 
40-56 99.38 2,000 9.0 0.997 0.809 -1.7 -1.6 -0.51 
50-54 99.38 2,000 10.0 1.000 0.840 -0.40 -0.40 -0.30 
50-58 99.38 3,000 11.0 1.000 0.865 -0.59 -0.58 -0.16 
50-66 99.38 2,750 7.0 1.000 0.729 -2.70 -2.70 -0.35 
60-64 115.8 2,000 5.0 1.000 0.878 -1.10 -1.10 -0.90 
60-68 115.8 3,000 6.0 1.000 0.834 -1.10 -1.10 -0.18 
60-76 115.8 7,500 10.0 1.000 0.713 -5.50 -5.50 -0.59 
70-74 115.8 4,500 6.0 1.000 0.824 -0.60 -0.60 -0.30 
70-78 115.8 5,000 6.0 1.000 0.683 -1.60 -1.60 -0.14 
70-86 115.8 10,000 6.0 0.990 0.690 -13.60 -13.40 -1.30 

 
 
 
 
 
 
 
 
 
 
 
 



 51 

 
 
 
 
 
Table 3. Errors between numerically (exact) and analytically obtained values for low   values. 
 

io TT   (oC) oah ,  (kJ/kg) Q  (kW) aM  (kg/s) max    ErG  (%) ErL  (%) 2/1Er  (%) 
10-14 11.15 500 40.0 1.000 0.443 0.74 0.74 0.00 
10-18 11.15 500 30.0 1.000 0.418 2.34 2.35 0.01 
10-26 11.15 500 18.0 0.991 0.399 6.91 7.00 0.22 
20-24 36.43 500 32.0 1.000 0.435 0.37 0.38 0.00 
20-28 36.43 500 22.0 1.000 0.425 1.19 1.19 0.02 
20-36 36.43 500 14.0 0.986 0.358 3.40 3.50 0.38 
30-34 75.86 500 24.0 1.000 0.442 0.23 0.23 0.00 
30-38 75.86 500 16.0 1.000 0.418 0.56 0.56 0.04 
30-46 75.86 750 14.0 0.969 0.359 1.70 1.80 0.66 
40-44 99.38 1,000 22.0 1.000 0.436 0.01 0.01 0.00 
40-48 99.38 2,000 30.0 1.000 0.446 -0.04 -0.03 -0.03 
40-56 99.38 2,000 18.0 0.997 0.405 -0.14 -0.10 0.38 
50-54 99.38 2,000 20.0 1.000 0.420 -0.05 -0.05 0.00 
50-58 99.38 3,000 22.0 1.000 0.433 -0.23 -0.23 0.00 
50-66 99.38 2,750 14.0 1.000 0.365 -1.10 -1.10 0.25 
60-64 115.8 2,000 10.0 1.000 0.439 -0.11 -0.11 0.00 
60-68 115.8 3,000 12.0 1.000 0.417 -0.51 -0.50 -0.01 
60-76 115.8 7,500 20.0 1.000 0.357 -2.60 -2.50 0.35 
70-74 115.8 4,500 12.0 1.000 0.412 -0.20 -0.20 0.00 
70-78 115.8 5,000 12.0 1.000 0.342 -0.99 -0.99 0.00 
70-86 115.8 10,000 12.0 0.990 0.345 -6.10 -6.00 0.90 
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ha,w is not an exponential function for Tw<20 oC and 
Tw>70 oC. For these temperature ranges, the application 
of eq. (35) yields acceptably good results. The 
difference between numerical and analytical values is 
less than -1.3 % and 0.9 % in these cases, respectively. 
For the validity of the calculations, a must have positive 
values. Therefore, one gets from eqs. (42) and (43),  
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Using eqs. (44) and (45), the following equation can be 
written: 
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 578.8* ioh                 (50) 
 
In the range of 20-70 oC, eq. (38) can be used and from 
this equation, one obtains 
 chT io /ln *                 (51) 
 
where T  is the cooling tower range: 
 wowi TTT                  (52) 
 
Using eqs. (48), (50) and (51) with c=0.0522 from table 
1, the following results are obtained: 
 CT o1.42                 (53)

 CT o2.41                 (54) 
 
for the validity of the analytical calculations. 
Eq. (55) can be obtained from eq. (35) for 0a  
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Using eqs. (38) and (55), one gets 
     12/exp4exp  TcTc               (56) 
 887.2Tc                 (57) 

 CT o4.54                 (58) 
 
It can be seen that in the range of 20-70 oC, cooling 
tower range T  can be as high as 42.1 oC for geometric 
mean and as high as 41.2 oC for logarithmic mean 
values approach. For mean temperature approach, the 
cooling range can be as high as 54.4 oC. The errors 
demonstrated in tables 2 and 3 are in accordance with 
these ranges. 
 
Comparison between analytical, LMED and 
Effectiveness-NTU Methods 
 
Using eqs. (1) and (2), it follows from eq. (6) 
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where Me can be named as the Merkel number and is 
defined as follows: 
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In simple Logarithmic Mean Enthalpy Difference 
Method (LMED), Me number is calculated as: 
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where mh  is the logarithmic mean enthalpy difference 
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A correction factor   is introduced for the correction of 
the nonlinearity of saturated enthalpy of air wah ,  as 
follows: 
   4/2 ,,, wmawoawia hhh                (63) 
 
where wmah ,  is saturated enthalpy of air at mean water 
temperature: 
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The inlet and outlet enthalpies are corrected then as 
follows: 
 
  wiawia hh ,,                 (65) 
  woawoa hh ,,                 (66) 
 
In LMED-C Method, the corrected values wiah ,  and 

woah ,  are used instead of wiah ,  and woah ,  for the 

determination of mh . 
 
LMED and very similar Effectiveness-NTU (E-NTU) 
Methods are clearly described by Jaber and Webb [2]. 
Between the Me number and N number defined in eq. 
(9), there is the following relationship: 
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LMED and E-NTU Methods give nearly the same 
results [2]. Therefore, only results obtained by LMED 
method is compared with the analytical and numerical 
results obtained in this work. Simple LMED method 
uses only inlet and outlet water temperatures and air 
inlet enthalpy. This is very similar to eqs. (43) and (45) 
which also use only the inlet and outlet values. LMED 
method with correction (LMED-C) uses 2/1,wah  ( wmah , ) 
values at the arithmetic mean water temperature in 
addition to wiah ,  and woah ,  values. Therefore LMED-C 
values are similar to the analytically obtained values 
which uses 2/1,wah  in eq. (35). 
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Figure 4. Variation of ErLM and ErG with   for 8 oC and 16 oC cooling ranges between 20-70 oC water temperatures 

(20 oC<Tw<70 oC). 
 
 

The errors for LMED and LMED-C are named as ErLM 
and ErLMC. In figures 4 and 5, the errors are shown as 
a function of the efficiency   for different cooling 
ranges. ErG and ErLM are compared in figure 4, 
because both need only inlet and outlet conditions. 
From the results given in figure 4, one can see that 
analytical results are always much more accurate than 
the results obtained using LMED method. Root mean 
square error (RMSE) of Me numbers determined 
according to LMED and eq. (43) are 5.64% and 0.96% 

for 8 oC cooling range and 18.27% and 2.88% for 16 oC 
cooling range, respectively, between 20 oC – 70 oC 
water temperatures. LMED-C method and analytical 
results using eq. (35) both need saturated air enthalpies 
at the water inlet-outlet temperatures and at arithmetic 
mean water temperature. Er1/2 and ErLMC are 
compared in figure 5. The analytical results are much 
more accurate than the results obtained using LMED-C 
method as can be seen in figure 5.
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Figure 5. Variation of ErLMC and Er1/2 with   for 8 oC and 16 oC cooling ranges between 10-86 oC water temperatures 

(10 oC<Tw<86 oC). 
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Especially for outlet temperatures over 70 oC and inlet 
temperatures below 20 oC, LMED-C method gives 
much bigger differences compared to the numerically 
obtained values especially at large cooling ranges and at 
high efficiencies, whereas the analytical method using 
eq. (35) yields very resonable values. Root mean square 
error (RMSE) of Me numbers determined according to 
LMED-C and eq. (35) are 1.15% and 0.10% for 8 oC 
cooling range and 6.38% and 0.68% for 16 oC cooling 
range, respectively, between 10 oC – 86 oC water 
temperatures. 
 
Comparison between analytical and experimental 
results 
 
Milosavljevic and Heikkilae 2001 carried out 
measurements at an industrial cooling tower which has 
180 m2 cross-sectional area and 2.4 m height of the 
packing. They used different packing materials at the 
top (0.6 m) and bottom (1.8 m) of the cooling tower. 
Only the experimental results given for the top part are 
compared with the analytical solution because of the 
lack of information about the filling material at the 
bottom part. 
 
In table 4a, the measured (Milosavljevic and Heikkilae 
2001) data are given. Some parameters calculated using 
these values are presented in table 4b. In this table, 
( Ta F ) value is calculated from the measured data at 
the pilot-scale cooling tower. 
 
 
 
  

 
Table 4a. Measured data at industrial cooling tower [9]. 

 
A  2m  180 
H  m  0.6 

wiT  Co  40 

woT  Co  29.7 

iaT ,  Co  25.5 

oaT ,  Co  30.7 

iax ,  airkgOHkg /2  0.0190 

oax ,  airkgOHkg /2  0.0290 

wM  skg /  450 

aM  skg /  650 

 
 
 
 
 
 

Table 4b. Calculated data using the measured data. 
 

Q  kW  20150 

wiah ,  kgkJ /  166.7 

woah ,  kgkJ /  98.5 

iah ,  kgkJ /  74.0 

oah ,  kgkJ /  105.0 

Ta F  CkW o/  511.2 
 
 

In table 5, the analytically determined values are given 
for the conditions given in table 4a. It can be seen that, 
there is almost no difference between the a values 
calculated using eqs. (42) and (44) which are 
determined via geometric and logarithmic mean 
enthalpies, respectively. 
 
Number of transfer units that is calculated analytically is 
found to be N=1.830. This means that ( Ta F ) value is 
553.3. The corresponding measured value is 511.2 [9]. 
The difference between analytical and experimental 
results is only 7.9%. This is a very good agreement 
because ( Ta F ) values are obtained at a pilot-scale 
cooling tower whereas the capacity measurements are 
carried out at an industrial cooling tower.  
 
In figures 6 and 7, the water temperature and the air 
enthalpy profiles along the cooling tower are 
demonstrated, respectively. The analytically-obtained 
temperatures are calculated using eqs. (8), (17), (18) and 
(19). The analytical results in figure 7 are determined 
according to eq. (23). Experimental values are taken 
from the above explained industrial cooling tower. The 
agreement between the analytically calculated results 
and the experimentally measured data is very good. 
 

 
Table 5. Analytically calculated data for industrial cooling 

tower. 

maxQ  kW  Eq. (25) 60260 

  - Eq. (24) 0.334 
wgah ,  kgkJ /  Eq. (45) 128.1 

wlah ,  kgkJ /  Eq. (47) 129.6 
a  - Eq. (44) 0.736 
a  - Eq. (46) 0.738 
*
,woah  - Eq. (14) 0.359 

NI   - Eq. (31) 1.830 
eawT ,  Co  Eq. (10) 66.4 

Ta F  CkW o/  Eq. (9) 553.3 
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Figure 6. Analytically and experimentally obtained temperature profiles along the cooling tower. 
 
 

 
 

Figure 7. Analytically and experimentally obtained enthalpy profiles along the cooling tower. 
 

 
CONCLUSIONS 
 
Simple analytical equations can be used to calculate 
cooling tower performance without any numerical 
integrations. Between 20-70 oC, one needs only 
saturation enthalpies of air at water inlet and outlet 
temperatures. For water inlet-outlet temperatures less 
than 20 oC or greater than 70 oC, the saturation enthalpy 
of water at the arithmetic mean water temperature is 
needed, besides air saturation enthalpies at water inlet 
and outlet temperatures for analytical calculations. The 
analytical equations derived in the present study render 

results which compare well with the experimental and 
numerical ones. The presented analytical method yields 
much more accurate results compared to the results 
obtained using the well-known LMED and LMED-C 
methods. 
 
REFERENCES 
 
ASHRAE (American Society of Heating, Refrigerating 
and Air-Conditioning Engineers) Handbook, 
Fundamentals, Chapter 6 (Psychometrics), Atlanta, 
2001. 

28 

32 

36 

40 

0 0,1 0,2 0,3 0,4 0,5 0,6

z (m)

T w 
(o C)

Experimental

Analytical

70 

80 

90 

100 

110 

0 0,2 0,4 0,6

z (m) 

h a 
(kJ/kg)

Experimental

Analytical



 56 

 
Bedekar, S. V., Nithiarasu, P., Seetharamu, K. N., 
Experimental investigation of the performance of a 
counter-flow packed-bed mechanical cooling tower, 
Energy, 23, 943-947, 1998. 
 
Berliner, P., Kühltürme, Grundlagen der Berechung und 
Konstruktion, Springer Verlag, Berlin, 1975. 
 
El-Dessouky, H. T. A., Al-Haddad, A., Al-Juwayhel, F., 
A modified analysis of counter flow wet cooling towers, 
Journal of Heat Transfer, 119, 617-626, 1997. 
 
Halasz, B., Application of a general non-dimensional 
mathematical model to cooling towers, International 
Journal of Thermal Sciences, 38, 75-88, 1999. 
 
Jaber, H., Webb, R. C., Design of cooling towers by the 
effectiveness-NTU method, Journal of Heat Transfer, 
111, 837-843, 1989. 
 
Khan, J., Yagub, M., Zubair, S. M., Performance 
characteristics of counter flow wet cooling towers, 
Energy Conversion and Management, 44, 13, 2073-
2091, 2003. 

 
Klopper, J. C., Kröger, D. G., A critical investigation 
into heat and mass transfer analysis of counterflow wet 
cooling towers, International Journal of Heat and Mass 
Transfer, 48, 765-777, 2005. 
 
Kröger, D. G., Air Cooled Heat Exchangers and 
Cooling Towers, Vol. 1, Pennwell Corporation, Tulsa-
Oklohama, 2004. 
 
Merkel, F., Verdunstungskühlung, Zeitschrift Verein 
Deutscher Ingenieure, 70, 123-128, 1925. 
 
Milosavljevic, N., Heikkilae, P., A comprehensive 
approach to cooling tower design, Applied Thermal 
Engineering, 21, 899-915, 2001. 
 
Mohiuddin, A. K. M., Kant, K., Knowledge base for the 
systematic design of wet cooling towers. Part I: 
Selection and tower characteristics, International 
Journal of Refrigeration, 19, 43-51, 1996. 
 
 
 

 

Alper YILMAZ, He was born in Tarsus-Turkey in 1975. He graduated from the 
department of mechanical engineering at Boğaziçi University in 1997. He pursued his 
MSc and PhD studies at Çukurova University and got his degrees in 1999 and 2004, 
respectively. He had been assigned assistant professor of mechanical engineering in 2006 
and since then he has been working at the same institution. In 2000, he was visiting 
researcher in Berlin-Germany by DAAD award. His main research interests are 
conductive and convective heat transfer. He is a member of TTMD and MMO. 
 

 


