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ABSTRACT The security of sensitive data is a crucial issue in the information age. While the existing encryption protocols
cannot always guarantee the required level of security due to the rapidly increasing computational capability of attackers,
developing new cryptographically strong encryption techniques is of great importance in modern computer science. One
of the advanced approaches in the field of cryptography is chaos-based encryption. In this study, we propose an efficient
algorithm for arbitrary multimedia data encryption using the novel finite-difference scheme with adaptive symmetry based
on the Gingerbreadman chaotic map. In the experimental part of the study, we use several analysis techniques to prove
the presence of chaos in the dynamics of the reported discrete map and investigate the dependence between system
dynamics and symmetry coefficient. Parametric chaotic sets and the largest Lyapunov exponent plots are given to evaluate
the dynamics of the investigated finite-difference model. NIST statistical tests were applied to assess the properties of the
developed pseudo-random numbers generator, and correlation analysis was performed to evaluate the secrecy of the
encrypted image. It is experimentally shown, that varying the symmetry coefficient can significantly increase the keyspace
for the encryption algorithm based on the symmetric Gingerbreadman map. The results of this study can be used to
develop encryption software, including secure text messengers or stream data ciphers.
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INTRODUCTION

Pseudo-random number generators are broadly used in cryptog-
raphy (Menezes et al. 2018) and mathematical simulations when
implementing or imitating various stochastic processes (Rubinstein
and Kroese 2016). One of the basic pseudo-random number gener-
ators is a linear congruential generator based on linear equations
with modulo operation. The progress of nonlinear science and al-
gorithms has brought multiple applications of deterministic chaos
into the field. It is known, that chaotic properties like exponential
divergence of trajectories or topological mixing have a strong cor-
relation with the requirements that are typical to cryptographic
systems (Qayyum et al. 2020).

In the last decades, there have been numerous attempts to de-
velop text, sound, image, and stream encryption schemes based on
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chaos. The key component of such chaos-based encryption algo-
rithms is the pseudo-random generator, which provides necessary
diffusion and confusion properties. One of the crucial elements
of a digital pseudo-random number generator is the bit extraction
method. There are several known approaches to bit extraction:
the comparison of values produced by the chaotic map with a cer-
tain constant which is often calculated as a mean value or mixing
with values produced by another map with the same distribution
(Elmanfaloty and Abou-Bakr 2019; Irfan et al. 2020), extraction of
several least significant bits from floating or fixed point precision
number (Tutueva et al. 2020; Hobincu and Datcu 2018). In addition,
there are even more complicated schemes that combine the pre-
viously mentioned methods with various discrete operations like
modulo (Wang and Cheng 2019; El-Latif et al. 2022; Liu et al. 2017;
Moysis et al. 2020). To resolve the relevant problem of chaos degra-
dation in low-bit hardware, advanced techniques for increasing the
length of the oscillation period were developed, e.g. perturbation
of chaotic sequences (Garcia-Bosque et al. 2018).

The core of a discrete chaos-based pseudo-random number
generator is usually a chaotic map (or mapping) in the form of
the finite-difference equation. Many implementations of encryp-
tion schemes based on chaotic maps are known from literature
(Elkamchouchi et al. 2020; Maolood et al. 2022; Sethi et al. 2022;
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Kanso et al. 2022; Alghamdi et al. 2022). There are two key meth-
ods commonly used in image encryption algorithms - confusion
and diffusion. Confusion involves changing the pixel positions,
while diffusion alters the color values of the pixels. One of the
well-known confusion methods is Arnold’s confusion method. For
instance, in (Liu et al. 2016), the Arnold transform is combined
with the hyperchaotic map to encrypt the image by confusion. An-
other approach, described in (Zhang and Wang 2014), involves
performing the Arnold transformation on pixel blocks and then
using a composite key as the initial value for a chaotic sequence
to scramble the image. In addition, some cyclic shift methods
have been proposed recently, such as the one introduced in (Wang
and Gao 2020), which employs a chaotic shift transform to alter
pixel positions and uses row and column replacement for pixel
confusion. Some researchers go even further and try to incorpo-
rate various field-specific techniques such as DNA coding with
both hyperchaos and one-dimensional composite chaos in order to
obtain highly stable and robust encryption algorithms (Wan et al.
2020).

Further development of chaos theory led to more sophisticated
image encryption algorithms. For example, DNA encoding has
been combined with chaos theory to enhance image encryption
methods in (Wang et al. 2022; Wen and Lin 2024; Liang and Zhu
2023). In (Wang and Su 2021), a new key is generated using the
original image and a public key. The rows and columns of the
image are then scrambled using a PWLCM generation matrix, and
the resulting image is encrypted using DNA encoding. The study
(ul Haq and Shah 2021) introduces a diffusion mechanism called
DMRNRP, which is based on random numbers related to the plain
text. The DNA sequence is diffused using this mechanism, and
then converted to decimal format according to DNA decoding
rules, resulting in three equal images. In (Talhaoui and Wang
2021), a pseudo-random sequence generated by CML (coupled
map lattice) is used to perform bit-wise XOR operation on the
pixels of the plain image.

The resulting image is then subjected to DNA encoding to ob-
tain a DNA matrix, which is used to generate new initial condi-
tions for CML. Additionally, in (Liu and Wang 2011), an image
encryption scheme based on a four-wing hyperchaotic system,
compressed sensing, and DNA encoding is proposed. Finally, in
(Abuturab 2020), an image encryption algorithm that combines
a quantum chaotic map, Lorenz chaotic map, and DNA coding
is designed, improving both the reliability and security of the
encryption scheme. In this paper, we consider the possibility of
constructing a reliable chaos-based pseudo-random number gener-
ator with an increased keyspace from a well-known and relatively
simple Gingerbreadman chaotic map. One technique for encrypt-
ing the message using the Gingerbreadman chaotic map and S8
permutations was previously described in (Khan and Asghar 2018).
However, the Gingerbreadman map in its original form does not
provide a sufficient keyspace and the choice of encryption key is
complicated due to its relatively limited dynamics.

In our study, we used an adaptive symmetry approach to con-
struct the improved symmetric version of the Gingerbreadman
map and investigate its superior properties using the analysis
methods of nonlinear dynamics and mathematical statistics. The
main contributions of the presented research are as follows:

1. A novel 2D symmetric chaotic map based on a modified Gin-
gerbreadman map is introduced;

2. The pseudo-random generator with extended keyspace is
developed using an adaptive symmetry approach;

3. The statistical and nonlinear analysis shows the applicability
of the proposed solution to the encryption tasks.

4. The encryption algorithm based on the symmetric Ginger-
breadman map is presented and verified experimentally.

The rest of the paper is organized as follows. Section 2 describes
the proposed modification of a Gingerbreadman chaotic map and
provides phase space and LLE analysis. In Section 3 we present
and evaluate the pseudo-random generation algorithm based on
the proposed chaotic map using the NIST tests. Section 4 is devoted
to the encryption algorithm based on the proposed chaotic map.
Correlation and histogram analysis are applied to analyze the
security of image encryption with the proposed technique. Finally,
section 5 concludes the paper.

SYMMETRIC GINGERBREADMAN MAP

The Gingerbreadman map is a well-known chaotic mapping
(Barnsley et al. 1988). Such maps as logistic map, or the Arnold’s
Cat map (Xiao et al. 2009) can be used in cryptography to construct
ciphertext sequences. However, there are some known issues with
chaos-based encryption, namely, the chaos degradation in finite
precision hardware implementations and limited keyspace of com-
putationally simple chaotic maps. Let us construct a novel discrete
dynamical system with symmetric properties using the approach
described in (Karimov et al. 2017; Butusov et al. 2018).

xn+1 = −yn + s(b|xn|+ a)
yn+1 = xn − (1 − s)(b|xn+1|+ a)

(1)

where s = 0.5, a = 1, b = 1 are parameters of the map.
The proposed map possesses not only geometrical symmetry

of the phase space but also allows backward-in-time calculation of
xn point using xn+1 by swapping the operators in the right-hand
side function of the map. The equation 1 is obtained as follows.
The key operation is handling a delta pulse before and after the
autonomous rotation achievable during a small time interval when
the delta pulse takes place and the phase variables are getting
incremented. The original Gingerbreadman map is a modification
of a non-damped system, from which the Henon map (Henon
1976) can be derived as:

ẋ = y

ẏ = −x − (x2 + a)
∞

∑
n=−∞

δ(t − Tn),
(2)

where the absolute value of the x variable is being taken instead
of a square in the right-hand side function of the y:

ẋ = y

ẏ = −x − (b|x|+ a)
∞

∑
n=−∞

δ(t − Tn),
(3)

Thus, following the key principles of obtaining a symmetric
map (Butusov et al. 2018) from a non-symmetric one, the increment
of phase variables occurs in a small time interval (nT, nT + ϵ),
when there is a delta pulse present:

x(t + ϵ) = x(t) + ϵy(t)
y(t + ϵ) = y(t)− ϵx(t)− (|x|+ a)

(4)
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By denoting x(t + ϵ) = x+, x(t) = x0, y(t + ϵ) = y+, y(t) = y0
and taking ϵ → 0 one can obtain:

x+ = x0

y+ = y0 − (|x|+ a)
(5)

Taking into account, that between any delta pulses the system
is autonomous, one might get an exact solution on a finite time
interval τ:x(t + τ)

y(t + τ)

 =

 cos(α) sin(α)

−sin(α) cos(α)


x(t)

y(t)

 (6)

Combining equations 5 and 6 and dividing a delta pulse into
two parts - one applied before the autonomous rotation and one
after it, one can obtain a new symmetric map:

( xn+1
yn+1

)
=

(
cos(α) sin(α)
−sin(α) cos(α)

) (
xn

yn−s(b|xn |+a)

)
+

(
0

(1−s)(b|xn+1|+a)

)
(7)

Where α, is a perturbation parameter, connected to the pertur-
bation frequency. For α = 3Π

2 the following holds:

xn+1 = −yn + s(b|xn|+ a)
yn+1 = xn − (1 − s)(b|xn+1|+ a)

(8)

The proposed system possesses three parameters: s is responsi-
ble for the symmetry of the system and the corresponding affine
transform of the phase space, b is a bifurcation parameter, which
changes the general dynamics of the map and a is responsible for
a map scale, "zooming" the phase space in and out.

By varying the b coefficient one can change the behavior of the
map, either driving it into a harmonic regime of oscillations or re-
distributing its chaotic seas and islands of stability in chaotic mode.
Considering the map as a source of pseudo-random numbers, one
needs to choose this parameter value carefully because the system
is required to be in a chaotic regime to keep the topological mixing
on the desired level. In this paper, we will refer to the b coefficient
as the ’distribution coefficient’.

As one can see from Figure 1, varying the b coefficient changes
the size, position, and distribution of the stability islands in a
chaotic sea. While different values of b correspond to various map
dynamics, all depicted phase portraits still possess horizontal sym-
metry, unlike the original Gingerbreadman map. Let us vary the
adaptive symmetry coefficient s in the symmetric Gingerbread-
man map (1). One can see from Figure 2 that the phase portrait of
the map can be stretched, compressed, and rotated by changing s
while preserving the overall dynamics of the map that was initially
set by the b parameter value.

Let us plot the relative density-based colored one-dimensional
bifurcation diagrams (Moysis et al. 2023) to illustrate how the pa-
rameter influences the dynamics of the proposed chaotic map. In
our study, we use a modified version of the density-color bifurca-
tion analysis tool proposed in (Kopets et al. 2024). The modification
consists of calculating the relative density of points for each pa-
rameter value (for each vertical line) separately. Also, histograms
are calculated over the entire range of values of the state variable.
This approach allows one to mark the ranges of values of the state
variable with greater contrast and more clearly depict the orbits
that are close to periodic. Bifurcation diagrams for the proposed
map are shown in Figure 3.

Figure 1 The phase portraits of the proposed symmetric map
acquired by varying the distribution coefficient b. The value
of the symmetry coefficient is fixed and equals 0.5. Different
colors represent trajectories of the system’s variables obtained by
slightly varying the initial conditions in the range of [-10; 10].

Figure 2 Phase spaces of the symmetric Gingerbreadman map
plotted for various values of symmetry and distribution coeffi-
cients. One can see that for every map simulated with a symme-
try coefficient s = 0.5, the phase space is symmetric with respect
to y = 0 axis

Taking into account the deformation of phase space shown in
Figure 2 and relative density-based colored one-dimensional bifur-
cation diagrams shown in Figure 3, one can hypothesize that the
developed map possesses a keyspace larger than the keyspace of
the original map due to the introduction of the symmetry parame-
ter. It should be noted, that usage of chaotic maps in cryptography
requires strict fulfillment of certain conditions set. A most known
version of such conditions was proposed by Alvarez et al. in their
comprehensive work on chaos-based cryptosystems (Alvarez and
Li 2006):
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Figure 3 Relative density-based colored bifurcation diagram for
the symmetric Gingerbreadman map for variable parameters a, b
and s.

1. The key should be precisely defined;

2. The keyspace from which valid keys are to be chosen should
be precisely specified and non-chaotic regions must be ex-
cluded;

3. The useful chaotic region should be discretized in such a way
that the avalanche effect is guaranteed, i.e. two ciphertexts
encrypted by two slightly different keys k1, k2 ∈ K will be
completely different;

4. To provide sufficient security against brute-force attacks, the
key space size should be k > 2100.

5. The ciphertext should be statistically undistinguishable from
the output of a truly random function, and should be statisti-
cally the same for all keys.

In order to satisfy the requirements for keyspace size, chaotic
maps with multiple bifurcation parameters and state variables are
usually considered (Gafsi et al. 2020; Elgendy et al. 2016). However,
implementing the map with extra parameters makes it complex
to cope with the second rule. In such a case, a thorough analysis
of the map properties including the Largest Lyapunov Exponent
calculation and bifurcation diagrams plotting must be held. The
third rule is often satisfied after the second one due to the nature
of chaotic systems properties and a generally high velocity of
trajectory divergence even when the difference in initial conditions
or parameters of the systems is relatively small.

Evaluating the chaotic properties of symmetric Gingerbreadman
map

By calculating the largest Lyapunov exponents for the system
under investigation, one may evaluate the influence of s and b
coefficients on the dynamics of the proposed map. In order to
analyze the behavior of the map we will use two-dimensional
diagrams with respect to initial conditions and different values of
a distribution coefficient b and symmetry coefficient s.

Let us perform the LLE analysis of the symmetric Gingerbread-
man map with the same sets of initial conditions as for experiments
shown in Figure 1. One can see that the discovered islands of stabil-
ity correspond directly to the empty spaces and areas with periodic
trajectories on the phase portraits. Analyzing the results further,
we can correctly identify the required range of parameters and
initial conditions that are suitable for the generation of the desired
chaotic key space.

Let us calculate the LLE values for the proposed map. The
symmetric Gingerbread map 1 is a finite-difference equation of
order two, thus the Jacobian matrix will have a size of 2x2 and can
be written as:

J =
dF(yn)

d(yn)
=[

sbsign(x) −1
1−(1−s)bsign(−y+s(b|x|+a))sbsign(x) (1−s)bsign(−y+s(b|x|+a))

] (9)

In order to obtain the largest Lyapunov exponent for a specific
system with designated initial conditions set one might consider
initializing a unit vector R0 = randvec, ||R0|| = 1, i = 1, 2, ..., N,
where N is the number of iterations of the finite-difference scheme,
in the way that:

Ri = JR
′

i−1, (10)

where R
′

i is the result of vector normalization Ri
||Ri || = R

′

i on every
iteration of the finite-difference scheme. After the calculation of the
desired number of iterations k has been finished, one can combine
all expansions ||Ri||, i = 1, 2, ..., N in the following way:

1
N

N

∑
i=1

ln||Ri|| = L, (11)

where L is the largest Lyapunov exponent value which can be used
to detect the general presence of chaos and quantify the stability
of the map.

If the LLE value for certain parameters and initial conditions
is not positive, then the map is not chaotic and the trajectories
starting in close proximity will not diverge. The results of LLE
analysis for various initial conditions and parameter values are
presented in Figures 4 and 6.

By varying the symmetry coefficient s one can transform the
phase space of the map, rotating it clockwise by choosing values
that are less than 0.5 and counter-clockwise by doing the opposite
(Figure 5). The resulting maps preserve chaotic properties, but the
distribution of chaotic oceans and islands of stability in the phase
space changes (Figure 6)

Figure 6 shows that the largest Lyapunov exponents are positive
for almost the whole considered space initial conditions. However,
the stability islands are being stretched and rotated following the
deformation of the state space, so the initial conditions are to be
chosen with care.
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Figure 4 Two-dimensional LLE diagrams for the proposed adap-
tive symmetric Gingerbreadman map. Dark blue regions repre-
sent the islands of stability, where the map possesses non-chaotic
behavior, and all the other colors correspond to the chaotic
oceans, where the map trajectory highly depends on the cho-
sen initial conditions.

Figure 5 Phase space diagrams of symmetric Gingerbreadman
map obtained by varying the symmetry coefficient s. The general
symmetry of the phase space is preserved.

CONSTRUCTING A PSEUDO-RANDOM NUMBERS GENER-
ATOR

The main idea of using the adaptive symmetric chaotic map as the
pseudo-random number generator is that the bifurcation proper-
ties of such maps are not significantly affected by the changes in the
symmetry coefficient. Besides, using additional coefficients allows
one to increase the keyspace of the pseudo-random generator thus
improving the cryptographic strength of the corresponding encryp-
tion algorithm. Taking into account a specific range of parameters
where the trajectories of the map remain consistently chaotic it is
possible to obtain the keyspace which is limited only by chosen
data type restrictions. If the initial values for the system produce
trajectories that remain inside the chaotic sea together with ma-
nipulations over the symmetry and distribution coefficients, the
resulting cyphertexts are going to be completely different even if
the distance between two chosen parameter values is very small.

Figure 6 LLE map obtained using various values of symmetry
coefficient s. All experiments were held for different initial condi-
tions in the interval [-10; 10] for both x and y with a resolution of
10, 000 points per axis.

The dimension of the proposed symmetric map equals two
(x0andy0), and there are 3 key parameters (a, b, s) that control the
behavior of the map, giving 5 potential keys total. To apply the
developed map to encryption purposes one needs to evaluate the
possible range of parameters at which the map exhibits chaotic
behavior. This range can not be easily specified because the map
behavior may change significantly based on each set of parameters.
For every chosen parameter set it is required to confirm if this set
is suitable for generating the chaotic sequence. Let us investigate
the behavior of the system with parameter values chosen from the
range of [0;1], allowing us to use any of the 253 variations for a
single parameter.

The initial conditions, on the other hand, can be taken almost
arbitrarily, which float64 data type provides (264 possible values).
The comparative analysis of LLE (Figure 6) and phase space (Fig-
ure 5) diagrams shows that the choice of initial conditions is more
predictable, and we will take them from the range of [-10;10]. The
exact number of suitable parameter sets for the float64 data type
with 53 bits of significant precision can not be specified due to the
number of experiments it would take (253 per single parameter,
making it 2159 possible combinations of parameter values). How-
ever, we managed to conduct 227 experiments in batches of 219

various sets of parameters per single computing iteration. Then
a percentage of appropriate sets where the map possesses chaotic
behavior was taken for every batch and the average value for the
whole set of 227 experiments was found. Initial conditions were
chosen randomly in the range of [-10;10] for each experiment. The
parameter values were chosen over the whole possible plane in the
specified parameter range of [0;1] with a resolution of 1024 for both
a and b coefficients and with a resolution of 512 for a symmetry
coefficient s. 10,000 map iterations per set were performed.

The acquired results have shown that the amount of possible pa-
rameter sets over the specified plane is around 62%. We then took
the approximate value and expanded it over the whole set making
it (2159)× 53%× 2128 which equals 2286 possible key sets that drive
the map into a chaotic regime. Thus, the proposed map fulfills the
abovementioned requirement for the keyspace size of the chaotic
system used as the foundation of cryptographic algorithms (Smart
et al. 2018; Li et al. 2018; Hu et al. 2017). The comparative table
of keyspace sizes for some chaos-based encryption algorithms is
presented in Table 1.

CHAOS Theory and Applications 35



■ Table 1 Comparative table of key space sizes for some chaos-
based encryption algorithms

Algorithm Keyspace Size

Proposed scheme 2265

Based on Chen’s chaotic map (Guan et al. 2005) 2 × 1042

Based on DNA sequences and chaotic maps (Liao et al. 2018) 2194

Based on chaos in spatially extended systems (Song et al. 2013) 2216

The generation of the ciphertext and the whole process of en-
coding in this paper follows the approach similar to the Vernam
cipher (Foster 1997):

1. Generate a sequence of (xk, yk), k = 1, 2, ..., M values using the
proposed symmetric map and the provided key. M = n ∗ 12,
where n is the length of a sequence required to be sent;

2. In order to get a cipher sequence one should convert obtained
values of xk, k = 1, 2, ..., M into their binary representation
and pick 52 bits from every value. Thus, the sequence of
ones and zeros with a random distribution is obtained. The
randomness can be proven by using the NIST test suit, which
is performed further in this study;

3. The ASCII code of every symbol in a message is divided into
three parts corresponding to hundreds, tens, and ones;

4. Every part of the symbol is converted from decimal to binary,
thus requiring 3 ∗ 4 = 12 bits per symbol;

5. A bit-wise operation over both sequences using the exclusive
OR (XOR) operator is performed. As a result, one gets a
sequence of data encrypted with a chosen cipher key.

To clarify the encryption algorithm further, we provide a block
diagram presented in Figure 7.

Figure 7 Block diagram of the Vernam Cipher algorithm for text
data encryption coupled with proposed ciphertext generation
scheme.

To decipher the encrypted information one can use the reversed
algorithm, taking the ciphered sequence and using XoR with the
cipher key to obtain the original data sequence.

In order to evaluate the randomness of the developed pseudo-
random numbers generator based on the symmetric Gingerbread-
man map we applied NIST statistical tests with various combi-
nations of keys. Experiments were held for multiple sequences
obtained from the proposed finite-difference scheme (see Figure 8).
The parameters for the map were taken from the chaotic sea areas
using the abovementioned LLE diagrams and were as follows:
x0 = 1.3, y0 = 0.1, s = 0.13, a = 1, b = 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 8 Results of NIST tests (a − n) held over the cipher key
sequences made from the bits taken from the end of the binary
representation of x values generated using symmetric Ginger-
breadman chaotic map.

The results of the NIST tests show that obtaining a cipher se-
quence that is indistinguishable from a truly random one can be
achieved using any of the bits from the end of the binary system
representation. However, to quantify the impact of a symmetry co-
efficient on the statistical properties of the generated sequences, we
performed additional tests with symmetry value variation. In the
next group of tests, we analyzed the influence of symmetry coeffi-
cients chosen from the range [0.02; 1] on system dynamics. The rest
of the parameters are as follows: a = 1, b = 1, (x0, y0) = (3.15; 0.1).

By performing NIST tests over the sequences acquired from
the pseudo-random number generator based on the symmetric
Gingerbreadman map we discovered that the obtained sequence
is indistinguishable from a truly random one and thus the fifth
requirement for chaos-based cryptosystems (5) is satisfied. Besides,
the value of the symmetry coefficient must be chosen with care
and might provide different effects for various parameters’ values,
but it certainly allows one to considerably increase the keyspace
without significant overhead computational costs.

36 | Fedoseev et al. CHAOS Theory and Applications



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 9 Results of the NIST tests for a cipher key sequence gen-
erated by taking the 5th bit from the end of a binary represen-
tation of each x value from 1,000,000 iterations of symmetric
chaotic map.

ENCRYPTION ALGORITHM BASED ON THE KEY SE-
QUENCE OBTAINED FROM THE SYMMETRIC GINGER-
BREADMAN MAP

Using the proposed pseudo-random number generator one can
obtain a bit sequence to be a cipher key allowing one to encrypt
and decrypt certain information. We need to specify some key
points in order to perform the quality analysis of the proposed
scheme as follows:

1. Statistical properties of the encrypted data should not be dis-
tinguishable from such a digital noise source

2. The decryption process must correctly reconstruct the original
information even if the noise is present in the transmission
channel

In the case of an encryption algorithm being applied to an
image with an RGB color scheme, the basic algorithm requires
some modifications. The data stream is to be represented as a
sequence of red, green, and blue values in the range of [0; 255]
grouped as 3 per pixel. Each color value is coded by 8 bits, where
the highest value of 255 would be represented in a binary form as
"11111111", thus requiring a ciphertext sequence with the length
of 8 × 3 = 24 to encrypt each pixel value. In the case of the
encryption algorithm based on the chaotic pseudo-random number
generation, it requires 24 iterations of the chaotic map from the
chosen starting point. For a picture with the resolution of 256 ×
256 pixels, it will require a total of 256 × 256 × 3 × 8 = 1572864
iterations, but in our case we double this amount to perform an
additional encryption cycle, providing both vertical and horizontal
encryption of the data, thus making the end total 1572864 × 2 =
3145728. The schematic representation of the proposed encryption

algorithm with a picture with the resolution of 3 × 3 is given in
Figure 10.

Figure 10 Schematic representation of the encryption process
applied to the picture with the size of 3 × 3 pixels.

In order to evaluate the statistical properties of the crypto-
graphic algorithm and the encrypted images we analyzed the
histograms of color distribution (Figure 11) and performed a cor-
relation analysis (Figure 12) over a classic sample image named
Baboon.png. The more balanced the distribution of the histogram
is, the better the encryption algorithm copes with its task (Ahmad
and Hwang 2016).
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Figure 11 Original, encrypted and decrypted images of
Baboon.png and the histogram analysis for each RGB channel.

The obtained results show that the histogram analysis of an
encrypted image cannot reveal the image from digital noise, thus
fulfilling the first condition for encryption algorithms. In compari-
son with other discussed chaotic encryption algorithms (Liao et al.
2018; Song et al. 2013) one might see that the histogram distribution
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is fairly uniform, but the decryption result is significantly more
accurate to the original image in terms of color representation.

Figure 12 Correlation coefficient analysis for original, cyphered
and decrypted Baboon.png.

By observing the correlation diagrams for a pair of adjacent
RGB pixels, one can come to the conclusion that the considered
encryption algorithm perfectly copes with its task. The correlation
is even over the whole image plane and leaves no traces that could
reveal the image from noise source data. The absolute values of
correlation coefficients for each of the color channels are close to 0,
while for the original image, they are close to 1. It shows that the
correlation of the original data is almost non-existent (Table 2).

Figure 13 Density for diagonal direction correlation coefficient
analysis.

The density distribution of correlation coefficients is also even
over the image plane and the values of the correlation coefficients
are minuscule for each of the three color channels (Table 2).

The resulting correlation copes with state-of-the-art methods
proposed by other scholars in the field (Wan et al. 2020; Alghamdi
et al. 2022). The general encryption algorithm based on an adaptive
symmetric Gingerbreadman map is less complex than the ones
proposed by the mentioned authors, being significantly less de-
manding in terms of computational efficiency while still providing
satisfactory encryption results.

■ Table 2 Correlation coefficient of pair adjacent RGB pixels for
Baboon.png.

Original Image

Diagonal Vertical Horizontal

Color 0.8097 0.8373 0.8986

Cyphered Image

Diagonal Vertical Horizontal

Color 0.0023 0.0012 0.0013

Cyphered Image (Wan et al. 2020)

Diagonal Vertical Horizontal

Color -0.0021 -0.0001 0.0006

Cyphered Image (Alghamdi et al. 2022)

Diagonal Vertical Horizontal

Color 0.0068 0.0074 -0.0142

In order to evaluate the efficiency of the proposed technique
we performed several experiments with different types of digital
noise being applied to the encrypted data before decrypting it to
the original state. These experiments allowed us to evaluate the
noise sustainability of the algorithm. We used the Gaussian noise
of different intensities, replicating the data loss that may appear
in the physical data transmission channel. The sustainability is
evaluated based on the analysis of the peak signal-to-noise ratio
(12), which uses the mean square error between parts of the data
(in our case the values of pixel colors).

PSNR = 10 log10(
peakval2

MSE
), (12)

MSE = − 1
n ∗ m

n

∑
i=1

m

∑
j=1

(A(i, j)− B(i, j))2, (13)

where peakval = 255 is a peak signal level for uint8 data type,
which is being used in our case to store original and deciphered
images, A(i,j) and B(i,j) are the pixel values from the color channel
for original and deciphered images respectively.

One can see, that after the application of Gaussian noise, the
picture is still visually recognizable after the decryption. Thus it
can be concluded that the proposed algorithm allows recovering
the original information even after the transferred data has been
corrupted by a significant amount of digital noise. Performing the
comparison with the state-of-the-art encryption algorithms per-
formance analysis proposed by authors in (Kanso et al. 2022) and
(Pourasad et al. 2021) one may find that even with higher intensity
of applied Gaussian noise, the proposed algorithm shows high
sustainability to noise attacks. The most interesting comparison
can be done with (Kanso et al. 2022), where Gaussian noise applica-
tion of rather low intensity corrupts the final result by a significant
amount.
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■ Table 3 PSNR values obtained for images with different inten-
sities of Gaussian noise applied to an encrypted Baboon.png.

Noise Intensity PSNR Value (dB) Decrypted Image

0.02 14.7647

0.05 14.4312

0.1 13.4722

Informational entropy can be analyzed by taking each of the
color channels of an image and processing it by using the following
formula:

−
n−1

∑
i=0

pi log2 pi, (14)

where n is the number of gray levels (for a single color channel)
and pi is the probability of a pixel having gray level i.

If the entropy value comes close to 8, it means that the image
is uniform and the amount of information is close to none, thus
making it indistinguishable from a noise source (Table 4).

■ Table 4 Information entropy for an original and encrypted
image obtained with the proposed algorithm

Image Entropy value

Original image 7.6444

Encrypted image 7.9764

The information entropy analysis shows that the technique
proposed by authors in (Liao et al. 2018; Song et al. 2013) provides
a slightly more uniform distribution of pixels across the image
plane with an increase of roughly 1.2% between experiments on
different test pictures. The resulting encrypted image is still can be
considered indistinguishable from the digital noise source, but the
results may differ depending to the encryption key parameters.

When one uses a chaotic map to generate a cipher text, the
plaintext attack can be resisted, because there is no correlation
between information entropy and adjacent pixels for both all-black
and all-white test images (Figure 14, Table 5), and the patterns
in the resulting encrypted image are mainly determined by the
chaotic sequence.

The results of statistical properties evaluation show that the
proposed encryption technique provides a simple approach to
increasing the available key space size without any significant
computational overheads compared to the conventional chaos-
based encryption algorithms.

Figure 14 Red channel histograms of encrypted data for black
and white images representing a chosen plaintext attack.

■ Table 5 Information entropy for encrypted data obtained
from pure white and black images as a result of chosen plaintext
attack.

Picture Information Entropy

Black Original 0

Black Ciphered 7.9993

White Original 0

White Ciphered 7.9993

CONCLUSION

In this study, the symmetric modification of the Gingerbread-
man map was proposed. We performed phase-space, bifurcation,
largest Lyapunov exponent, and statistical analysis over the pro-
posed map to confirm its properties. Then we constructed and
evaluated the corresponding pseudo-random number generator
to confirm its suitability for encryption tasks. The experimental
results of the chaotic properties evaluation of the proposed sym-
metric map proved that introducing a symmetry coefficient allows
one to enrich the map’s dynamics thus significantly increasing the
key space of the corresponding pseudo-random number generator
and resulting encryption algorithm. This statement was confirmed
in this study by applying the NIST statistical tests. The histogram
and correlation coefficient analysis were applied to verify the secu-
rity of the proposed encryption scheme. The peak signal-to-noise
ratio calculation and entropy analysis were applied to evaluate the
resistivity of the proposed algorithm to noise. It should be noted,
that finite-difference schemes with adaptive symmetry are implied
to be more secure from the attacks based on the recognition and
spectral analysis of the carrier signal (Ostrovskii et al. 2022; Rybin
et al. 2022, 2023a,b), which makes a chaotic communication system
based on such maps a promising direction for further research.
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