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Abstract: Cooling tower performance calculations are usually performed numerically. In this paper, a simple
differential equation for counter flow wet cooling tower is solved analytically taking into consideration the non-linear
dependency of the saturated air enthalpy on temperature. The method allows analytical calculation of cooling tower
performance with large cooling ranges. The analytically obtained values are compared with the well-known
logarithmic mean enthalpy method (LMED) and corrected LMED method. It is seen that analytically obtained values
are much more accurate than the values obtained using these two methods. The analytical results are also compared
with experimental ones and it is seen that there is a good agreement between them.
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YUKSEK SICAKLIK FARKLARINDA ISLAK SOGUTMA KULELERI ETKINLIiGININ
ANALITIK OLARAK HESABI

Ozet: Sogutma kulesi hesaplamalar1 genellikle sayisal olarak yapilmaktadir. Bu makalede, karsit akish 1slak sogutma
kulesi i¢in basit bir diferansiyel denklem doymus hava antalpisinin sicakliga lineer olmayan bagimhiligi goz oniine
almarak analitik olarak ¢6ziilmistiir. Bu metod sogutma kulesi etkinliginin biiyiik sicaklik farklarinda analitik olarak
hesaplanmasina olanak vermektedir. Analitik olarak hesaplanan degerler ¢ok iyi bilinen logaritmik ortalama antalpi
farki (LMED) ve diizeltilmis-LMED metodlariyla karsilastirilmistir. Bu calismada analitik olarak elde edilen
degerlerin bu iki metodla elde edilen degerlere gore ¢ok daha iyi neticeler verdigi goriilmiistiir. Analitik olarak
hesaplanan degerler ayrica deneysel degerlerle karsilastirilmigs ve neticelerin birbirleriyle uyum iginde oldugu
gOriilmistiir.

Anahtar kelimeler: Sogutma kulesi, Sicaklik farki, Analitik ¢6ziim, Sayisal hesaplama.

Nomenclature Jej convective mass transfer coefficient [m/s]
. . 2
4 cross-secFlonal area of cooling tower [m’] £ efficiency of cooling tower, defined by eq. (24)
a constant in eq. (26) P density [ke/m’]
p specific heat [J/kgK] 0 dimensionless temperature, defined by eq. (8)
D constant in egs. (30) and (33) Subscripts
DS determinant given by eq. (28) a dry air
d diameter [m] a,w  air at air-water surface
F wetted area [m’] e equivalent
H height of the packing in cooling tower [m] i inlet
h enthalpy [kl/kg] / latent
1 integral given by eq. (19) m mean
M mass flow rate [kg/s] max  maximum
Me Merkel number defined in eq. (62) min  minimum
N number of transfer unit, defined by eq. (9) 0 outlet, reference, initial
0 heat transferred, [kW] s sensible
T temperature [K] T total .
x absolute humidity [kg H,O/kg dry air] w water, at air-water surface
z coordinate in vertical direction (bottom : 1/2 at 0=0.5
z=0) Superscripts
Greek letters * dimensionless
a convective heat transfer coefficient [W/m?K]
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INTRODUCTION

Cooling towers are commonly used devices for heat
rejection into ambient air in many industrial
applications such as condensers of refrigeration
machines, power generation plants and the textile
industry.

Cooling tower theory was first given by Merkel, (1925).
Effectiveness-NTU and logarithmic mean enthalpy
methods were described by Jaber and Webb, (1989).
They took the nonlinearity of the saturated air enthalpy
versus temperature into consideration with a correction
factor. Kloppers and Kroger, (2005) analyzed the
derivation of heat and mass transfer equations in counter
flow wet cooling towers in detail. They described
Merkel, NTU and Poppe methods and concluded that
Poppe method yields higher Merkel numbers. El-
Dessouky et al. (1997) concluded that the effect of
water evaporation on the cooling tower performance is
not conservative but it can be as low as 1.3 % so that the
assumption of constant water flow rate is justified.

Mohiuddin and Kant, (1996) explained different
numerical methods for the analysis of wet cooling
towers. Khan et al. (2003) showed through numerical
analysis that most of the heat transfer occurs by
evaporation. The ratio of heat transfer by evaporation to
total heat transfer was 90% at the top and 62.5% at the
bottom of cooling tower packing.

Assuming linear dependency of saturation enthalpy of
air on temperature, Halasz (1999) showed that cooling
tower efficiency depends on two dimensionless
numbers. However, the results were corrected with a
coefficient of linearization. It can be concluded from his
results that his method is applicable only if the cooling
range is less than 10 °C. Bedekar et al. (1998) presented
experimentally-obtained results on cooling tower
performance for different inlet water temperatures and
different water flow rates. They showed that tower
characteristics and tower efficiencies are influenced by
water inlet temperature. Experimental and numerical
results for different filling materials in pilot-scale and
industrial cooling towers were given by Milosavljevic
and Heikkilae (2001). Cooling towers were extensively
described by Berliner (1975) and Kroger (2004).

In this work, the Merkel equation for counter flow wet
cooling tower is solved analytically. The non-linearity
of the saturated air enthalpy on the temperature is taken
into consideration. The analytically derived equations
allow for the description of cooling towers with large
cooling ranges. With the presented method, water
temperature and air enthalpy along the cooling tower
packing can also be calculated analytically. The
analytically and numerically obtained results are
compared with each other. The analytical results are
also compared with the experimental results given by
Milosavljevic and Heikkilae (2001).
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DERIVATION OF GOVERNING EQUATIONS

In the present analysis, countercurrent flow of air and
water to be cooled in vertical direction in a cooling
tower is considered. The wetted packing surface area is
F and the wetted surface area in the height of dz is dF.

The total amount of heat transferred in dz is dQ .
7 M

W

dQ
dz

haw

\ i,

Figure 1. Water-air counter flow in cooling tower

The amount of heat transferred in the height of dz
(figure 1) can be written for water and air, respectively,
as:

dQ = Mw cl’w dT'w
dQ=M, dh,

()
)

M, and M, are mass flow rates of water and dry air,

respectively. Water mass flow rate (M ) 1s assumed to

be constant, that means evaporated water mass flow rate
is very low compared to the water mass flow rate. T\, is

the water temperature and h, is the enthalpy of air. Q
consists of two parts, namely sensible (QS) and latent

(Ql ) heats. For the length dz, one can write;

dQ = dQ, +dQ, 3)
where dQ and dQ, can be calculated by considering
heat and mass transfer between water and air:

do, =a, (T, ~T,)dF
dQl = ﬂa ( wow pw,a )hgl dF

(4)
)

P.. and p,  are partial densities of water vapor in the

air and at the water-air interface, respectively. hy is
latent heat of evaporation. ¢, and [, are convective

heat and mass transfer coefficients between the water-
air interface and air (air side), respectively.
If one assumes further that Lewis number is unity, one
obtains the following well-known Merkel equation
(Berliner 1975 and Kroger 2004):

a, F ] drT,
' T, htl,w - h

,, M, €y

(6)
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The amount of heat transferred from water is given as;

—T,)

wo

0=M,c, (T, (7)

Dimensionless temperature 6, number of transfer units

N and equivalent temperature difference AT,,, are
defined as follows:
T, -T
9 wo 8
71\’“ - 7-'%0 ( )
o, F AT, ©)
0
ha wi ha wo
Alye=—""—"— (10)
c

p.a

The following equation can be obtained from eq. (6)
using the dimensionless quantities:

9 —
_J‘ am
0

ll

v m)dﬁ’

F

T

(11)

Here Fr and F are total wetted surface and wetted
surface between 0 and z in the cooling tower,
respectively. With the definitions of,

* _ ha,w ha,wo (12)
“ ha,w[ a,wo
P (13)
‘o ha wi ha,[
* ha,wo ha,[ (14)
o ha,m a,wo
z = £ (15)
FT
the following equation is obtained from eq. (11):
6
S L (16)
Ohaw (1+hawo)h +hawo
Defining /, as
0
do
1, = 17
' jh e hg e 40, )
it follows from eq. (16)
I,=Nz" (18)

For the total cooling tower, one gets from egs. (17) and
(18)

deo
(1l n )0 +0

(19)
(20)

1
=l

I=N

a,wo
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In the above equations water inlet and outlet are denoted
by indices wi and wo, respectively. #,; is the enthalpy

of air entering the cooling tower.

Description of enthalpies dependent on temperature

k., and h, should be defined as a function of @ for

a,w

the determination of the /, values from eq. (17).

From egs. (1) and (2), one gets

M c
dha w pw (21)
dTw M,
After integration, it follows
M c
h, =h,, +——==(T, T 22
M ( WO) ( )

a

This equation can be rewritten in the dimensionless
form as:

h,=¢€0 (23)
where
&= L (24)
Qmax
Qmax = Mzz (htz,w[ - hn,[) (25)
Here ¢ and O, are the efficiency of the cooling tower

and the maximum possible heat flow, respectively.

For different inlet and outlet temperatures, h:’w can be
determined as a function of 6 as follows:
h,, =(1-a)o*+a0 (26)

This function fulfills the boundary conditions h:’w =0

at =0 and hﬂ ,=1at 6=1. Eq. (26) is plotted in

figure 2. For @=1, the relation is linear. For a=0, a
parabolic (quadratic) relation is obtained. Normally, a
will have values between these limiting values.

1>a>(
0,75 \

haw* 0,5 a=1 >/
0,25
a=0
0 a
0 0,25 0,5 0,75 1
0

*
Figure 2. Demonstration of /1~ as a function of 0.
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ANALYTICAL SOLUTION

Using egs. (23) and (26), it follows from eq. (17) that

1 do
’6‘!(1_51)92_[5(“11*

a,wo

—(27)

a,wo

)-alo+n

This integral can be solved analytically.
Defining DS as follows,

ps=4(1-a)i,, ~[e(+ 1, )-af  @8)

a,wo

the following solution of eq. (27) is obtained for DS>0;

5 D6

1, = Bardg( 2n,,, -+, )- aJHJ >
Where

- (30)

The value of [ follows from eq. (29) with § =1:

2 D
- Barcrg( 2 h:,wo - lg (1 + h;,WO )_ GJJ (3 1)

From the above equations, one can see that I and
and ¢. The

can be calculated if

s

therefore N are dependent on £

a,wo

maximum allowable values of &

max

D=0. For this case, one gets then from eq. (28)

_ a+211(l—a)h:’wo (32)

1+4

a,wo

max

and this is not

max

If DS<O0, it would mean that &>¢
realistic.

The minimum possible air mass flow rate M «min €an be
determined from egs. (24) and (25).
Ma min Q (33)
' gmax ha,w[ i

From eqs. (18) and (20), the dependency of 6 on z"
can be written:

* [6
=20 34
Z = (34)

Determination of a in equation (26)

One can use the values of h:’w’l , at 0=0.5 from eq.
(26)
a= 4h:,w,1/2 -1 (35)

Another way of determination of a is that both
integration values of the enthalpy #,, between #

and h

a,wo

should be equal to the value obtained using

eq. (26). Then the following equation can be written for
a:
1 1

(4, a6 =[[1-a)6* +ab]a0 (36)

0 0

From this equation, one obtains then

5

do -2 (37)

a,w

a=6jh
0

Determination of a for an exponential function

The enthalpy of saturated air between 10-90 °C
taken from ASHRAE [12] is given in figure 3. h,,, can
be described with the function

h,., =bexp(cT) (38)

e

10000 -
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hasw ]
(kJ/kg)
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T(°C)

Figure 3. Saturated air enthalpy dependent on temperature.



b and ¢ values are given in table 1. It can be seen from
this table that, one can determine b and c¢ with
R*>0.9994 between 20-70 °C.

Therefore, eq. (39) can be written:
htl wi ’
h!l w = h!l wo -
' ' hn,wo
Logarithms of the functions (38) and (39) are linear
functions of T and @, respectively. Therefore, they are

(39)

similar functions. Besides, eq. (39) fulfills the limiting
conditions for 0 =0 and 6 =1.

This equation can be rewritten in dimensionless form
using eq. (12) as

- 1 «0
h,., =*—(h[o —1) 40
T (40)
where
* ha wi
h[o =— (41)

a,wo

Table 1. Determination of b and ¢ in eq. (38) for temperatures between 10-90 °C.

If h:’w’l/z is calculated from eq. (40) and this value is

inserted in eq. (35), the following equation for a is
obtained:

haw,g - ha,wo (42)
a= -
ha,w[ - a,wo
where £, is the geometric mean enthalpy
haw,g = ha,w[ ha,wo (43)

Inserting eq. (40) in eq. (37), the following equation for
a is yielded:

ha wl ha wo
a=6—= 22 (44)
ha,%’ - ha,VUO
Here, h,,, is the logarithmic mean enthalpy of
saturated air between inlet and outlet saturated air
enthalpies
h _ a,wi “awo (45)

In| —

hn,wo
It is clear that @ must have no negative values for the
validity of the calculations. For a parabolic function, if
the Simpson integral method is applied to eq. (37), eq.
(35) would be obtained again. Therefore, eq. (35) will
be applied for the calculations if saturation enthalpy of
air (h,,,) can not be described by eq. (38) in the given
cooling range.
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T,-T; (°C) b ¢ R’
10-70 18.678 0.0539 0.9981
10-90 16.564 0.0576 0.9932
20-80 19.366 0.0537 0.9985
30-90 15.168 0.0589 0.9876
20-70 20.501 0.0522 0.9997
30-50 21.923 0.0506 1.0000
30-60 21.750 0.0509 1.0000
30-70 20.907 0.0518 0.9996
40-50 22385 0.0502 1.0000
40-60 21.756 0.0509 0.9999
40-70 20.299 0.0523 0.9994

RESULTS AND DISCUSSION

Comparison between analytical and numerical

results

Numerical values of I obtained according to eq. (19) are
calculated using Simpson Integral Method. Comparison
between analytical and numerical methods are presented
in tables 2 and 3 for the water inlet and outlet
temperatures between 10-90 °C and for different cooling
ranges between 4 and 16 °C. For each water inlet
temperature and cooling range two different air mass
flow rates are chosen. High and low & values are
selected for comparison in tables 2 and 3, respectively.
In these tables, the difference between the analytically
(eq. 31) and numerically obtained / values (eq. (19)) is
named as error Er:

Er=

[zmalyz[cal [numer[cal 100 [%]
numerical

Depending on the determination of a according to egs.
(35), (42) and (44), Er is designated as Er1/2, ErG and
ErL, respectively.

It can be seen from these tables that eq. (35) (Erl/2)
always yields better results. However for temperatures
between 20-70 °C, logarithmic and geometric mean
values used in eqs. (42) and (44) yield as good values as
obtained using eq. (35). Geometric mean values yield
slightly better results than logarithmic mean values.
However using geometric mean values one always has
an error of less than -4.54 % and +1.73 % even for very
high &/¢__ values till 0.9 and cooling ranges between

0-16 °C.

(46)

max



Table 2. Errors between numerically (exact) and analytically obtained values for high ¢ values.

T -T, (°C) h,, (KI/kg) 0 (kW) M, (kg/s) £, 3 ErG (%) ErL (%) Erl/2 (%)
10-14 11.15 500 20.0 1.000 0.886 0.71 0.71 -0.69
10-18 11.15 500 15.0 1.000 0.836 4.3 4.3 -0.08
10-26 11.15 500 9.0 0.991 0.798 14.6 14.8 -0.23
20-24 36.43 500 16.0 1.000 0.869 0.40 0.40 -0.29
20-28 36.43 500 11.0 1.000 0.849 2.20 2.21 -0.11
20-36 36.43 500 7.0 0.986 0.716 5.80 5.90 0.13
30-34 75.86 500 12.0 1.000 0.884 0.12 0.12 -0.23
30-38 75.86 500 8.0 1.000 0.835 0.94 0.95 -0.11
30-46 75.86 750 7.0 0.969 0.718 2.60 2.70 0.49
40-44 99.38 1,000 11.0 1.000 0.871 -0.41 -0.41 -0.43
40-48 99.38 2,000 15.0 1.000 0.891 -0.20 -0.20 -0.19
40-56 99.38 2,000 9.0 0.997 0.809 -1.7 -1.6 -0.51
50-54 99.38 2,000 10.0 1.000 0.840 -0.40 -0.40 -0.30
50-58 99.38 3,000 11.0 1.000 0.865 -0.59 -0.58 -0.16
50-66 99.38 2,750 7.0 1.000 0.729 -2.70 -2.70 -0.35
60-64 115.8 2,000 5.0 1.000 0.878 -1.10 -1.10 -0.90
60-68 115.8 3,000 6.0 1.000 0.834 -1.10 -1.10 -0.18
60-76 115.8 7,500 10.0 1.000 0.713 -5.50 -5.50 -0.59
70-74 115.8 4,500 6.0 1.000 0.824 -0.60 -0.60 -0.30
70-78 115.8 5,000 6.0 1.000 0.683 -1.60 -1.60 -0.14
70-86 115.8 10,000 6.0 0.990 0.690 -13.60 -13.40 -1.30
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Table 3. Errors between numerically (exact) and analytically obtained values for low ¢ values.

T, -T, (°C) h,, (kI/kg) 0 (kW) M, (kg/s) £, 3 ErG (%) ErL (%) Erl/2 (%)
10-14 11.15 500 40.0 1.000 0.443 0.74 0.74 0.00
10-18 11.15 500 30.0 1.000 0.418 2.34 2.35 0.01
10-26 11.15 500 18.0 0.991 0.399 6.91 7.00 0.22
20-24 36.43 500 32.0 1.000 0.435 0.37 0.38 0.00
20-28 36.43 500 22.0 1.000 0.425 1.19 1.19 0.02
20-36 36.43 500 14.0 0.986 0.358 3.40 3.50 0.38
30-34 75.86 500 24.0 1.000 0.442 0.23 0.23 0.00
30-38 75.86 500 16.0 1.000 0.418 0.56 0.56 0.04
30-46 75.86 750 14.0 0.969 0.359 1.70 1.80 0.66
40-44 99.38 1,000 22.0 1.000 0.436 0.01 0.01 0.00
40-48 99.38 2,000 30.0 1.000 0.446 -0.04 -0.03 -0.03
40-56 99.38 2,000 18.0 0.997 0.405 -0.14 -0.10 0.38
50-54 99.38 2,000 20.0 1.000 0.420 -0.05 -0.05 0.00
50-58 99.38 3,000 22.0 1.000 0.433 -0.23 -0.23 0.00
50-66 99.38 2,750 14.0 1.000 0.365 -1.10 -1.10 0.25
60-64 115.8 2,000 10.0 1.000 0.439 -0.11 -0.11 0.00
60-68 115.8 3,000 12.0 1.000 0.417 -0.51 -0.50 -0.01
60-76 115.8 7,500 20.0 1.000 0.357 -2.60 -2.50 0.35
70-74 115.8 4,500 12.0 1.000 0.412 -0.20 -0.20 0.00
70-78 115.8 5,000 12.0 1.000 0.342 -0.99 -0.99 0.00
70-86 115.8 10,000 12.0 0.990 0.345 -6.10 -6.00 0.90
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h,, is not an exponential function for T,<20 °C and
T,>70 °C. For these temperature ranges, the application
of eq. (35) yields acceptably good results. The
difference between numerical and analytical values is
less than -1.3 % and 0.9 % in these cases, respectively.
For the validity of the calculations, ¢ must have positive
values. Therefore, one gets from egs. (42) and (43),

) =10k, +9<0
h, <9

(47)
(48

Using egs. (44) and (45), the following equation can be
written:

* l iy
nh + 2)

h, =1+ Tw (h;

h, <8.578

(49)
(50)

In the range of 20-70 °C, eq. (38) can be used and from
this equation, one obtains

AT =Inh, /c (51)
where AT is the cooling tower range:
AT = Twi - Two (52)

Using egs. (48), (50) and (51) with ¢=0.0522 from table
1, the following results are obtained:

AT <£42.1°C (53)
AT <412 °C (54)
for the validity of the analytical calculations.
Eq. (55) can be obtained from eq. (35) for a >0
h, —1
hn wl/2 /ha wo = = (55)
’ ’ 4
Using egs. (38) and (55), one gets
exp(cAT)—4dexp(cAT/2)<1 (56)
cAT <2.887 57
AT <544 °C (58)

It can be seen that in the range of 20-70 °C, cooling
tower range AT can be as high as 42.1 °C for geometric
mean and as high as 41.2 °C for logarithmic mean
values approach. For mean temperature approach, the
cooling range can be as high as 54.4 °C. The errors
demonstrated in tables 2 and 3 are in accordance with
these ranges.

Comparison between analytical, LMED and
Effectiveness-NTU Methods
Using egs. (1) and (2), it follows from eq. (6)
< dh
Me= |—— 59
[;|ji a,w - htz ( )
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where Me can be named as the Merkel number and is

defined as follows:
Me = % FT
c M

pa a

(60)

In simple Logarithmic Mean Enthalpy Difference
Method (LMED), Me number is calculated as:
h,,—h,.

a,o a,i

Ah

where A#,, is the logarithmic mean enthalpy difference
h,.—h )-\h . —h,.
Ah — ( a,wi zz,o) ( a,wo a,z)

m

Me = (61)

(62)

lIl a,wi -

—h

a,wo

a,o

a,i

A correction factor & is introduced for the correction of
the nonlinearity of saturated enthalpy of air 4, as

follows:

5 = ha,wi + ha,wo - 2 ha,wm )/4 (63)
where ha’wm is saturated enthalpy of air at mean water
temperature:

T +T
' = Wi Wwo 64
wn 2 (64)

The inlet and outlet enthalpies are corrected then as
follows:

h;,1¢'i = ha wi _5 (65)
hz'z,wo = ha,wo _5 (66)
In LMED-C Method, the corrected values /4, and
h' are used instead of £ and £ for the

a,wo a,wi a,wo

determination of A/ .

LMED and very similar Effectiveness-NTU (E-NTU)
Methods are clearly described by Jaber and Webb [2].
Between the Me number and N number defined in eq.
(9), there is the following relationship:

M w ¢ pw (Zvi - T’wo)
M, (n

~ )
LMED and E-NTU Methods give nearly the same
results [2]. Therefore, only results obtained by LMED
method is compared with the analytical and numerical
results obtained in this work. Simple LMED method
uses only inlet and outlet water temperatures and air
inlet enthalpy. This is very similar to egs. (43) and (45)
which also use only the inlet and outlet values. LMED
method with correction (LMED-C) uses 4, ,,,, (&

values at the arithmetic mean water temperature in
addition to #,,, and A, values. Therefore LMED-C
values are similar to the analytically obtained values
which uses 4, ,,,, in eq. (35).

Me

(67)

a,wi

a,wm )

a,wi
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Figure 4. Variation of ErLM and ErG with & for 8 °C and 16 °C cooling ranges between 20-70 °C water temperatures

(20 °C<T,<70 °C).

The errors for LMED and LMED-C are named as ErLM
and ErLMC. In figures 4 and 5, the errors are shown as
a function of the efficiency & for different cooling
ranges. ErG and ErLM are compared in figure 4,
because both need only inlet and outlet conditions.
From the results given in figure 4, one can see that
analytical results are always much more accurate than
the results obtained using LMED method. Root mean

for 8 °C cooling range and 18.27% and 2.88% for 16 °C
cooling range, respectively, between 20 °C — 70 °C
water temperatures. LMED-C method and analytical
results using eq. (35) both need saturated air enthalpies
at the water inlet-outlet temperatures and at arithmetic
mean water temperature. Erl/2 and ErLMC are
compared in figure 5. The analytical results are much
more accurate than the results obtained using LMED-C

square error (RMSE) of Me numbers determined method as can be seen in figure 5.
according to LMED and eq. (43) are 5.64% and 0.96%
10
5 X
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Figure 5. Variation of ErLMC and Er1/2 with & for 8 °C and 16 °C cooling ranges between 10-86 °C water temperatures

(10 °C<T,<86 °C).
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Especially for outlet temperatures over 70 °C and inlet
temperatures below 20 °C, LMED-C method gives
much bigger differences compared to the numerically
obtained values especially at large cooling ranges and at
high efficiencies, whereas the analytical method using
eq. (35) yields very resonable values. Root mean square
error (RMSE) of Me numbers determined according to
LMED-C and eq. (35) are 1.15% and 0.10% for 8 °C
cooling range and 6.38% and 0.68% for 16 °C cooling
range, respectively, between 10 °C — 86 °C water
temperatures.

Comparison between analytical and experimental
results

Milosavljevic and Heikkilae 2001 carried out
measurements at an industrial cooling tower which has
180 m* cross-sectional area and 2.4 m height of the
packing. They used different packing materials at the
top (0.6 m) and bottom (1.8 m) of the cooling tower.
Only the experimental results given for the top part are
compared with the analytical solution because of the
lack of information about the filling material at the
bottom part.

In table 4a, the measured (Milosavljevic and Heikkilae
2001) data are given. Some parameters calculated using
these values are presented in table 4b. In this table,
(a, F,) value is calculated from the measured data at

the pilot-scale cooling tower.

Table 4a. Measured data at industrial cooling tower [9].

4 m? 180
H m 0.6
T °C 40
T,, oC 29.7
T, °C 25.5
T, °C 30.7
x,. | ke H,0/kg air | 0.0190
X,, | kg H,0/kg air | 0.0290
M, kg/s 450
M kg /s 650

Table 4b. Calculated data using the measured data.

0 kW] 20150
h,.. | Kikg | 166.7
h,. | kikg | 9853
h, | Kikg | 740
h,, | K/kg | 1050

a, Fr | kwyec | 5112

In table 5, the analytically determined values are given
for the conditions given in table 4a. It can be seen that,
there is almost no difference between the a values
calculated using egs. (42) and (44) which are
determined via geometric and logarithmic mean
enthalpies, respectively.

Number of transfer units that is calculated analytically is
found to be N=1.830. This means that (a, F, ) value is

553.3. The corresponding measured value is 511.2 [9].
The difference between analytical and experimental
results is only 7.9%. This is a very good agreement
because («a, F, ) values are obtained at a pilot-scale

cooling tower whereas the capacity measurements are
carried out at an industrial cooling tower.

In figures 6 and 7, the water temperature and the air
enthalpy profiles along the cooling tower are
demonstrated, respectively. The analytically-obtained
temperatures are calculated using egs. (8), (17), (18) and
(19). The analytical results in figure 7 are determined
according to eq. (23). Experimental values are taken
from the above explained industrial cooling tower. The
agreement between the analytically calculated results
and the experimentally measured data is very good.

Table 5. Analytically calculated data for industrial cooling

tower.

Qlﬂax kW Eq (25) 60260
€ - Eq. (24) | 0.334
g kJ/kg | Eq.(45)| 128.1
il kJ/kg | Eq.(47)| 129.6
a - Eq. (44) | 0.736
a - Eq. (46) | 0.738

B o - Eq. (14) | 0.359

I=N - Eq. (31) | 1.830

AT,,. °C Eq. (10) | 66.4

a,F, | rw/ec | Eq-(9) | 553.3




40 | |

—o— Experimental
Analytical

36

(°C)

-

28

32 | /

0,1 0,2

0,3

z(m)

0,4 0,5 0,6

Figure 6. Analytically and experimentally obtained temperature profiles along the cooling tower.
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Figure 7. Analytically and experimentally obtained enthalpy profiles along the cooling tower.

CONCLUSIONS

Simple analytical equations can be used to calculate
cooling tower performance without any numerical
integrations. Between 20-70 °C, one needs only
saturation enthalpies of air at water inlet and outlet
temperatures. For water inlet-outlet temperatures less
than 20 °C or greater than 70 °C, the saturation enthalpy
of water at the arithmetic mean water temperature is
needed, besides air saturation enthalpies at water inlet
and outlet temperatures for analytical calculations. The
analytical equations derived in the present study render
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results which compare well with the experimental and
numerical ones. The presented analytical method yields
much more accurate results compared to the results
obtained using the well-known LMED and LMED-C
methods.
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