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Introduction 

According to the data of the World Health Organization, 

breast cancer ranks first among the causes of women's death 

[1]. In order to diagnose this disease and to determine the 

treatment, tissues are taken from the body by biopsy 

method. Tissues are examined under a light microscope for 

the manifestation of the disease. This procedure is called 

histopathological examination in medical language. 

Generally, the shape, size, color, and distribution of 

nucleoids are taken into consideration when the diagnosis 

of breast cancer is considered in histopathological 

examination [2]. Traditional histopathological examination 

is performed manually. The pathologist examines the 

tissues under a light microscope and diagnoses them 

accordingly. Sometimes he consults with other pathologists 

to make the diagnosis because the variety of tissues is very 

high. This approach has at least two major drawbacks: the 

first is a laborious process, the tissues need to be carefully 

examined. Second is that the decision of a pathologist is not 

objective [3]. 

In digital pathology, there are special scanners that are used 

for scanning pathologic slides. The images produced by 

these scanners are called Whole slide Images (WSI). WSIs 

are glass slides of high magnification digitized glass 

samples. In the early days, this WSI was used for 

telepathology, clinical training to assist pathologists. With 

the development of computer-based medical image analysis 

in recent years, these images have been used intensively [3]. 

For example, many studies such as tissue classification, 

detection, registration and segmentation in WSI of different 

tissue samples have been done [4]–[9]. The most important 

benefit of using WSI in computer-based analysis is that it 

helps pathologists make quick decisions. It reveals 

overlooked findings when analyzing WSI by the 

pathologist. Therefore, it reduces workload and eliminates 

objectivity. In the first studies using computer-based 

methods, after obtaining the determining features such as 

shape, texture, and color of the image then machine learning 

techniques were applied [10]–[15]. 

Although these studies are successful up to a certain level, 

it can be time-consuming and inefficient considering the 

feature selection process. There is a huge increase in the 

amount of medical data especially visual data with the 

technological developments in hardware and software. The 

use of a convolutional neural network (CNN) is inevitable 

in this abundance of data because the success of CNN 

depends on seeing a lot of data. The most important benefit 
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ABSTRACT 

 
 

Deep learning is used in all areas of the image processing like object detection/localization, synthetic 

image generation, segmentation, tracking, and others. It is frequently used especially in medical image 
segmentation field since it provides rapid response during the treatment process. The fact that natural 

images contain different types of noise, patterns, and structures and the lack of distinctive quantitative 

information still makes the segmentation problem very challenging. The classical networks having high 
parameters have a long training time. The need of less training time for high parameter networks and high 

segmentation accuracy has led us to develop a new network. In this study, a state-of-the-art autoencoder 

network (MSRSegNet) is proposed to perform segmentation. Unlike conventional autoencoder 
approaches, it consists of encoder, fusion and decoder blocks. In encoder and decoder blocks, Multi-scale 

Residual Blocks are used to share information between blocks and to detect features on different scales. 

In fusion block, Atrous Spatial Pyramid Pooling (ASPP) module is used to preserve multi-scale contextual 
information. Segmentation architectures, such as Deeplabv3+, SegNet, and U-Net, with well-established 

backbones from the literature, are used for performance comparison on histopathological images extracted 

from the Camelyon16 dataset. As a result, it was observed that the proposed segmentation network has 
high accuracy (69% mean intersection over unit (mIOU)) and fast segmentation performance (0.061sec. 

for an image with 256x256) 
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of using CNN is one doesn't need to choose features for the 

medical image tasks. Also, it gives results in a short time 

with high performance [16]. There are several studies that 

have been using CNN for histopathological image, for 

example WSI classification, cancer metastasis detection, 

mitotic cells detection, tumor proliferation score prediction, 

and so on [8], [17]–[19]. A systematic review of the use of 

deep learning histopathological images can be found in 

[20], [21]. 

Segmentation of histopathological images has attracted 

considerable attention, with deep learning architectures 

originally developed for natural image segmentation being 

adapted for these applications  [22], [23]. However, training 

these complex and deep networks is often time-consuming, 

highlighting the need for a network specifically adapted to 

biomedical images that can be trained quickly while 

effectively capturing the contextual information of the 

images. 

Recent advances in biomedical image segmentation have 

focused on improving computational efficiency while 

maintaining accuracy. For instance, FU-Net employs 

bottleneck convolutional layers, which significantly reduce 

the number of parameters and accelerate the training 

process without compromising segmentation performance 

[24]. Similarly, Sharp U-Net enhances feature fusion 

through deep convolution, minimizing artifacts and 

improving segmentation quality without increasing model 

complexity [25]. These studies, among others, underscore 

the critical importance of developing lightweight and 

efficient architectures to address the computational 

challenges inherent in deep learning models for biomedical 

image segmentation [26]–[29]. 

In this study, we present a new approach that is one of the 

first approaches to use the convolution block used for 

increasing image resolution to task of histopathological 

image segmentation. To the best of our knowledge, it is the 

first segmentation method to segment tumors in 

histopathological images of H&E-stained breast lymph 

nodes using convolution blocks from increasing image 

resolution. The novelty of this work can be summarized as: 

• A unique convolutional neural network (CNN) 

architecture with a multi-scale feature fusion strategy is 

introduced for tumor segmentation in histopathological 

images. 

• The proposed model achieves excellent results 

with fewer parameters, making it computationally efficient 

and accurate. 

• Comprehensive ablation studies provide detailed 
insights into the network's efficiency, distinguishing it from 
existing segmentation networks. 

  

Related works 

Recently, deep learning has proven its success in many 

areas, especially in computer vision. Networks used for 

vision tasks such as ResNet, DenseNet, Inception are quite 

deep [30]–[32]. These networks are also used as a decoder 

in the image segmentation process to reveal the 

characteristics of the image [33]–[35]. 

 However, they take too much time when they are trained 

because many parameters need time to learn. We developed 

an architecture for segmentation that has a small number of 

parameters to capture and emit image content. 

Medical image segmentation 

With the development of a fully convolutional network 

(FCN), it opened a new period in semantic segmentation. 

The difference between CNN which has made a single 

prediction output for images and FCN is giving semantic 

segmented outputs in the desired size. This success is 

followed by Unet, which performs natural and biomedical 

image segmentation. Unet also has applied encoder-decoder 

architecture in the field. The encoder part obtains the 

features of an input image passing it to low-resolution. The 

decoder part uses these low-resolution features to get 

segmented output with high-resolution. Unet has presented 

the concept of skip connections. Skip connection is the 

improvement strategy technique applied in the decoder part 

due to the loss of spatial features of the in the encoder part. 

The features coming from the encoder section are 

concentrated with the features of the decoder section and 

the performance increases with this technique [36][37]. 

Recently, new segmentation architectures have been 

developed for biomedical images using different modules 

such as gated attention mechanism and long-short term 

memory network (LSTM) [22], [33], [38]. In our study, we 

analyzed its performance and obtained high performance by 

using a feature extraction block that was not used in 

segmentation architectures. 

Feature extraction block 

With the development of deep learning architectures, 

many feature extractions blocks have been developed such 

as the inception module, dense module, and residual 

module. These blocks used different kernel sizes and 

different convolution combinations. In all areas related to 

the image, such as classification, generation, detection, and 

semantic segmentation tasks have been used these blocks 

and gotten shown high performance [30]–[32]. 

Li et al. are developed a multi-scale residual block to obtain 

a high-level image from a low-level image. We have been 

generated a segmentation network using this block. Our 

segmentation network, which we will be explained in detail 

later, has achieved good performance [39]. A considerable 

body of research has leveraged the multi-scale block 

technique in various applications [40]–[42]. 

 

Proposed method 

In this section, we are presented the segmentation network 

we developed. It is illustrated in Fig 1. Our network has an 
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encoder-decoder architecture. The encoder stream reveals 

contextual contexts in an image. The decoder stream 

connects the low-level features coming from the encoder 

stream with skip connections.  

 

Figure 1: An illustration of the proposed segmentation network for histopathological images. 

Encoder stream. Denoted as ℰ𝜃(𝐼) with parameters θ, 

takes input image 𝐼 ∈ ℝ𝐶𝑥𝐻𝑥𝑊with channel C (3), with 

height H, and weight W.  This stream produces dense pixel 

features. The first two blogs of the encoder consist of 

convolution, activation function (ReLu) and batch 

normalization. Subsequently, the features in the image are 

extracted using three Multi-scale Residual Blocks (MSRB). 

Each scale features from MSRBs are collected in a 

bottleneck layer. We denote the output features from each 

MSRB as 𝑒𝑖  ∈ ℝ𝐶𝑥
𝐻

𝑚
𝑥

𝑊

𝑚, where m is the stride of the 

encoder stream and 𝑖 represents MSRB number.  

Fusion stream. Each MSRB’s output has specific features. 

The bottleneck layer is used to prevent these features from 

disappearing between convolutional layers. The bottleneck 

layer also performs dimension reduction to avoid 

computational cost with convolution layer (1x1 kernel). In 

Equation (1) is given output of the bottleneck layer, where 

𝑒0, 𝑒1, 𝑎𝑛𝑑 𝑒2 are the output features from MSRBs. BL 

represents the bottleneck layer, which concatenates and 

processes the input features to produce the combined 

feature 𝑒. Combined features pass through the Atrous 

Spatial Pyramid Pooling (ASPP) module to preserve multi-

scale contextual information. Atrous convolution, also 

known as dilated convolution, differs from regular 

convolution by inserting zeros (or gaps) between kernel 

elements based on a defined dilation rate. This expands the 

receptive field exponentially, allowing the network to 

capture more extensive spatial context without increasing 

the kernel size or the number of learnable parameters. As a 

result, the ASPP module effectively extracts features at 

multiple scales, making it a valuable component in 

contemporary segmentation [43]. We denoted as ASPP(e ), 

takes the bottleneck layer’s output as an input, as an output 

features representation 𝐹 formulate in Equation (2). 

ASPP(e) applies multiple dilated convolutions with 

different dilation rates to the input features 𝑒, expanding the 

receptive field without increasing the number of 

parameters. 

𝑒 = 𝐵𝐿([𝑒0, 𝑒1, 𝑒2]) (1) 

𝐹 = 𝐴𝑆𝑃𝑃(𝑒) (2) 

Decoder stream. Finally, low-resolution features merge 

with skip connections from the initial blocks of the network. 

Skip connections are essential for segmentation networks 

because they keep spatial properties that may be lost passing 

through many convolution layers. This stream, denoted as 

𝒟𝛾with parameters γ, takes input the dense feature 

representation F coming from the ASPP module and 

produce a refined segmentation output 

Multi-scale residual block 

Different convolution blocks have been developed to 

capture wide and rich contextual representations. Li et al. 

used a Multi-scale Residual Block (MSRB) to improve 

image resolution [39]. Until today, this blog has not been 

used for semantic segmentation in our knowledge. MSRB 

blog is given in Fig 2. As seen, the block consists of two 

parts. The first part is multi-scale features merge, the second 

part is the residual part. 

Multi-scale features fusion: There are two bypass 

networks. Each network has different convolution kernels. 

The purpose of the bypass is to share information between 

networks and to detect features on different scales. The 

process is defined by the Equation (3), (4), (5), (6), (7) are 

given below,  

𝑆1 = 𝜎(𝜔3×3
1 ∗ 𝐹𝑛−1 + 𝑏1)  (3) 

𝑃1 = 𝜎(𝜔5×5
1 ∗ 𝐹𝑛−1 + 𝑏1)  (4) 

𝑆2 = 𝜎(𝜔3×3
2 ∗ [𝑆1, 𝑃1] + 𝑏2)  (5) 

𝑃2 = 𝜎(𝜔5×5
2 ∗ [𝑃1, 𝑆1] + 𝑏2) (6) 

𝑆′ = 𝜔1×1
3 ∗ [𝑆2, 𝑃2] + 𝑏3 (7) 
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where 𝑏1 , 𝑏2 and 𝑏3 represent bias of first, second and third 

layers of the block respectively. Same as 

bias 𝜔1, 𝜔2, 𝑎𝑛𝑑 𝜔3represent weights of first, second and 

third layer of the block respectively. 𝐹 denote the number 

of feature maps pass to the MSRB. 𝜎  represent an 

activation function (ReLu). The number of input features of 

the first layer and output layer are the same, but the number 

of middle layer features is twice of them. Equation (8) gives 

the description of MSRB. 

𝐹𝑛 = 𝑆′ +  𝐹𝑛−1  (8) 

where 𝐹𝑛 and 𝐹𝑛−1represent the input and output features of 

the MSRB. 𝐹𝑛−1helps to preserve information to pass the 

next block. The operation between 𝐹𝑛−1and 𝑆′ are element-

wise addition. Adding a shortcut connection to the output of 

block increases the performance of the network. At the end 

of each block, we put the pooling layer to reduce the 

computational cost. 

 

Figure 2: Multi-scale residual block (MSRB) structure.  

 

Pyramid feature fusion module 

We are used many blocks consecutively to get 

contextual features of image, during this transmission 

important features may be gradually disappearing. To 

prevent this loss, many methods have been developed in the 

literature. The effortless and useful of these methods is 

using skip connections.  

To get outperform segmentation accuracy, we have 

been collected all the output features of multi-scale residual 

blocks. While doing this, we are brought the properties of 

different sizes to the first block output size by up-sampling. 

All these features pass through a convolutional layer with 

kernel size 1x1 to reduce channel size otherwise 

computational complexity will be increased. 

The structure of the fusion module is described as 

follows: 

𝐹 = 𝑤 ∗ [𝐹1, 𝐹2, 𝐹3] + 𝑏    (9) 

where 𝐹1, 𝐹2, and 𝐹3represents the concatenation of features 

from different MSRB blocks. 𝑏 is the bias term. 𝑤 is the 

weight of the final convolution layer. 

Image segmentation 

To obtain the output in the input size, the features maps 

must pass through the decoder section. The task of the 

decoder is to complete segmentation bypassing low-

resolution feature maps into a set of convolution layers. 

During this task, bilinear interpolation is applied to 

increment the feature maps size. Bilinear interpolation helps 

to find out unknown pixel value by taking the weighted 

average of the known pixels surrounding. We use a fixed 

upscaling factor (x2) for the whole network.  

The spatial information of contextual feature maps obtained 

by decreasing to low resolution is lost. As a solution, we 

have been applied skip connection, a technique used by 

many segmentation networks. In this technique, the feature 

maps of the encoder section received in certain scales are 

fused with certain scale feature maps as seen in Fig 1. 

Results and discussion 

To evaluate the success of the proposed segmentation 

network we have been used histopathological images that 

have tumors. First, the dataset and evaluation metrics used 

have been introduced. Then, the implementation of network 

and training details is given. Eventually, we have obtained 

results of the ablation studies and compared the network 

result with state-of-the-art segmentation networks. In 

addition, the quantitative results of the proposed network 

and segmentation networks are presented. 

Dataset and evaluation metrics 

In our experiments, we used Whole Slide Images (WSI) that 

we have obtained from the competition called Camelyon16 

[44]. Camellyon16 is organized for automatic tumor 

detection in breast lymph nodes. The competition gives 400 

WSIs. Table 2 provides detailed information about the 

dataset. The WSI size ranges from 1 to 4 gigabytes. They 

have a pyramid structure with multiple levels which are 

between 0 to 7. The competition has provided mask 

information for WSI which contains tumors. 

Table 2-CAMELYON16 dataset 

 Normal Tumor  Total 

Train 160 111 271 

Test 80 49 129 

Total 240 160 400 

For training and testing the network, patches with 512x512 

size have been prepared from level 3 of WSIs which have 

the tumor and normal tissue. The dataset contains 10,000 
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samples, with 9,000 used for training and 1,000 for testing 

purposes. During the training, 256x256 size patches are 

cropped randomly from images. Also, data augmentation 

techniques have been applied to the patches. In Fig 3, the 

images are cropped from a 512x512 image is given. 

 

Figure 3: Histopathological images and their masks. The 

sizes of images are 512x512. The red square patches are 

randomly cropped with 256x256 size. 

Evaluation metrics. In semantic segmentation, intersection 

over union (IoU) is the standard unit of measure. The 

Equation (10) is given IoU’s formula for class 𝑖.  
Abbreviations our case 𝑡𝑝 denotes correctly classified 

pixels, 𝑓𝑛 denotes pixels not detected, and 𝑓𝑝 denotes 

background pixels classified as parts of the class.  mIoU is 

obtained by dividing the sum of the IoU of each class by the 

number of classes. And Equation (11) is shown the formula 

of mIoU. N is the number of the classes. 

IoUi =  
tp

tp+fp+fn
    (10) 

 

mIoU =  
1

N
∑ IoUi  (11) 

 

Pixel Accuracy (𝑃𝐴) also is used in the evaluation of the 

segmentation network performance. In Equation (12) is 

given the formula of 𝑃𝐴; 

𝑃𝐴 =  
tp+tn

tp+fp+fn+tn
     (12) 

where 𝑡𝑛 denotes the background pixels which are 

classified correctly. 

Training and Implementation Details 

We applied Stochastic Gradient Descent (SGD) optimizer 

with the momentum of 0.9 and the weight decay of 0.0001. 

We have been used the learning rate of 0.0001 and batch 

size of 2. The total epochs number for all network training 

is 10. All our networks are implemented in Pytorch. 

Training is performed on a server computer with NVIDIA 

QUARD 4000 GPU under CUDA 9.0 without other 

ongoing programs. 

 

We use the cross-entropy as the loss function of our 

network. The cross-entropy function;  

ℒ =  −
1

𝑁
∑(𝑦𝑛 log 𝑦′

𝑛
+ (1 − 𝑦𝑛)log (1 − 𝑦′

𝑛
))

𝑁

𝑛=0

 (13) 

 

 

where 𝑦 is the ground truth, 𝑦′ denotes the counterpart 

prediction segmentation maps, 𝑁 is the total number of the 

pixels. 

Ablation Study on the Proposed Network 

Applied MSRB block and ASPP to catch content features 

for better histopathological image understanding. To 

confirm the performance of the network, we conducted 

experiments with different settings in Table 2. The first 

column of the table gives names of varieties of the network, 

the second, third, fourth and fifth columns give the number 

of kernels of their first, second, third and fourth blogs 

respectively. The last column shows if ASPP is used. 

Table 3 gives the pixel accuracy (PA) and mIOU results of 

networks given in Table 2. As shown in Table 3, we are 

used 4 MSRBs for the first developed network, it yields a 

result of 62.69% mIOU and 78.00% PA. In the second 

experiment, we achieved a performance improvement of 

about 5% mIOU with 3 blocks. It is observed that adding 

more blocks to the network doesn't improve the 

performance. After the second experiment, kept the number 

of blocks fixed to 3 for other experiments. In the third 

experiment, to measure the effect of ASPP is been removed 

from the network which brings around %5 mIOU decline. 

Finally, the success of the network is tested by keeping the 

kernel size different for each block. This tactic has not 

improved the performance. 

 

Table 2: Ablation study on the proposed network. 

Network Name 1.MSRB  

Kernel 

Size 

2. MSRB 

Kernel 

Size 

3. MSRB 

Kernel 

Size 

4. MSRB 

Kernel 

Size 

ASPP 

MSRSegNet_V1 5, 3 5, 3 5, 3 5, 3 Yes 

MSRSegNet_V2 5, 3 5, 3 5, 3  Yes 

MSRSegNet_V3 5, 3 5, 3 5, 3  No 

MSRSegNet_V4 15, 7 7, 5 5, 3  Yes 
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Table 3: Ablation study on different proposed network on 

the histopathological image dataset. 

Network mIoU (%) PA (%) 

MSRSegNet_V1 62.69 78.00 

MSRSegNet_V2 67.29 81.85 

MSRSegNet_V3 63.14 78.47 

MSRSegNet_V4 65.46 80.37 

Table 4: Performance comparison between using and not 

using dropout. 

Network Dropout 

(0.05) 

mIoU (%) PA (%) 

MSRSegNet_

V1 

Yes 69.21 83.66 

MSRSegNet_

V2 

No 67.29 81.85 

 

We adopted a dropout strategy to improve performance 

further. Dropout usually has been used by deep networks. 

We are gotten around 2.0% mIOU and pixel accuracy 

improvement with a very small probability value for 

dropping out nodes. The results show in Table 4. 

 

Comparisons with State-of-the-art Methods 

Table 5 shows the results from state-of-art segmentation 

networks. Compared to the mIOU criterion, the 

segmentation network we developed has great success 

among others. There is a difference of approximately 5.0% 

between the second successful network and ours. These 

segmentation networks have a strong backbone. Compared 

to the PA criteria, the Deeplabv3+ [45] segmentation 

network is the most successful. There is a 2.0% difference 

with our network. 

Table 6 shows the average execution time (seconds) and 

parameter numbers of the networks that achieved more 

than 60% mIOU success. The developed network is 

acceptable according to the number of parameters and 

time criteria. 

 

 

Table 5: Performance comparison between the state-ot-the-art segmentation networks. * Real-time segmentation networks 

Networks Backbone Pretrained mIoU(%) PA(%) 

FCN8s[37] VGG16 Yes 15.16 30.33 

UNet[36]   58.54 79.15 

PSPNET [46] ResNet101 Yes 53.11 78.05 

ICNet[47]*   49.20 66.42 

SegNet[48]* VGG19 Yes 61.67 81.92 

Deeplabv3+ [45] Xception No 61.90 85.65 

MSRSegNet_V2   69.21 83.66 

Table 6: Performance comparison between the state-ot-

the-art segmentation networks. 

Networks Average Execution 

Time (second) 

# Parameters 

(Million) 

SegNet[48] 0.072 9.789 

Deeplabv3+[45] 0.148 54.612 

MSRSegNet_V2 0.061 2.873 

 

In experiments, all networks are trained with a fixed 

number of epochs. Since DeepLabv3 + has a lot of 

parameters, it may need more epochs to show better 

performance. The small epoch number may have been 

affected its success. Our network, which has a small 

number of parameters, has been successful compared to 

DeepLabv3+ as it is trained faster with the same epoch 

number 

Qualitative analysis 

A sample of histopathological images, the ground truth 

mask of it, the mask generated by DeeplLabv3+, and the 

mask generated by the developed network are given in 

Figure 4. As can be seen, the tumors are caught in both 

network masks. It can be observed that there is no network 

result exactly like the ground truth mask. 

We think this is due to tumor border lines. Once the ground 

truth is examined, it is observed that the edges of the border 

regions were rounded. While the pathologist draws the 

boundary of the tumor area, he can draw a little rough. 

Small normal tissues may remain within the tumor tissue 

border. Likewise, small tumor tissues may remain within 

the normal tissue border. Watch out that the boundary lines 

of the masks created by the networks are indented and 

protruding. We had been expecting for this situation 

because the real tumor boundaries are not clear like the 

ground truth mask. The aim of the network is to reveal the 

contextual dependencies of the image. Finally, the network 

places textures with similar content in the same classes. 

Qualitative results are given in Figure 5. Histopathological 

image samples are given in the first column and ground 

truth masks are given in the second column of Figure 5. In 

the third and last column give predicted segmentation 

masks by Deeplabv3+ and our network respectively. The 
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masks of our network are more like the ground truth mask 

compared to the other network masks. 

Figure 4: Comparison of the segmentation results of 

Deeplabv3+ and our method. (a) a sample of 

histopathological image, (b) the ground truth mask, (c) the 

prediction mask of Deeplabv3+, (d) the prediction mask of 

our segmentation network. 

Conclusions 

Early diagnosis saves lives in cancer patients. Therefore, 

automatic and rapid tumor segmentation is very important 

in histopathological images. In this paper, we proposed a 

new encoder-decoder CNN architecture (named as 

MSRSegNet) for tumor segmentation in histopathological 

images. Unlike the classic autoencoder approaches, the 

proposed architecture consists of two different properties: 

1) Information sharing between encoder and decoder 

blocks; 2) Atrous Spatial Pyramid Pooling (ASPP) module. 

Information sharing (collecting contextual features) allows 

the coded content to be taken into consideration during the 

expansion phase and ensures that the local/global features 

in the image can be captured. ASPP module preserve multi-

scale contextual information. A series of ablation 

experiments have been carried out in order to evaluate the 

performances of segmentation methods in different 

characteristic image regions in a healthy way. The ability 

to achieve higher segmentation accuracy with fewer 

parameters than the Deeplabv3 method, which is 

frequently used in medical segmentation, clearly 

demonstrates the superiority of the proposed method. 

In future research, more diverse and comprehensive 

datasets, including images from a broader range of cancer 

types, may need to be incorporated to rigorously evaluate 

and improve the generalizability of MSRSegNet. 

Furthermore, integrating advanced techniques, such as 

attention mechanisms or exploring transformer-based 

architectures, could potentially lead to further 

improvements in the model's performance. Additionally, 

developing a lighter version of the proposed architecture, 

optimized for real-time segmentation, could significantly 

increase its applicability in clinical settings. 
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Figure 5: Comparison of the segmentation results of Deeplabv3+ and our method. (a) samples of histopathological image, 

(b) the ground truth masks, (c) the prediction masks of Deeplabv3+, (d) the prediction masks of our segmentation network. 
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