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ABSTRACT

Marine litter and microplastic contamination are severe dangers to aquatic ecosystems. The in-
teraction between halophyte plants and micro/nanoplastics has recently gained attention. Halo-
phyte plants and maritime macroalgae are capable of trapping substantial volumes of marine 
debris, leading to areas of buildup, known as ‘sinks’, of anthropogenic particles. The review of 
existing studies exposes that halophyte plants can serve as sinks for micro-nano plastics by ab-
sorbing them on their surface. Moreover, these plastics can be absorbed by plants. Plastic on the 
surfaces and within plant tissue can cause various harmful effects. The present review highlights 
an understanding of microplastic abundance, bioavailability, influencing factors, technological 
detection, and potential salt-tolerant plants for bioremediation. According to these findings, we 
advocate the addition of microplastic on halophyte plants and algae in prospective monitoring 
studies, describe acceptable methodologies, and advise doing exposure studies alongside risk 
assessments, strategies for preventing and controlling policies of these underestimated pollut-
ants in vegetated coastal ecosystems and establishes a basis for future research. 

Cite this article as: Fara ME, Muslim M, Munir M. Study of microplastic accumulation in halo-
phyte plants and macroalgae: A critical review. Environ Res Tec 2025;8(2) 499-522.

INTRODUCTION

Microplastic (MP) and nanoplastic (NP) are distributed in 
the environments worldwide. Plastics disintegrate slowly in 
natural ecosystems, therefore the accumulation of plastic 
contaminants has eventually become a concern [1]. Under-
standing the accumulation of plastic and its life cycle in the 
environment is crucial and requires frequent sampling over a 
long period [2]. Seeruttun et al. (2023) [3] estimated that the 
number of microplastics worldwide produced 350 tonnes in 
2017, and approximately 4.8 to 12.7 million tonnes of various 
sizes entered the world’s oceans and aquatic basins. Micro-
plastics are numerous and likely irreversible repercussions of 

plastic pollution, including habitat disruption, harm to biota, 
and others [4]. Microplastic contaminant spans a family of 
contaminants, as plastic particles vary in chemical element, 
color, shape, size, and others [5]. The physicochemical char-
acteristics of each plastic particle can be modified in various 
ways, driven by abiotic influences such as water salinity or 
UV light and biotic ones such as surface changes by microbes 
[6]. This weathering process might release plastic monomers 
and additives [6, 7]. Therefore, it is difficult to estimate the 
worldwide toxicity of microplastics and their compounds re-
leased into the environment [8].
Coastal ecosystems are unique and vital areas at the inter-
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section of marine and terrestrial processes [9], commonly 
known as mangroves, seagrasses, saltbush, saltmarsh, and 
macroalgae.  Plants and algae represent 80% of Earth’s total 
biomass, serving as a fundamental component in all ecosys-
tems [10]. The accumulation of MPs can generate several 
complex harmful effects on plants, with the highest deposi-
tion in plant roots and germinating seed surfaces rather than 
being absorbed into the plants [11]. Plastic can accumulate 
in the environment for a long period, depending on its stabil-
ity. Halophytes are plants that can survive and complete their 
biological cycles at salt concentrations above 100-200 mM 
NaCl without suffering significant negative impacts on their 
growth or development [12, 13, 14]. They could be a signif-
icant food source, particularly in coastal regions and areas 
with unfavorable environmental conditions [15]. Zhang et al. 
(2023) [16] demonstrated that halophytes accumulate sulfur, 
sodium, and chlorine during their growth period, indicating 
their ability to absorb various mineral nutrients selectively. 
Kiliç and Yücel (2024) [17] research has shown that MPs and 
macro-size plastics can be easily captured in invasive aquatic 
plants (Pontederia crassipes) due to their root structure. This 
may also contribute to their accumulation in halophyte tis-
sues and trapping in algae.

Halophyte plants have shown potential as vegetation due 
to their ability to accumulate salts in their tissues, making 
them valuable plants for environmental management [18]. 
Such plants serve crucial functions in the carbon and oxy-
gen cycles. They are essential pillars of the ecological balance, 
including climate regulation, preventing wind and sand ero-
sion, soil and water conservation, and provisioning for bio-
logical habitats [1, 19]. The survival and vitality of halophyte 
plants serve as crucial bioindicators for assessing the overall 
health of aquatic ecosystems worldwide [20, 21]. Extensive 
MP research has been conducted in both marine and ter-
restrial environments. In recent years, the focus has mainly 
been on water, soil, air, animal, and terrestrial plants [22, 23, 
24]. However, there needs to be more reviews on saltwater 
plants, making it essential to conduct a review on research 
concerning these plants. A review of the field’s current sit-
uation is required. This paper analyzes relevant studies to 
discuss the following two aspects: the effects of MPs and NPs 
on halophyte plants and macroalgae and technologies for 
MPs detection in plants and algae. Furthermore, prospects 
for future study on this issue are presented for developing 
strategies to effectively manage and mitigate its effects and 
preserve these vital coastal ecosystems.

MATERIALS AND METHODS

The preliminary review of salt-tolerant plants and macroal-
gae included analyzing MPs articles published from 2014 to 
2024 (Fig. 1a). Sixty-eight published articles on MP world-
wide (Fig. 1b) were initially screened. All of the materials 
utilized here are from Internet databases. Multiple databases 
were used to discover relevant studies, examine data collect-
ed over a long period, and ensure that this evaluation ap-
propriately reflects the most current advances in the field. 

Studies were found in the ScienceDirect, Scopus, PubMed, 
Springer, Nature, and MDPI databases. The keywords “mi-
croplastic”, “plastic pollution”, “marine litter”, “accumulation”, 
“microplastic analysis”, “halophyte plant”, and “algae” were 
used in the literature search. However, we independently 
screened microplastic-related research to ensure a complete 
literature collection because not all relevant literature can be 
retrieved using these words.

Figure 1. a) Publication trend on MP studies around 10 years; 
b) reviewed number of MP studies in saltwater plants and al-
gae (retrieved on May 27th, 2024)

POTENTIAL SOURCE AND EXPOSURE ROUTES

Microplastic Distribution in Halophyte Plants and 
Macroalgae
Oceans are the ultimate sink for MPs, especially in the coast-
al environment, a habitat of salt-tolerant plants and mac-
roalgae. In addition, the terrestrial ecosystem is a crucial 
recipient of plastics of any size. Due to the massive volume 
of anthropogenic waste [25], the terrestrial ecosystem is re-
sponsible for 80-90% of MPs in aquatic environments [26], 
maritime activities (marine aquaculture and ocean naviga-
tion) [27], tidal or wave action [28], airborne settlement [29, 
30], and other sources such as atmospheric particulate depo-
sition [31]. As mentioned earlier, salt-tolerant plants such 
as mangrove swamps, marshes, sloughs, and seashores are 
generally characterized by high biological productivity and 
organic matter levels. Therefore, MPs can be transported to 
these plants from multiple and complex sources. Compared 
to marine sources, terrestrial sources are estimated to con-
tribute more significantly to the pollution of saltwater plants 
[32]. Generally, there are many sources of MPs. Fig. 2 main-
ly classified MP contamination pathways from land-into 
ocean-based sources in salt-tolerant plants.

Figure 2. MPs contamination distribution pathway in the 
salt-tolerant plants and macroalgae
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MPs enter the oceans through the breakdown of plastics, 
landfill leachates, illegal disposal or accidental loss, waste-
water, sewage discharged into the atmosphere, agricultural 
runoff, tourism, fishing activity along the coast, and other 
sources propelled from beaches by winds and currents. As 
shown in Fig. 2, MPs are present in salt marshes, mangroves, 
seagrasses, and algae. They are also found in seawater, sedi-
ment, and land (including ice and freshwater) and are asso-
ciated with various organisms. Several factors, including me-
chanical stress, washing, microbiological deterioration, and 
UV radiation damage, can produce microplastics [33]. Plas-
tic debris is transported by rivers and lakes from far inland to 
the ocean, significantly contributing to ocean pollution. [34] 
calculated that between 0.8 to 2.7 million tons of riverine 
plastic are released into the ocean per year worldwide, with 
1000 rivers being responsible for about 80% of these emis-
sions. MPs in saltwater tend to collect slowly, primarily on 
coastlines with high human population density [35]. Ocean 
currents are essential for plastic waste’s movement, disper-
sion, and accumulation [36]. Hydrodynamic parameters 
influencing MP transportation and sedimentation include 
turbulence, turbidity, current velocity, and residual circula-
tion [37]. The distribution of MPs is also affected by their 
features, including particle size, surface alteration, and envi-
ronmental circumstances such as pH, DOM, and light. How-
ever, quantifying these effects still needs to be expanded [38].

Uptake of Microplastics by Halophyte Plants
Bioaccumulation is the progressive increase in the concen-
tration of a contaminant (compound) within an organism 
due to the uptake rate of the contaminant being more sig-
nificant than its release [39]. The pattern of microplastic 
bioaccumulation is extensively studied across various tro-
phic-level pyramids, especially in coastal and marine eco-
systems [40]. Plastics form plastispheres that look similar 
to food sources for marine organisms. These plastisphere or 
aggregates form through microbial attachment, acting as a 
vector for the transportation of harmful bacterial species and 

phytoplankton on the plastic surface [41].
Plants primarily absorb both MPs and non-plastics through 
root hairs [42, 43]. In addition, some seedlings typically ex-
hibit strong cell division and rapid nutrient translocation, 
enhancing the potential for nutrient and contaminant ab-
sorption. Due to their hydrophobic, dense, and high specific 
surface area properties, MPs easily adhere to root surfac-
es, subsequently absorbed and accumulated within plants, 
thereby affecting root metabolism [44]. Most studies on the 
impact of MPs on plants are conducted during the seedling 
stage with test particles on a submicron scale (<1 µm). Seed-
ling roots can absorb small MPs (80 nm) and significantly 
inhibit plant growth and development [45, 46]. Larger parti-
cles can also accumulate in plant tissues, as demonstrated by 
[40]. The data summarized about methodology, study area, 
and MP features in Table 1 indicate MP contamination in 16 
species of mangrove, 30 species of seagrass, five species of 
saltmarsh plant, and 25 species of macroalgae. 
Particulate matter, including MP, must pass through various 
chemical and physiological barriers that determine the size 
exclusion limits (SELs) during plant absorption and trans-
location. The thickness and construction of these barriers 
vary depending on the species, growth stage, and environ-
mental circumstances. Despite the modest SELs (<20 nm) of 
plant roots, it is widely acknowledged that plants can absorb 
very big nanoparticles (above 100 nm) [40]. MPs can pene-
trate the stele through epidermal gaps and then move to the 
plant’s aboveground parts via the xylem through transpira-
tion. During this process, the plant's transpiration force is 
critical to the absorption and transportation of microplas-
tics. Another entry pathway is through the mode of crack 
entry, where the emergence of lateral roots on the primary 
root creates crack areas, and particles enter the circulation 
system through cellular gaps produced by the lateral root 
bulge area. Once entered into the vascular bundle, plants can 
absorb plastic particles from roots to stems through the vas-
cular system and transpiration flow. Illustrations of the MPs 
entry process in plants are presented in Fig. 3.

Figure 3. The uptake and movement of MPs in mangrove rhizospheres and non-rhizospheres underroot absorption pressure 
(Modified from [43, 47])
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Type of 
samples

Study location Abundance Types of MPs Shape of 
MPs

Absorption Ref.

Mangrove
Mangrove 
and saltmarsh 
sediment

Singapore 36.8 ± 23.6 items.g-1 dry 
sediment

PE, PP, Nylon, 
PVC

FB, FL, 
GN

aerial root [48]

Mangrove Qinzhou Bay, 
China

15 to 12.852 items.kg-1 PS, PP, PE FG, FB, 
Sphere

none [49]

Mangrove Colombia 31 and 2863 items.kg-1 PE, PS, Nylon FG, FIL, 
PL, GN, 
FL, FO 

pneumatophore [32]

K. obovata Saudi Arabia 9.3% ± 1.8% of all items, N 
= 1018

PS, PET FG pneumatophore [50]

K. obovata, 
R. stylosa, B. 
gymnorhiza

Persian Gulf, 
Iran

19.5-34.5 items.kg-1 PE, PA FB, FG none [51]

K. obovata Beibu Gulf, 
China

Sediment & root hair zone: 
70 ± 8 to 3967 ± 252 items.
kg-1; rhizosphere: 127 ± 12 
to 2607 ± 123 items.kg-1

PP, PET, PE FB root hair, rhizo-
sphere

[63]

Mangrove Mauritius Ferney: 107.4 ± 76.42 
items.kg-1 and Mahe-
bourg: 140.2 ± 85.38 items.
kg-1

PVC FG, FB, 
PL, FL, 
FO

none [3]

A. marina 
sediment

Sea of Oman 147.88 ± 99.24 items.kg-1 PE, HDPE, PS, 
PP, LDPE

FG, PL, 
FB

root [64]

S. caseolar-
is,  S. apetala, 
Aegiceras 
corniculatum, 
Acanthus 
ilicifolius,  K. 
obovata

Seagull Island, 
China

1223 items.m-2.day-1 dry 
sediment

CA, Rayon FB, FG, 
PL, FL

leaf [65]

A. cornicula-
tum

Nansha, 
Guangzhou, 
China

NA PS, PMMA NA leaves of seed-
lings

[66]

Mangrove The eastern 
coast of Thai-
land

2213.33 ± 1787.74 items.
kg-1 dry sediment

PP, PE, FB, FG root [67]

Rhizopho-
ra candle, 
A. marina, 
Excoecaria 
agallocha, A. 
corniculatum

Qinzhou Bay, 
China

1.76 n.g-1 to 15.45 n.g-1 
and 0.74 n.g-1 to 3.28 n.g-1

PS, PP, PET, 
PC, Nylon

FB, FL, 
FG, BD, 
FO

leaf [68]

Seagrass
Tyrrhenian 
Sea, Italy

NA PS, PP, PE, 
PES, PVC, PU, 
ABS, PET, PA, 
PEST, Nylon, 
CA

FB egagropiles [69]

Table 1. Summary of MP contamination reported in salt-tolerant plants and macroalgae
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Type of 
samples

Study location Abundance Types of MPs Shape of 
MPs

Absorption Ref.

Thalassia 
testudinum

Turneffe Atoll, 
North Amer-
ica

NA NA FB, MBD seagrass blades [70]

Cymodocea 
rotundata

Barrang Caddi 
Island, South 
Sulawesi

NA PE, PS, PP, 
Nylon

MFB, 
MFG

leaf tips, leaf base [71]

Endocladia 
muricata, 
Pelvetiopsis 
limitata

Sonoma 
County, Cali-
fornia

E. muricata: 2.5 to 24.3 
items.g-1, P. limitata: 0.58 
to 8.0 items.g-1

NA NA none [72]

Zostera noltii, 
Zostera 
marina, 
Cymodocea 
nodosa, Caul-
erpa prolif-
era, saltmarsh 
Sporobolus 
maritimus

Ria Formosa 
lagoon, Por-
tugal

1.3-17.3 macroplastics 100 
m-2, 18.2-35.2 items.kg-1

NA FB, FL, 
FO, FG, 
MBD

shoot [73]

Enhalus 
acoroides

Xincun Bay 
and Li'an Bay, 
China

Xincun bay: 93.3 ± 15.3 
items.kg-1 dry sediment, 
196.7 ± 16.1 items.kg-1; 
Li'an bay: 267.1 ± 60.5 
items.kg-1 dry sediment, 
>780.2 ± 147.0 items.kg-1 
dry sediment

PE, PP, PA, PS FB, FG, 
PL, FL, 
FO

leaf, root, rhi-
zome

[74]

Seagrass Rameswaram 
island, India

Water: 24 ± 9 to 96 ± 57 
items.L-1; sediment: 55 ± 
21 to 259 ± 88 items.kg-1

PS, PA, PE, 
PET, PVC, PP, 
CP, PU, PEST, 
PVA

FB, FL, 
FG, FO

blades, root [75]

Z. marina L. Orkney, Scot-
land

4.25 kg-1 ± 0.59 SE PE, PP, PA, PS, 
PU, PTT

FB, FG, 
Flake

blades [76]

E. acoroides, 
Thalassia 
hemprichii

Barrang 
Lompo island, 
Makassar

E. acoroides: 0.10 ± 0.02 
items.cm-2; T. hemprichii: 
0.24 ± 0.05 items.cm-2

NA LN leaf [77]

C. serrulata, 
C. rotundata, 
Sargassum 
ilicifolium, T. 
hemprichii, 
Padina sp.

Singapore 0.051 items.cm-2, 0.060 
items.cm-2, 0.036 items.
cm-2, 0.012 items.cm-2, 
0.007 items.cm-2, 0.029 
items.cm-2

NA MFB, 
MFG

blades [78]

P. oceanica NW Mediter-
ranean

Sediment: 79.61 ± 1.99 
items.g-1; pseudofeces: 
52.59 ± 1.22 items.g-1

PET, Nylon, 
PE, PVC

FB, FG none [79]

P. oceanica Spanish Medi-
terranian coast

3819 items.kg-1, 2173 
items.kg-1, 68-362 items.
kg-1

PVC, PU, PS, 
VC, PE, PTFE, 
EVA, HDPE, 
LDPE

FB, FL root, rhizome [80]
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Type of 
samples

Study location Abundance Types of MPs Shape of 
MPs

Absorption Ref.

Zostera ja-
ponica, Halo-
phila beccarii,  
Halophila 
ovalis, A. cor-
niculatum, A. 
marina

Guangxi, 
China

17.68 ± 8.10 to 611.75 
± 81.52 items.kg-1 dry 
sediment

PE, PP, PS, 
PVS, EPDM, 
PA

FB, FG, 
PL, FL, 
FO

shoots, branches, 
trunks, aerial 
roots

[81]

Z. marina Baltic Sea, 
Estonia

72,1 ± 9,1 g per 50 mL PVC FB, FL, 
Angular, 
other 
(incl. 
round, 
oval, etc.)

none [82]

Cladophora Laurentian 
Great Lakes

32 ± 10 items.g-1, 34 ± 22 
items.g-1

PE, PET, PAN, 
CA

MFB none [83]

Z. marina, 
Ulvaceae, 
Gracilariaceae

Northern 
Adriatic Sea

0.16 to 330 items.g-1 PS FB none [84]

Z. marina, 
Zostera noltii

Southern 
England and 
Wales

215 ± 163 items.kg-1 dry 
sediment, 221 ±  236 items.
kg-1 dry sediment

NA FB, FG, 
FL, Fiber 
bundles

shoot to the tip, 
leaf

[85]

C. nodosa, 
Caulerpa 
cylindracea

Ligurian Sea, 
Italy

NA HDPE FG root, rhizome, in-
ternodes, shoot, 
apical meristem

[86]

C. nodosa Italy 68 µg.L-1 (4.5 × 1012 
items.L-1 and 9.8 × 108 
items.L-1)

PS FG root, rhizome, 
shoot, leaf

[87]

Zostera cap-
ensis

South African 
Estuary

91 (SD = 85) items.kg-1, 99 
(SD = 102) items.kg-1, 83 
(SD = 63) items.kg-1, 89 
(SD = 58) items.kg-1, 94 
(SD = 106) items.kg-1 dry 
sediment

NA FB leaf [88]

Z. noltii, 
C. nodosa, 
Sporobolus 
maritimus

Cádiz Bay, 
Sothern Spain

Spring: 14.8 ± 2 items 
1000.m-2; summer & win-
ter: 12 ± 1.6 and 11.1 ± 1.3 
items 1000.m-2; autumn: 
8.7 ± 1,3 items 1000.m-2

NA FB none [89]

Halophila 
ovalis

Swan-Can-
ning Estuary, 
Perth, Western 
Australia

1000 ± 100,37 items.kg-1, 
972 ± 92,19 items.kg-1

PE, PP FG, FB blades [90]

P. oceanica Germany NA NA NA canopy, shoot [91]
H. ovalis, 
Halophila 
spinulosa, 
Halophila 
decipiens, 
Halodule 
uninervis

North-east-
ern shores of 
Singapore

12.65 ± 0.04 items.g-1 dry 
sediment, 69.65 ± 0.189 
items.g-1 dry sediment

PET, PA FB, FL, 
FO, FG, 
PL, Fiber 
bundle

canopy [92]
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Type of 
samples

Study location Abundance Types of MPs Shape of 
MPs

Absorption Ref.

Seagrasses, 
saltmarshes

United King-
dom

300 items.L-1 PVC, PET, PA FB, FG, 
Flake

stem, blades, 
branches, leaves

[93]

Saltmarsh Plants
Spartina 
alterniflora

Southeast Zhe-
jiang, China

9600-130725 and 200-4350 
n.m-2

PS, PE, PP, PU, 
PA, PC, PET, 
PVA, PVC, ABS

FG, FB, 
PL, FO

none [94]

S. alterniflora, 
Phragmites 
australis

Dafeng Elk 
National Na-
ture Reserve, 
China

2.97 ± 2.73 items.g-1; 5.39 
± 6.58 items.g-1

PET, CP, PE, PP, 
PA, PAN

FB, FG, 
FO 

none [95]

S. alterniflora Bahía Blanca 
Estuary, Ar-
gentina

> 20,060 items.m-2 HDPE, LDPE, 
PP, PS

FG, FL, 
FB, PL, 
FO 

none [96]

Salicornia 
europaea

Shawan Coun-
ty, China

28.00 ± 5.29 item.kg-1 to 
1426.67 ± 136.49 items.
kg-1

PE, PP FB, FL Root [97]

P. australis Lima Estuary, 
Portugal

NA PE FG, FB root, rhizome [98]

Macroalgae
Fucus vesicu-
losus

Helgoland, 
North Sea

NA PS, PA MBD, 
FG, FB

thalli [99]

Kelp Southern Cali-
fornia, USA

NA NA NA none [100]

Ulva prolifera Yellow Sea, 
China

4603.3 ± 1167.2 items.kg-1 
dry sediment

PS, PET FO, FL branches [101]

U. prolifera Yellow Sea, 
China

NA PE, PET, PS, PA, 
PP, rayon, PVC, 
PEU, (PE-PP)

MBD, FL, 
FG, FO, 
FB

thalli [102]

Pyropia 
yezoensis, 
U. prolifera, 
Ulva pertusa, 
Sargassum 
homeri, 
Cladophora 
sp., Undaria 
pinnatifida

Haizhou Bay, 
China

Culture periods: 0.17 
± 0.08 items.kg-1 fresh 
weight, non-culture peri-
ods: 1.04 ± 0.32 and 1.86 ± 
0.49 items.L-1

PR, Rayon, PP, 
PS, CP, PE-PP, 
PET, PAN, Nylon, 
PS&PAN&PM-
MA, PMMA

FB, FO, 
FL

branches, thalli [103]

Furcellaria 
lumbricalis, 
Cocctylus 
truncatus,  
Polysiphonia 
fucoides, 
Cladophora 
rupestris, 
Cladophora 
glomerata

Russian sector 2.6 ± 1.0 items.individ-
ual-1, 5.2 ± 1.8 items.
individual-1

PP, PVC, PE, PES/
PET, CE

FG, FL, 
FB

blades, thalli [104]
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Type of 
samples

Study location Abundance Types of MPs Shape of MPs Absorption Ref.

Rhodophyta Spain NA NA NA thalli [105]
Ulva sp., Ulva 
lactuca, Ulva 
flexuosa, Ulva 
intestinalis, 
Gelidium 
pusillum, 
Colpome-
nia sinuosa, 
Phycoclidia 
acanthophora, 

Hongkong 3.15 ± 6.82 fibers.g-1 dry 
sediment, 1.74 ± 3.79 frag-
ment.g-1 dry sediment

PE, PP, PA, 
PS, PET, 
PVC, PE/PP

FB, FG, PL, 
FO, FL

thallus [106]

U. prolifera, 
U. lactuca, 
Gracilaria 
lemaneiform-
is, Chondrus 
ocellatus, 
Saccharina 
japonica

The eastern 
coast of China

Macroplastics: 0 to 201.5 
items.kg-1 dry sediment; 
mesoplastics: 0 to 1178.0 
items.kg-1 dry sediment; 
MPs: 0 to 355.6 items.kg-1 
dry sediment

PS, PE, PET, 
Rayon

FB, FO, FL branches [107]

Gelidium 
corneum

San Lorenzo 
Beach (Gijón, 
Asturias)

NA PET, PEI, 
PES, PA

GN, FB none [108]

Caulerpa 
lentilifera, 
Gracilaria 
tenuistipitata

Qiuhai Lake, 
China

100 mg.L-1 PA, PS Microspheres none [109]

Polysiphonia 
morrowii, 
Blidingia Min-
ima, Cerami-
um rubrum, 
Ulva spp.

Argentina 
coastal area

38.20 ± 53.74 items.L-1, 7 
± 2.44 items.L-1

CE, PTFE, 
PP, PET, PE, 
PA, PES, 
PAN

FB, FG, FL, 
PL

thalli [110]

U. lactuca Southwest 
England

7.5 items.g-1 to 110 
items.g-1

Rayon, Cot-
ton Acrylic, 
PET, PE, 
PA, PP, PU, 
Nylon

FB, BD, FG none [111]

Mangrove
The mangrove ecosystem is one of the world’s most valuable 
marine habitats, both economically and ecologically. Indo-
nesia's mangrove forests currently cover 3,364,076 hectares, 
contributing about 23% of the global mangrove forest area 
and serving as home to 45 out of 75 valid mangrove species 
worldwide [112]. Mangroves effectively store long-term car-

bon inside their sediments, with an estimated global storage 
of 12 billion metric tons. Mangrove ecosystems are crucial 
for mitigating climate change and carbon sequestration. 
Coastal wetlands such as mangrove forests can absorb car-
bon 4-5 times more effectively than tropical terrestrial for-
ests. This ecosystem provides various services such as coastal 
protection, pollution control, and habitat for a large number 

PS: Polystyrene, PP: Polypropylene, PE: Polyethylene, PU: Polyurethane, PA: Polyamide, PC: Polycarbonate, CA: Cellulose Ace-
tate, CP: Cellulose Propionate, CE: Cellulose Ether, VC: Vinyl Chloride, BR: Polybutadiene/Butadiene Rubber, PET: Polyethylene 
Terephthalate, PES: Polyethersulfone, PVC: Polyvinyl Chloride, PVA: Polyvinyl Acetate, PTT: Polytrimethylene Terephthalate, 
PVS: Polyvinyl Sulfide, PAN: Polyacrylonitrile, PEU: Polyether Urethane, EVA: Ethylene Vinyl Acetate, PLA: Polyactic Acid, PBS: 
Polybutylene Succinate, PEI: Polyetherimide, ABS: Acrylonitrile Butadiene Styrene, PEST: Polyester, LDPE: Low-Density Poly-
ethylene, PTFE: Polytetrafluoroethylene, EPDM: Ethylene Propylene Diene Monomer, PES/PET: Polyester (Polyethylene Tere-
phthalate), PMMA: Polymethyl Methacrylate, HDPE: High-Density Polyethylene, PP-PE: Polypropylene-Polyethylene (blend), 
FB: Fiber, MFB: Microfiber, FG: Fragment, MFG: Microfragment, FO: Foam; PL: Pellet, GN: Granule, BD: Bead, MBD: Microbe-
ad, FIL: Filament, LN: Line, NA: Not Available.
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of fauna, which are essential components of the food chain 
[113]. The trapped MPs by mangroves hinder the tree and 
neighboring animals by impeding gas exchange and emitting 
toxic compounds [50, 114]. Many benthic organisms live 
within the mangrove forest, such as crustaceans and clams, 
which have deposit-feeding capabilities, thus increasing the 
chances of these organisms ingesting MPs that settle in the 
mangrove sediment [114]. 

Seagrass
Seagrass meadows and beds offer valuable ecological services 
such as nitrogen cycling [115], and carbon sequestration 
[116], and support commercial fisheries [41]. These graz-
ing grounds provide habitat, food, and shelter to a variety 
of related herbivores such as fish, gastropods, dugongs, and 
turtles [117]. Seagrass meadows also serve as a significant 
trap of particulate matter like MPs due to their particle-trap-
ping abilities [88]. Recently, MP presence has been reported 
in environmental samples of Padina sp., T. hemprichii, T. te-
studinum, S. ilicifolium, E. acoroides, C. rotundata, and C. 
serrulate [22, 78]. [82] investigated surface water in seagrass 
beds containing 0.04 to 1.2 MP/L, and the sediments of the 
seagrass beds had 0 to 131 MP/50 mL sediment-water sus-
pension. [70] and [90] found microfibers and microbeads 
encrusted on epibiont communities on T. testudinum and H. 
ovalis seagrasses. Marine herbivores can easily consume MPs 
in the ecosystem by preying on seagrasses [41], which MPs 
enter the lower trophic levels of coastal food chains. This ac-
cumulation of MPs may expose the seagrass flora and fauna 
to anthropogenic pollutants. Furthermore, MPs may leach 
toxins from the environment, including PAHs, PCBs, and 
DDTs, contaminating benthic organisms in seagrass beds. 
MPs collected in the seagrass beds could also potentially 
harm humans through the food chain [118].

Saltmarsh plant
Salt marsh plants, such as S. alterniflora, S. europea, and P. 
australis are known for their capability to trap suspended 
particles from water and appear to enhance salt marshes’ 
ability to capture plastic materials [94]. [95] found that the 
abundance of MPs in P. australis reeds (5.39 ± 6.58 items.g-1) 
was higher than in cord grass S. alterniflora (2.97 ± 2.73 
items.g-1). Reeds may have broader leaves and longer fibrous 
stalks, making it more straightforward for plants to absorb 
and hold MPs in the environment. Furthermore, there is S. 
europea which has diverse ecological values, including fresh 
consumption, fodder source to feed cattle, production of ed-
ible oil and salt, as well as applications in industry, biofuel, 
and the press cake [15, 119]. This plant has phytoremediation 
and biofiltration capabilities for pollutants from industrial 
or aquaculture systems in coastal or inland areas [120, 121, 
122]. Genus Salicornia can be categorized into three main 
groups: phytoextractors, phytostabilizers, and phytodegrad-
ers. The pythoextractors absorb and transport pollutants to 
the shoot for accumulation, excretion, or exudation, while 
the phytostabilizers stabilize pollutants within the root sys-
tem or rhizosphere. Phytodegraders break down pollutants 
into insoluble or nontoxic compounds [123, 124].

Macroalgae
Macroalgae are primarily linked to rocks or other substrates 
and play an essential ecological role in coastal environments 
[35], such as sediment stabilization and offering habitat for 
epifauna and infauna [100, 125]. They are also used as ani-
mal feed and human nourishment [125, 126], suggesting that 
MPs in macroalgae can be transferred to animals and hu-
mans through the food system. Four plastic-trapping mech-
anisms (wrapping, twining, embedding, and attachment) on 
or in macroalgae were revealed, explaining why the plant has 
such a strong potential to trap MPs. Twinning and attach-
ment are the two main ways U. prolifera catches polymers. 
It is easier to separate from the thalli than embedded and 
wrapped ones; therefore, the plastic trapping changes with 
the migration path [102]. [110] found macroalgae acquire a 
more significant proportion of high-density polymers (PAN, 
PMMA, CE, PES, and PE) detected in six species such as U. 
intestinalis, U. rigida, U. flexuosa, C. rubrum, P. morrowii,  B. 
minima. [99] investigated that the F. vesiculosus retains sus-
pended MPs on the surface and proved that seaweeds are an 
efficient pathway for MPs to reach marine benthic herbivores 
like common periwinkle L. littorea. [108] identified PEI and 
PE from G. corneum collected near sandy substrates. [104] 
also identified microfibers on filamentous algae like C. rupes-
tris, C. glomerata, and P. fucoides.  The report values for MP 
concentration in macroalgae differ between the algae species 
shown in Table 1 due to their varying ability to hold plastic 
particles. Coastal macroalgae are successfully employed as 
the most effective biomonitors of MP fiber contaminants in 
the coastal zone [111]. Macroalgae tend to accumulate MPs, 
resulting in biomagnification, making them sensitive bio-
markers of environmental conditions.

Types of Microplastics
Several researchers have studied the type of MPs in various 
halophyte plants and algae, and these review studies may pro-
vide valuable insights into the distribution of MPs in these 
ecosystems. [126] indicated a high tolerance plants to MPs, 
which can be a potential bio-trapper for MPs. Fig. 4a rep-
resents the primary forms of MP contamination in salt-tol-
erant plants and maritime macroalgae identified in the ref-
erence studies. MPs were quantified and categorized by type 
(fibers, fragments, films, foams, beads). Fibers (29%) were 
the dominant type of MP in field investigations, followed by 
fragments (24%) and films (14.2%) due to terrestrial mate-
rial transport. Water currents and tide patterns contribute 
to dispersing fibers in salt-tolerant plant habitats. Fibers 
frequently released from textiles have unique environmen-
tal impacts [127]. These fibers can configure marine species, 
causing physical injury and potentially affecting ecosystems 
if consumed [128].  Fragments from the mechanical deteri-
oration of more significant plastic items contribute to exten-
sive contamination and constitute a direct physical hazard to 
marine life [64]; their accumulation in sediments and coast-
al regions may have distinct biological implications in those 
areas [129]. Other forms such as pellets, foams, granules, 
microbeads, and filaments almost equally follow films. The 
majority of these fibers were identified in seagrass (37.2%) 
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(Fig. 5). Plastics are made of synthetic materials, including 
polyethylene, polystyrene, polyethylene terephthalate, poly-
propylene, polyamide, polyvinyl chloride, and nylon. Plastics 
are also made from semi-synthetic polymers, such as cellu-
lose derivatives [35]. The percentage of different types of MP 
polymers during the recent year has been described in Fig. 5. 
Due to its commercial worth and availability, PE (15.8%) is 
commonly used as MPs in experimental studies. Compared 

to other MPs like PA, PE, and PP harmed archaeal commu-
nities in the sediment of mangrove ecosystems [130, 131]. PS 
harmed macroalgal physiology [40]. Natural environment 
contamination studies have revealed that macroalgae are si-
multaneously exposed to various MPs. [104, 106] and [108] 
identified a combination of PE, PET, PS, and PP, with PE and 
PS being the most prominent.

Figure 4. a) The shape of MP contaminations; b) Technological for MP detection in salt-tolerant plants and macroalgae

Figure 5. Percentage of MPs polymer type in salt-tolerant plant and macroalgae

Environmental Factors Influencing MPs' Bioavailability
 Environmental factors are crucial for plant growth and sur-
vival, especially halophyte plants. Environmental factors 
encompass external elements that influence adsorption by 
altering the properties of MPs and organic pollutants or indi-
rectly alter heavy metal chemical speciation, transport, and 
the fate of MPs [132, 133].

Salinity 
Salinity is an important factor influencing the bioavailabili-
ty of MPs in the marine environment. Salinity can influence 
the adsorption mechanism by altering the potential of elec-
trostatic contact and the ion exchange capacity of MPs and 
organic pollutants. A greater quantity of Na+ may severely 

compete against cation exchange sites on the surface of MPs, 
leading to diminished organic pollutant adsorption [134]. 
[135] examined the adsorption of sulfamethoxazole by var-
ious types of MPs such as (PP, PA, PET, PVC) and observed 
that Na+ adhered more easily to negatively charged MPs 
via electrostatic interaction, displacing hydrogen ions from 
acidic groups with Na+, blocking hydrogen bond formation 
and decreasing the uptake capacity. [136] and [137] indicat-
ed that excessive salinity could have a salting-out impact on 
organic pollutants in solution, lowering their solubility and 
enhancing their adsorption onto MPs.

Temperature
The temperature significantly influences the abiotic and 



509Environ Res Tec, Vol. 8, Issue. 2, pp. 499-522, June 2025

biotic ageing processes of MPs. Temperature can influence 
the kinetic energy of polymer molecule chains, affecting 
the dynamics of numerous physical processes and chemical 
reactions in abiotic processes. Temperature influences cata-
lase, neutral phosphatase activities [138], and the adsorption 
process primarily by altering the composition of MPs [139]. 
In general, an optimal temperature exists for the adsorption 
mechanism. When ambient temperatures are below this op-
timum, raising the temperature increases the fluidity and 
solubility of organic pollutants. It decreases the adsorption 
energy of the endothermic process, therefore improving the 
adsorption [140]. [141] showed that 25⁰C was the ideal tem-
perature for adsorbing three synthetic musks on polypro-
pylene. Warmer temperatures exacerbated MP toxicity, and 
although this effect was observed only at concentrations not 
currently found in nature, these concentrations are feasible 
in pollution hotspots due to pulse pollution events or dete-
riorating environmental contamination in the future [142].

pH and ion strength
The pH primarily influences the adsorption by affecting the 
electrical characteristics of MPs, i.e. zeta potential [143]. pH 
can change MP’s zeta potential and heavy metal precipita-
tion. The MP zeta potentials decrease with rising pH value. 
At the same time, some metals' precipitation occurs in envi-
ronments with pH > 7 [133]. The increase in pH value en-
hanced the adsorption quantities of Ni, Co, Zn, Cd, Pb, and 
Cu onto MPs [144]. Conversely, the adsorption of Cr6+ onto 
MPs was observed to reduce the positive charge on their sur-
face [145]. Ionic strength can be modified with the surface 
charge, MP aggregation, sorption site, and heavy metal activ-
ity. MPs are inhibited by increasing ionic strength [144, 146]. 
High ionic strength can enhance heavy metal competition 
for sorption sites on MPs, decreasing heavy metal solution 
activity concurrently [147]. 

Dissolved Organic Matter (DOM)
DOM is a naturally occurring organic compound capable 
of enhancing the stability of MPs, modifying their surface 
characteristics, altering desorption capacities, and signifi-
cantly affecting the adsorption of organic contaminants on 
MPs [132, 148]. For example, the absorption of Cu, Pb, Ag, 
and Cr on MPs was increased by organic matter [149, 150]. 
This occurs because the organic matter that exists naturally 
adhering to the surface of MPs can enhance the binding with 
heavy metals. These enhancements could also be attributed 
to more adsorption sites and functional groupings on the 
MP surfaces [133]. Furthermore, the enhancement of DOM 
was observed to mitigate the toxicity of Ag+ and plastic 
nanoparticles to D. magna [150]. These findings suggested 
that organic matter modulated the desorption/adsorption, 
accumulation, and toxicity dynamics of pollutants associat-
ed with MPs. 

Surfactants
Surfactants are molecules possessing both lipophilic and hy-
drophilic structures, typically engaging with different phases 
with diverse chemical dissolution properties [151]. As a 

hydrophobic substance, MPs are easily combined with the 
hydrophobic end of surfactants, altering their physical and 
chemical properties, consequently changing MPs’ migratory 
and adsorption properties and potentially raising ecological 
and environmental concerns [152], [153]. The combination 
of surfactants with MPs is posed to aid the separation of MPs 
from water utilizing biodegradable organic reagents in flo-
tation processes. The adsorption of biodegradable organic 
pollutants on MPs by flotation emerges as a highly effective 
approach for MPs removal from aquatic environments. Ad-
ditionally, multiple studies have highlighted surfactants’ abil-
ity to accelerate the desorption rate of organic contaminants 
from MPs [154]. [155] observed significant enhancements 
in the desorption rate of chemical compounds from PE and 
PVC facilitated by surfactants during the desorption process.

TECHNOLOGICAL TECHNIQUES FOR DETECT-
ING MPS AND NPS

No standard method exists for identifying and measuring 
the MPs [156]. Due to scientific limits, there are considerable 
discrepancies between the data discovered for the levels of 
MPs or NPs in various samples (Fig. 4b). The biggest imped-
iment is the need for an established methodology for MPs or 
NPs characterization, detection processes, and preparation 
of samples [157]. Researchers have studied numerous meth-
ods, including microscopy, py-GC/MS, spectroscopy, nucle-
ar techniques, and flow cytometry. The MP analysis consists 
of several phases: sampling, processing, and analysis (identi-
fication, characterization, and quantification).

Microscopic Examination

Fluorescent Microscopy
A fluorescent microscope integrates the ability of a light mi-
croscope to magnify objects with the ability of chemicals to 
emit fluorescence. This approach has a 78% accuracy rate 
when analyzing the samples for MPs [158]. For staining 
MPs, various dyes (rose bengal, acridine orange, neutral red, 
rhodamine B, trypan blue, and Nile Red (NR)) have been in-
vestigated [159]. Fluorescence tracking of particles could be 
a better method. Still, it is one of the best currently accessible 
technologies for tracking non-metallic nanoparticles, such 
as protein interaction, cell signaling events, or distinguish-
ing spectrally overlapped fluorophores [160]. The chemical 
incorporation of fluorescence dyes into the polymer network 
reduces the risk of dye leaching [31]. Due to its strong affini-
ty, higher fluorescent intensity, and quicker processing time, 
NR is the dye that is better suited for MP staining among 
the ones that have been researched. The environment’s hy-
drophobicity affects the fluorescence of NR, which is hydro-
phobic by nature [161]. Other drawbacks of the NR staining 
method include its propensity to co-stain lipids in MP sam-
ples tainted with organic debris [162].

Scanning Electron Microscopy (SEM)
SEM examination was most helpful in obtaining high-resolu-
tion particle surface structure properties of the material and 
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elemental composition signatures. This technique utilized a 
picture by scanning the material’s surface with a relatively 
short electron beam [163]. Furthermore, Energy-dispersive 
X-ray spectroscopy (EDS) can be combined with this meth-
od to evaluate the composition of MPs. Combining SEM 
with EDS can be determined by size, shape, and morphology 
of MPs. Furthermore, SEM-EDS can eliminate non-plastic 
particles and analyze prepared samples to identify potential 
MPs based on their elemental signatures and surface proper-
ties. SEM images revealed typical cracks associated with en-
vironmental exposure and pigment particles consistent with 
manufacturer materials [163]. [31] identifies the presence of 
plastic beads in the plant tissues based on size and morphol-
ogy. However, this method cannot fully determine whether 
the observed particles are PE, PP, or others.

Spectroscopy

FTIR Spectroscopy
These are the spectroscopic methods that are most frequently 
applied to MP analysis. The measurement of the infrared ra-
diation that MPs absorb forms the basis of the FTIR analysis. 
The infrared spectrum serves as a sample's fingerprint and 
aids in identifying functional groups because various com-
pounds are composed of distinct atoms. This method works 
with liquid, solid samples, and gaseous materials [164]. A mi-
croscope is necessary for the localization of smaller particles, 
but FTIR can identify MPs. Progression of FTIR research, 
such as μ-FTIR could rapidly identify the morphological and 
chemical properties of MPs without harm (not appropriate 
for detecting particle sizes <10 µm) [165]. The method's ac-
curacy and efficiency have grown with machine learning and 
automated spectra evaluation [166]. The asymmetric vibra-
tions of polar groups are best studied by FTIR spectroscopy, 
whereas the symmetric vibrations of non-polar groups are 
better studied by Raman spectroscopy [167, 168].

Raman Spectroscopy
Raman imaging is an analytical technique utilized to deter-
mine molecular structure by investigating the vibrational 
frequencies of molecular bonds present in the sample [169]. 
This technique is particularly suitable for analyzing MPs at 
the micron-sized size with improved sensitivity to non-po-
lar functional groups and reduced water interference with a 
resolution of 1 μm [165, 168]. The ability to identify MPs 
without modification is lowered in conventional Raman 
spectroscopy. Custom-designed µ-Raman spectroscopy al-
lows for imaging, size quantification, and characterization of 
MPs [169]. By employing spherical gold nanoparticles (14 
to 46 nm) to boost the scattered signal, [170] could detect 
plastic particles at concentrations below 10 μg/mL utilizing 
surface-enhanced Raman scattering techniques [171] classi-
fied MPs based on their size (<100 µm, 100 to 500 µm, 500 
to 1000 µm, and >1000 µm), colour, shape, and type using 
3D Raman spectroscopy without consideration of composite 
fractions in mangrove sediment.

X-ray Photoelectron Spectroscopy (XPS)
XPS is a susceptible and particular technology that eval-

uates the elements present on the surface of a sample, not 
only general chemical information but also on the surface, 
tiny areas, and depth distribution when examining electron-
ic materials and detecting MPs [172, 173]. This method can 
identify and detect components and their binding condition 
in the material based on the photoelectric effect. Samples are 
exposed to X-ray radiation, which causes the sample surface 
to emit photoelectrons [162]. XPS can only analyze the top 
few nanometers of a surface that demands a high vacuum 
[174]. MP oxidation can improve organic contaminant ad-
sorption and increase MPs' function as contaminant vectors 
in the aquatic food chain. They did this by using XPS and 
other techniques to determine the adsorption characteristics 
of PP and HDPE for different pollutants.

Gas Chromatography and Mass Spectrometry (GC-MS)
GC-MS simultaneously monitored and quantified the mixed 
films [156].  The pyrolysis technique was paired with gas 
chromatography and mass spectrometry as a thermoana-
lytical approach to predict the chemical structure of MPs, 
concentration, and quality of the particles. However, the 
quantity and particle size of the MPs are inadequate [175, 
176, 177]. This combination cannot count or provide size 
and shape information since MPs are thermally destroyed 
throughout the process. In another study, [178] developed 
ten plastic polymers: PS, PVC, nylon-6,6, PE, PP, PMMA, 
NBR, PET, ABS, and PC using this method as a new tech-
nology that allows the low-level and exact identification of 
MPs in environmental samples [179] successfully identified 
and quantified PE, PS, PP, PVC, and PMMA in seafood using 
Py-GC/MS analysis.

Flow Cytometry
Flow cytometry is a well-known technology for quickly and 
automatically examining cells and particulate compounds 
in aqueous samples [180, 181]. Detection of MPs using flow 
cytometry was pioneered in 2016 [182], with the advantage 
that it can discriminate MPs from false positives (e.g. bacte-
ria) and detects particle size ranges from 0.2 to 100 µm using 
fluorescence straining, thus covering the low range of MPs 
(< 1 µm) [183, 184].  This approach is primarily used with 
liquid samples, where MPs are passed under a light beam one 
at a time, and the scattering and fluorescent intensity of the 
particles are identified by an accurate photomultiplier tube. 
Flow cytometry assessed and classified the samples depend-
ing on their size. In another study, it can also quantify plastic 
particles between 0.6-15 µm [162]. [185] showed this ap-
proach to identify polyethylene MPs with 70% efficiency, PS 
and PVC with 96% efficiency with 90s time analysis, which is 
significantly faster than spectroscopy.

Nuclear Technique
Radiotracer methodologies are extensively utilized for trou-
bleshooting due to their advantages over conventional track-
ing methods [186]. While the conventional technique needs 
intricate processes and a large number of animal subjects, 
the nuclear method provides an accurate,  sensitive, and re-
al-time technique using radiolabeled micro-nanoplastics as 
a tracer [187]. The presence of radionuclide activity can fa-
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cilitate the monitoring of specific components of MPs that 
can harm the environment [188, 189], thereby assisting in 
assessing plant responses, investigating mechanisms, and 
understanding the subtle interactions between plants, MPs, 
and other pollutants at a sub-microscopic level. Detecting 
MPs within plants presents a technical challenge due to their 
diminutive size and resemblance to biomass constituents.
The radiotracer should have the least or zero radiochemi-
cal toxicity to avoid any radiological threat to the operator, 
public, and environment [186]. [190] discovered a produc-
tion method for Iodine-131 radiolabeled polyvinyl chloride 
(PVC) as a possible radiotracer of MPs bioaccumulation and 
biodistribution studies in organisms due to their stability ra-
diochemical purity assessment [191] investigated the uptake 
of 137Cs on milkfish (C. chanos) from aquaculture farms in 
Jakarta Bay via seawater pathways experiment. Bioaccumu-
lation studies of 65Zn and 137Cs in M. micropterus from 
Jakarta Bay were also investigated via the water pathways. 
A high-resolution gamma spectrometer equipped with a 
high-purity germanium (HPGe) detector was utilized to 
determine the radioactivity concentrations of these tracers 
[192], and a gamma spectrometer with NaI(Tl) detector to 
analyze Cd accumulation in P. viridis through food pathways 
[193]. [194] exposed 14C-radiolabeled 24 nm and 250 nm 
polystyrene NPs in mollusk (P. maximus) using autoradiog-
raphy, which analyzed conduct 6 hours later, revealed that 
250 nm NPs accumulated in the intestine, whereas 24 nm 
particles were disseminated throughout the body.

POTENTIAL EFFECT OF MPS ON HALOPHYTE 
PLANT

The toxicity of MPs was investigated using a variety of ma-
rine organism models, including oysters, nematodes, and 
zebrafish. Early research on MPs’ toxicity concentrated 
mainly on marine organisms including, vertebrates and in-
vertebrates [195, 196]. The impact on halophyte plants is pre-
dominantly unexplored, as most research focuses on terres-
trial plants. MPs toxicity factors can be classified as physical, 
chemical, and biological components [194]. Because of the 
chemical and physical characteristics of salt-tolerant plants, 
the impact of plastics could damage their residents through 
enhanced bioavailability and have the potential to alter the 
functioning of the ecosystem. Coastal wetlands plants not 
only capture and confine MPs but can also constrain plant 
growth by influencing soil composition, nitrogen transport, 
pollutant adsorption and transport, hazardous release, and 

microbial populations [197]. Plastics, the majority of which 
are inert, are not easily degraded in coastal wetlands and can 
be exploited as a carbon source. Despite that, as plastic debris 
gradually degrades into tiny plastic pieces, plant-interrooted 
microorganisms can exploit these MPs as a carbon source, 
changing the functional features of plants [198].
Bioaccumulation of MPs and NPs affects various marine 
organisms by changing activities such as reproduction, 
growth, feeding, and survival, as well as the behavior of fish 
and filter-feeding organisms [118]. Several studies indicate 
that MPs can potentially influence phytotoxic effects on the 
structure and function of salt-tolerant plants [199, 200]. 
Interaction between mangrove roots and polystyrene (PS) 
polymers may restrict the transfer of energy and substances, 
leading to decreased nutrient uptake and light penetration 
[201, 202]. This interaction can cause damage to the cellular 
structure through puncturing, as well as morphological al-
terations such as the thickening of cell walls and deformation 
of thylakoids. Moreover, it disrupts nutrient cycles by inhib-
iting nitrogen fixation by diazotrophs, elevates toxin levels 
that interfere with metabolic processes, and inhibits micro-
bial activities [203]. Fig. 6 summarizes microplastic effects 
on halophyte plants and maritime macroalgae observed in 
review studies.
MPs significantly increased the dry weight of the root and 
shoots, the relative growth rate, and the decrease in the main 
shoot length in M. spicatum (1753) and Elodea sp. [204]. Re-
cent studies also indicate adverse effects on the growth of mi-
croalgae and terrestrial plants; tiny microplastics (200 nm) 
and nanoplastics adsorbed on roots compile in plant tissues 
and eventually translocate to shoots [40], causing toxicity, 
increased oxidative stress, obstruction of light and nutri-
ent entry, turbidity of the water, DNA damage, changes in 
gene expression, reduced photosynthesis, inhibition of seed 
germination, and affecting the shape and thickness of root 
and leaf cell membranes [87]. [103] showed that the floating 
macroalgae can spatially and temporally influence plastic 
dispersion via their trap and release. The impact of MPs on 
plants, including halophytes, gets more problematic in saline 
conditions. Salinity and MP pollution stress damage numer-
ous essential plant activities like respiration, photosynthesis, 
antioxidant defence mechanisms, nutrient absorption, and 
transfer. The most prominent consequences found in pub-
lished research [1, 123]. The risk-level criteria for MP pollu-
tion are showed in Table 2.

Risk category I II III IV
Polymer index values < 10 10 to 100 101 to 1000 > 1000
Pollution load index values < 10 10 to 20 20 to 30 > 30

Table 2. The risk-level threshold for microplastic contamination [205]



512 Environ Res Tec, Vol. 8, Issue. 2, pp. 499-522, June 2025

POTENTIALS OF HALOPHYTE PLANTS AND 
MACROALGAE: BIOREMEDIATION OF MPS

Multiple plants with various taxonomic characteristics can 
be utilized for successful phytoremediation of MP [206]. 
Seaweeds (F. vesiculosus) can retain suspended MPs on 
their surfaces. Aquatic plants are unaffected ecologically by 
nano- and microplastics at environmentally realistic concen-
trations. These plant systems could be explored further for 
MPs bioremediation potential [84, 99]. Seagrasses, aquat-
ic macrophytes, and their accompanying bacteria may be 
promising candidates for MPs bioremediation in marine and 
brackish environments [206]. MPs are further fragmented 
into nanoplastics, which are even more challenging to detect 
and remove. Advances in modeling and monitoring tools 
are critical for tracking MP migration, accumulation, and 
hotspots. These tools enable focused cleanup activities and 
guide future mitigation approaches.

CONCLUSIONS AND PERSPECTIVES

The current review emphasized microplastic pollution, its 
degradation, technological approaches, and the interaction 
mechanism for negatively impacting the halophytic plant 
and macroalgae. The constant accumulation of MPs in the 
environment inevitably causes environmental issues and 
health emergencies. Currently, the study of MP contamina-
tion is restricted not only to rivers, oceans, and other wa-
ter-based ecosystems but also to coastal environments and 
various other ecosystems. There has also been an increase in 
the depth of study. Considering the study of MPs on salt-tol-
erant plants, dissimilar investigations admitted numerous 
gaps, including the incidence of MPs on wild mangroves and 
mechanisms of MPs on plant tissue for reducing theirs. At 
the same time, other research emphasized the distribution, 
quantity, characteristics, and consequences of MPs on plants 
and algae. This review summarizes a new tool for investigat-
ing MP toxicology that is predicted to address the difficul-
ty of accurately quantifying MPs in plants and algae, hence 
providing a basis for understanding and evaluating the MPs’ 

toxicity in the body.
Research on MP contamination in coastal environments, 
especially salt-tolerant plants and macroalgae, still needs to 
be improved. According to this, the subsequent research di-
rections should be taken to create comprehensive pollution 
assessment methods and integrate them into routine moni-
toring of the environmental schemes. The ecological risk as-
sessment framework for MP pollution in the coastal environ-
ment needs to be clarified. The United Nations Environment 
Programme has linked the magnitude and seriousness of MP 
contamination to climate change. However, concerning the 
coastal environment as a risk evaluation is still needed to 
build a comprehensive MPs contamination assessment sys-
tem and environmental monitoring protocols. The majority 
of research on MPs and their impact on ecosystem services 
takes place in laboratory settings, where the ecological con-
ditions significantly diverge from the genuine environment. 
MPs have nanometer-sized particles, making measuring 
nanoplastic concentrations in the actual environment chal-
lenging. Consequently, additional research is needed to as-
certain the effects of MPs on ecosystem functions in the field 
environment. Creating strategies for preventing and con-
trolling policies for MP pollution in coastal environments to 
identify the primary sources of contamination, reduce MP 
emissions and pollution from the root, eliminate the source 
of MP deterioration, and investigate factors for aggravating 
MP pollution in coastal environments based on the current 
research.
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