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Abstract:The problem of steady laminar magnetohydrodynamic (MHD) forced convective heat and mass transfer 

about a horizontal slender cylinder is studied numerically. A uniform magnetic field is applied perpendicular to the 

cylinder. The nonlinear partial differential equations governing the flow are transformed into the similar boundary 

layer equations, which are then solved numerically using the Keller box method. The transverse curvature parameter, 

the magnetic parameter, the Prandtl number and the Schmidt number are the main parameters. For various values of 

these parameters, the local skin friction, heat transfer and mass transfer parameters are obtained. The validity of the 

methodology is checked by comparing the results with those available in the open literature and a fairly good 

agreement is observed.  Finally, it is determined that the local skin friction coefficient, the local heat transfer 

coefficient and the local mass transfer coefficient increase with an increase the magnetic parameter Mn and transverse 

curvature parameter. 

Keywords: Horizontal slender cylinder, Heat and mass transfer, Mhd flow. 

 

YATAY İNCE BİR SİLİNDİR ÜZERİNDEN OLAN ISI VE KÜTLE TRANSFERİNE 

MANYETİK ALANIN ETKİSİ 
 

Özet:Yatay ince bir silindir üzerinden daimi rejimde manyetik alanda, zorlanmış ısı ve kütle transferi problemi 

nümerik olarak çalışılmıştır. Uniform manyetik alan silindire dik olarak uygulanmıştır. Akışı yöneten non-lineer 

kısmi diferansiyel denklemler, benzerlik yöntemiyle sınır tabaka denklemlerine dönüştürülmüş ve Keller-box 

yöntemiyle çözülmüştür.  Çaprazlık parametresi, manyetik alan parametresi, Prandtl ve Schmidt sayısları elde edilen 

denklemlerdeki temel parametrelerdir. Bu parametrelerin farklı değerleri için lokal sürtünme, local ısı ve local kütle 

transferi parametreleri elde edilmiştir. Metodolojinin doğruluğu literatürdeki mevcut sonuçlarla karşılaştırılmış ve iyi 

bir uyumun olduğu görülmüştür. Sonuç olarak, manyetik alan parametresi Mn ve çaprazlık parametresinin artmasıyla 

lokal sürtünme, lokal ısı transferi ve lokal kütle transfer parametrelerinin arttığı tespit edilmiştir.  

Anahtar kelimeler: Yatay ince silindir, Isı ve kütle transferi, Mhd akışı. 

 

NOMENCLATURE 

 

B0  magnetic flux density [Wb/m
2
] 

cp specific heat [kJ/kg K]  

D coefficient of mass diffusivity [m
2
/s] 

f dimensionless stream function 

Mn magnetic parameter  2 2

0 0 2B r     

Pr Prandtl number pc k    

Sc Schmidt number  v D  

T temperature [K] 

u, v velocities in x and r directions, respectively  

              [m/s] 

x,r coordinates in axial and radial directions, 

respectively [m] 

Greek symbols 

  similarity variable    
1 22 2

0 04r r r u vx
  
 

  

  transverse curvature   
1 2

04 r vx u
 
 

 

  electrical conductivity of the fluid 

ρ  fluid density [kg/m3] 

μ dynamic viscosity [kg/m s] 

υ kinematic viscosity [m
2
/s] 

θ dimensionless temperature  

  dimensionless concentration  

Subscripts  

w wall 

∞ free stream 

 

INTRODUCTION 

 

Flow over cylinders is considered to be two-

dimensional if the body radius is very large compared to 

the boundary layer thickness. For a thin or slender 

cylinder, the radius of the cylinder may be of the same 

order as the boundary layer thickness. Therefore, the 
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flow may be considered as axisymmetric instead of two-

dimensional. In this case, the governing equations 

contain the transverse curvature term which influences 

both the velocity and temperature fields. The effect of 

the transverse curvature is important in certain 

applications such as wire or fiber drawing where 

accurate prediction of flow and heat transfer is required 

and thick boundary layer can exist on slender or near 

slender bodies (Datta et al., 2006). 

 

The effect of transverse curvature has been investigated 

by several researchers for forced, free and mixed 

convective flows over a cylinder. Chen and Mucoglu 

(1975) analyzed the buoyancy and transverse curvature 

effects on forced convection of Newtonian fluid flow 

along an isothermal vertical cylinder using the local 

non-similarity method. The same problem for a uniform 

surface heat flux case was studied by Mucoglu and 

Chen (1976). Takhar et al. (2000) studied the combined 

effect of free and forced convection flows over a 

vertical slender cylinder. El-Amin (2003) studied the 

effects of both first- and second-order resistance, Joule 

heating and viscous dissipation on forced convection 

flow from a horizontal circular cylinder embedded in 

porous medium under the action of a transverse 

magnetic field. Datta et al. (2006) obtained the non-

similar solution of a steady laminar forced convection 

boundary layer flow over a horizontal slender cylinder 

including the effect of non-uniform slot injection 

(suction). Roy et al. (2007) developed general analysis 

for the influence of non-uniform double slot injection 

(suction) on the steady non-similar incompressible 

laminar boundary layer flow over a slender cylinder. 

Also, they investigated the effects of transverse 

curvature on velocity and temperature profiles. Singh et 

al. (2008) studied unsteady mixed convection flow over 

a rotating vertical slender cylinder under the combined 

effects of buoyancy force and thermal diffusion with 

injection/suction where the slender cylinder was inline 

with the flow.  

 

In the present paper, the effect of transverse curvature 

on MHD forced heat and mass convective flow over a 

horizontal slender cylinder with uniform surface 

temperature and concentration is analyzed. The 

boundary layer equations governing the flow are 

reduced to local non-similarity equations which are 

solved using the implicit finite difference method 

(Keller box). Numerical results for the velocity, 

temperature and concentration profiles as well as local 

skin friction, local heat transfer and local mass transfer 

parameters are presented. 

 

ANALYSIS 

 

Consider the steady, incompressible, laminar, two-

dimensional, boundary layer flow over a horizontal 

slender cylinder of length L and outer radius ro (L >> 

ro). The physical model and coordinate system are 

shown in Fig. 1. The temperature, velocity and 

concentration at a distance remote from the cylinder are 

given by T∞, u∞ and C∞, respectively and the body has a 

uniform temperature Tw and uniform concentration Cw. 

A uniform magnetic field is assumed to apply in the r-

direction causing a resistance on flow force in the x-

direction. It is assumed that the induced magnetic field, 

the external or imposed electric field and the electric 

field due to the polarization of charges (i.e. Hall effect) 

is negligible. The plate is considered to be electrically 

non-conducting. 

 

 
Figure 1. The schematic of the problem. 

 

Under foregoing assumptions and taking into account 

the Boussinesq approximation and the boundary layer 

approximation, the system of continuity, momentum, 

energy and concentration equations can be written: 
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Here u and υ are the velocity components in the x and r 

direction, respectively, T is the temperature of the fluid, 

Cp is the heat capacity at constant pressure, v  is the 

kinematic viscosity, ρ is the fluid density, D is the mass 

diffusivity and B0 is the magnetic flux density.  

 

The appropriate boundary conditions are as follows: 

0; 0, 0, ,w wr r u T T C C    

; , 0, ,r u u T T C C          (5) 

 

To seek a solution, the following dimensionless 

variables are introduced (Datta et al., 2006 and Roy et 

al., 2007): 
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where ( , )x y is the free stream function that satisfies 

Eq. (1) with   1u r r    and 
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In terms of these new variables, the velocity 

components can be expressed as 

 

1

2
u u f

 ,

1 2

0

2

r vu f
f f

r x
  


   

     
   

  (7) 

 

The transformed momentum, energy and concentration 

equations together with the boundary conditions, Eqs. 

(2), (3), (4) and (5), can be written as  
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with the boundary conditions; 

0; 0, 0, 1, 1

; 2, 0, 0

f
f f

f

   


  

 
      

 
    

              (11) 

 

The corresponding dimensionless groups that appeared 

in the governing equations are defined as 

 

Pr
pc v

k
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v
Sc

D
 ,  

2 2

0 0

2

B r
Mn




               (12) 

 

where Pr is the Prandtl number, Sc is the Schmidt 

number and Mn is the magnetic parameter. 

 

NUMERICAL SOLUTION 

 

The system of transformed equations under the 

boundary conditions, Eqs. (8)–(11), have been solved 

numerically using the Keller box scheme, which is 

proved to be an efficient and accurate finite-difference 

scheme (Cebeci and Bradshaw, 1977). Readers are 

referred to Cebeci and Bradshaw (1977) for the details 

of the numerical methods. This is a very popular 

implicit scheme, which demonstrates the ability to solve 

systems of differential equations of any order as well as 

featuring second-order accuracy (which can be realized 

with arbitrary non-uniform spacing), allowing very 

rapid x or ξ variations (Takhar and Beg, 1997; Aydin 

and Kaya, 2009).  

 

A set of non-linear finite-difference algebraic equations 

derived are then solved by using the Newton quazi-

linearization method. The same methodology followed 

by Takhar and Beg (1997) is followed. Therefore, for 

the finite-difference forms of the equations, the reader is 

referred to Takhar and Beg (1997) for the brevity of the 

article.  

 

In the calculations, a uniform grid of the step size 0.01 

in the η-direction and a non-uniform grid in the ξ-

direction with a starting step size 0.001 and an increase 

of 0.1 times the previous step size were found to be 

satisfactory in obtaining sufficient accuracy within a 

tolerance better than 10
-6

 in nearly all cases. The value 

of η∞ = 16 is shown to satisfy the velocity to reach the 

relevant stream velocity. 

 

In order to verify the accuracy of the present method, 

the results were compared with those of Chen and 

Mucoglu (1975), Takhar et al. (2000) and Chang 

(2006). The comparison is found to be in good 

agreement, as shown in Table 1. 

 

RESULTS AND DISCUSSION 

 

In this study, the effects of transverse curvature on 

MHD forced heat and mass convection are examined. 

The following ranges of the main parameters are 

considered: Pr = 1.0, 7.0 and 10, Sc=0.22, 0.6 and 0.94 

and magnetic interaction parameter Mn= 0.0, 0.5, 1.0, 

1.5 and 2.0. The combined effects of ξ, Mn, Sc and Pr 

on the momentum, heat and mass transfer are analyzed.  

 

The effect of surface curvature parameter ξ (or the axial 

distance) on the velocity (a), temperature (b) and 

concentration (c) profiles for Mn=0.0, Pr = 0.7 and 

Sc=0.22 are given in Fig. 2. The velocity, thermal and 

concentration boundary layers increase due to the surface 

curvature parameter ξ. Similar trend has been observed 

by Chen and Mucoglu (1975) and Takhar et al. (2000). 

 

Due to the increase in surface curvature parameter ξ, the 

steepness in velocity, temperature and concentration 

profiles near the wall increases. The physical reason is 

that the increase in ξ acts as a favourable pressure 

gradient, which enhances the steepness in velocity, 

temperature and concentration profiles near the wall 

resulting in higher skin friction, heat transfer and mass 

transfer rate at wall (Datta et al., 2006). 

 

Table 1. Comparision of the local skin friction and local heat transfer parameters with Pr=0.7, Mn=0.0.  

ξ Chen and Mucoglu (1975)  Takhar et al. (2000)  Chang (2006)  Present results 

  ,0f    ,0     ,0f    ,0     ,0f    ,0     ,0f    ,0   

0.0 1.3282 0.5854  1.3281 0.5854  1.3280 0.5852  1.3201 0.5846 

1.0 1.9172 0.8669  1.9167 0.8666  1.9133 0.8658  1.8934 0.8599 

2.0 2.3981 1.0986  2.3975 1.0963  2.3900 1.0940  2.3822 1.0918 

3.0 2.8270 1.3021  - -  2.8159 1.2982  2.8098 1.2902 

4.0 3.2235 1.4921  - -  3.2187 1.4925  3.2102 1.4898 
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Figure 2. Dimensionless velocity (a), temperature (b) and 

concentration (b) profiles for different surface curvature 

parameter ξ at Mn=0.0, Pr=1.0 and Sc=0.22. 

 

Because of the similarity variable η is multiplied by ξ 

[see Eqs. (8), (9) and (10)], the momentum and thermal 

boundary layer thickness (about η<1.0) and 

concentration boundary layer thickness (about η<1.5) 

decreases with the surface curvature parameter ξ.  

 

Figure 3 shows the dimensionless velocity (a), 

temperature (b) and concentration (c) profiles inside the 

boundary layer for different values of the magnetic 

parameter Mn. The increasing of the magnetic 

parameter Mn increases velocity, temperature and  
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Figure 3. Dimensionless velocity (a), temperature (b) and 

concentration (b) profiles for different Mn at Pr=1.0, Sc=0.22 

and ξ=1.0. 

 

concentration gradients at the wall. These increased 

gradients results in increases in the local skin friction 

and the local heat and mass transfer parameters with the 

magnetic parameter Mn (Figure 4). 

 

Since the flow problem is uncoupled from the thermal 

and concentration problems, changes in the values of Pr 

and Sc will not affect the fluid velocity. For this reason, 

velocity profiles for this case are not shown. Increasing 

the Prandtl number tends to reduce the thermal 

boundary layer thickness along the slender cylinder and  
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Figure 4. Effect of Mn on the local skin friction (a), local heat 

transfer (b) and local mass transfer (c) parameters against ξ at 

Pr=1.0 and Sc=0.22 

 

the wall temperature gradient increases (Fig.5 (a)). Also, 

increasing the Prandtl number increases the local heat 

transfer parameter (Fig.5 (b)). 

 

The effect of the Schmidt number Sc (the values of Sc 

are chosen so that they represent the diffusing chemical 

species of most common interest in air like H2, H2O, 

NH3 and CO2 where the values of Sc are 0.22, 0.6, 0.78 

and 0.94, respectively (Eldabe and Ouaf, 2006)) on the 

concentration distribution is shown in Fig. 6(a). From 

this figure it is clear that concentration boundary layer  
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Figure 5. Dimensionless temperature (a) and local heat 

transfer parameter (b) for different Pr at Mn=0.5 and Sc=0.22. 
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Figure 6. Dimensionless temperature (a) and local mass 

transfer parameter (b) for different Sc at Mn=0.5 and Pr=1.0. 
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thickness decreases as Sc increases. As indicated in Fig. 

6(b), an increase in the Schmidt number Sc produces a 

rise in the local mass transfer parameter, as expected. 

 

CONCLUSIONS 

 

In this article, the effects of surface curvature parameter 

ξ, magnetic parameter, Prandtl number and Schmidt 

number on a steady MHD forced heat and mass transfer 

convective flows about a horizontal slender cylinder 

have been studied. A transformed set of non-similar 

equations have been solved using the Keller box 

scheme. From the present numerical investigation, the 

following conclusions can be drawn: 

1. An increase in the surface curvature parameter 

decreases velocity, thermal and concentration gradient 

at the wall.  

2. An increase in the magnetic parameters increases the 

local skin friction and local heat and mass transfer 

parameter. 

3. Increasing Pr and Sc increases the local heat and local 

mass transfer parameters. 

 

ACKNOWLEDGEMENTS 

 

I am grateful to Professor Orhan Aydin for his valuable 

contribution. 

 

REFERENCES 

 

Aydin, O. and Kaya, A., MHD mixed convection of a 

viscous dissipating fluid about a permeable vertical flat 

plate, Appl. Math. Model. 33, 4086–4096, 2009. 

 

Cebeci, T. and Bradshaw, P., Physical and 

Computational Aspects of Convective Heat Transfer. 

Springer, New York, 1984. 

 

Chang, C.L., Buoyancy and wall conduction effects on 

forced convection of micropolar fluid flow along a 

vertical slender hollow circular cylinder, Int. J. Heat 

Mass Transf. 49, 4932–4942, 2006. 

 

Chen, T.S. and Mucoglu, A., Buoyancy effects on 

forced convection along a vertical cylinder, ASME J. 

Heat Transf. 97, 198–203, 1975. 

 

Datta P., Anilkumar, D., Roy, S. and Mahanti, N.C., 

Effect of non-uniform slot injection (suction) on a 

forced flow over a slender cylinder, Int. J. Heat Mass 

Transf. 49, 2366–2371, 2006 

 

El-Amin, M.F., Combined effect of viscous dissipation 

and Joule heating on MHD forced convection over a 

non-isothermal horizontal cylinder embedded in a fluid 

saturated porous medium, J. Magn. Magn. Mater. 263, 

337–343, 2003. 

 

Eldabe, N.T. and Ouaf, M.E.M., Chebyshev finite 

difference method for heat and mass transfer in a 

hydromagnetic flow of micropolar fluid past a 

stretching surface with Ohmic heating and viscous 

dissipation, Appl. Math. Comput. 177, 561–571, 2006. 

 

Mucoglu, A. and Chen, T.S., Buoyancy effects on 

forced convection along a vertical cylinder with uniform 

surface heat flux, ASME J. Heat Transf. 98, 523–525, 

1976. 

  

Roy, S., Datta, P., Ravindran, R. and Momoniat, E., 

Non-uniform double slot injection (suction) on a forced 

flow over a slender cylinder, Int. J. Heat Mass Transf. 

50, 3190–3194, 2007. 

  

Singh, P.J., Roy, S. and Pop, I., Unsteady mixed 

convection from a rotating vertical slender cylinder in 

an axial flow, Int. J. Heat Mass Transf. 51, 1423–1430, 

2008. 

 

Takhar, H.S. and Beg, O.A., Effects of transverse 

magnetic field, Prandtl number and Reynolds number 

on non-darcy mixed convective flow of an 

incompressible viscous fluid past a porous vertical flat 

plate in a saturated porous medium, Int. J. Energy Res. 

21, 87–100, 1997. 

 

Takhar, H.S., Chamkha, A.J. and Nath, G., Combined 

heat and mass transfer along a vertical moving cylinder 

with a free stream, Heat Mass Transf. 36, 237-246, 

2000. 

 

 


