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Abstract: In this paper we find a full connection between the long lasting macroscopic classical laws of gases and the 

quantum mechanical description of non-interacting particles confined in a box, thus constituting an ideal gas. In such 

a gas, the motion of each individual molecule can be considered to be independent of all other molecules, and the 

macroscopic parameters of an ideal gas, mainly, pressure P and temperature T, can be defined as simple average 

quantities based on individual motions of all molecules in consideration. It is shown that for an ideal gas enclosed in a 

macroscopic cubic box of volume V, an alphanumeric expression for the Constant appearing in the classical law of 

adiabatic expansion law, i.e. ConstantPV 35 , can be derived based on quantum mechanics. Note that this constant 

has otherwise remained for centuries, as just an abstract quantity in the form of P1V1
5/3

=P2V2
5/3

= P3V3
5/3

 written for 

different thermodynamic states, delineated through an adiabatic transformation. No one even seems to have thought 

that it may eventually have a particular expression. Physical implications of the result we disclose are discussed.  

Keywords: Adiabatic transformation, Quatnum Mechanics, Special Theory of Relativity, Universal Matter 

Architecture. 

 

KLASİK PV
  

ADİABATİK SABİTLİĞİ, İDEAL GAZ İÇİN, KUVANTUM 

MEKANİKSEL BİR OLGU OLUP, BU YOLLA SÖZ KONUSU SABİT, SOMUT 

OLARAK BELİRLENBİLMEKTEDİR  

 
Özet: Bu makalede, asırlardır bilinen gaz yasaları ile, bir kapta hapsolmuş olup, birbirleriyle etkileşmede 

bulunmayan parçacıkların oluşturduğu ideal gazın kuvantum mekaniksel tasviri arasında, bütünsel bir bağ 

kurulmaktadır. Böylesi bir gazda, her bir parçacık, birbirinden bağımsız olarak ele alınabilmektedir. Bu durumda, 

gazın basınç P, sıcaklık T gibi, makroskopik özellikleri, gazı oluşturan parçacıkların, ayrı ayrı hareketlerinin, basit 

birer ortalaması niteliğinde hesaplanabiliyor olmaktadır. Burada, bu çerçevede, V  hacmindeki bir küpte hapsolmuş 

ideal bir gazın, adiabatik dönüşüm sürecini, resmeden SabitPV 35 , bağıntısında yer alan, Sabit’in, kuvantum 

mekaniği zemininde, somut olarak ifade edilebileceği, ortaya konmaktadır. Söz konusu sabitin, öteki türlü, asırlardır, 

birinden ötekine, adiabatik olarak geçilen, çeşitli haller için, P1V1
5/3

=P2V2
5/3

= P3V3
5/3

 eşitliklerinin işaret ettiği soyut 

bir büyüklük olarak algılanmaktan öteye geçemediği, kaydolunmalıdır. Hemen hiç bir yerde, bahse konu sabitin, belli 

bir ifadesinin olabileceğinin sorgulandığna dair bir işaret, ayrıca, görülebiliyor, değildir. Türetimin sonuçları 

tartışılmaktadır.    

Anahtar Kelimeler: Adiabatik Dönüşüm, Kuvantum Mekaniği, Özel Görelilik Kuramı, Evrensel Madde    Mimarisi. 

 

INTRODUCTION  

 

Time to time, most of us, no doubt, just like many 

scientists of the 20
th

 century, were puzzled with the 

question of finding a link between the Boltzmann 

Constant k and the Planck Constant h. We will see 

below that, this is actually a vain effort. Nevertheless, de 

Broglie already in his doctorate thesis has brilliantly 

applied his relationship (associating a wavelength with 

the momentum of a moving particle) to the statistical 

equilibrium of gases [de Broglie, 1925], but did not 

advance his idea, to see whether one can along such a 

line, obtain anything related to the law of gases, 

established long ago, in 1650.  
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Let us assume that, the gas is made of just one kind of 

molecules. The Boyle-Mariotte law of ideal gas is 

given, as usual, by 

kNTRTnPV m  ; (1) 

here P is the pressure of the gas, V the volume of the 

gas, T the temperature of the gas, nm the number of 

moles the gas is made of, N the number of molecules 

making the gas; R=8.31 Joules /ºK is the gas constant; 

further 

ANRk /    (2) 

is the Boltzmann Constant, and AN  the  Avogadro 

number. 

 

The kinetic theory of gases allows us to derive the same 

casing as that of Eq.(1) via considering the momentum 

change of each molecule separately, when bouncing 

back, from a wall of the given container  [Halliday, 

Resnick, Walker, 1997]. Assuming for simplicity 

(though without any loss of generality) a cubic 

geometry; one, through a simple averaging, obtains 

EN
3

2
vm

3

N
PV 2   ,  (3) 

where 2/2vmE   being the average translational 

energy of molecules, each of mass m; 2v  is the mean 

square velocity, to be associated with the average 

molecule. 

 

For the sake of completeness, let us recall the classical 

derivation of Eq.(3). The force fx exerted by the 

molecule of mass m and velocity v{vx, vy, vz} on the 

wall in the plane yz, is given by Newton’s second law 

tpf xx  , where 
xx mvp 2  is the algebraic 

increase in the momentum, whilst the molecule 

bounces back from the wall, and 
xvLt 2 , L being 

the size of the container along the x-direction. Thus one 

has, Lmvf xx
2

 . We can suppose that we deal with an 

average molecule, and all molecules behave as this 

average molecule, in the ideal gas of concern. Hence, 

summing over N molecules the gas is made of, we get 

the total force Fx exerted on the wall lying on the yz 

plane, as  
L

vmN

L

vm
NF x

x

___
2

___
2

3
 ; here, 2

xv  is the mean 

square velocity  along x-direction; note that, at the 

equilibrium, this latter quantity, can be assumed to be 

the same as the mean square velocities 2

yv , and 2

zv  that 

come into play along the other two directions; note also 

that the overall mean square velocity 2v is given by 
2

xv + 2

yv + 2

zv ; thus at the equilibrium one can as usual, 

write 2v = 2

xv3 . 

 

The pressure P exerted by N molecules on the wall of 

concern, is thence 
3

___
2

3 L

vmN
P  , which is Eq. (3), along 

with V=L
3
. 

 

Now comparing Eqs. (3) and (1), one, as usual, derives 

kT
2

3
E  . (4) 

Furthermore, Eq.(3) can naturally be written for the 

pressure p that would be built in the volume V, 

containing just one molecule of translational energy E: 

EkTpV
3

2
 , (5) 

giving that we have started out, our derivation, based on 

just one molecule solely, before we achieved, the 

subsequent averaging. 

 

Now, exploring a likely relationship between the 

classical laws of ideal gases and quantum mechanics, 

thus supposing discrete energy levels for each 

individual molecule (no matter how large may be the 

related principal quantum numbers that would come 

into play, in the classical limit), one may ask the 

following question: 

 

- Could Eq. (3) be the basis to build a bridge between 

“thermodynamics”, mainly characterized by the 

Boltzmann constant, and “quantum mechanics”, 

thereby, basically the energy quantity E , obtained as 

the averaged value of the discrete energy states of all 

molecules?  

 

More specifically, the question is:  

 

- Can Eq. (3) be the basis to build a bridge between the 

Boltzmann Constant k  and the Planck constant h? 

 

Here though, while the equality kTpV   points to the 

law of gases, the next equality EkT )3/2(  of  Eq.(5), 

is no more than a definition of the temperature in terms 

of the average translational energy E  of the molecules, 

once k is defined via Eq.(2).  

 

So, EkT )3/2( , does not in any way provide us with 

any relationship between k and h.  

 

In other terms, E  is to be expected to involve the 

Planck Constant. Yet this, does not allow us to coin a 

relationship between h and k, based on Eq.(5), and 

hence with this latter equation we are bound to fail to 

establish a relationship between macroscopic properties 

of an ideal gas and the quantum mechanical description 

of its constituents.  

 

Thereby we find out that, when we propose to draw any 

possible bridge between the phenomenological laws of 

gases and quantum mechanics, we should not really 

look for a relationship between h and k. Any such effort 

will be dissolved through a plain definition of the 

classical temperature quantity, in terms of the average 

translational energy of the molecules, and nothing 

beyond. However, we can still go ahead to check 
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whether the phenomenological laws of gases do match 

with quantum mechanics, if we could ever explore those 

laws of gases, which though, do not involve the constant 

R or k. That is the key point of our approach.  

 

CONSTANCY OF PV

 FOR AN 

ADIABATICMTRANSFORMATION:  

QUANTUM APPROACH   

 

There is, in effect, a relationship satisfying the criteria 

we have just set; this is the one describing an adiabatic 

transformation of gases, in a wide temperature range, 

i.e.  

ConstantPV γ  ,  (6) 

obtained in the familiar way based on the laws of gases, 

considered together with the first law of 

thermodynamics [Sommerfeld, 1964], along with the 

usual definition 

VP CC .  (7) 

Here 
VC  is the heat to be delivered to one mole of ideal 

gas at constant volume to increase its temperature as 

much as 1º K, and PC  is the heat to be delivered to one 

mole of ideal gas at constant pressure to increase its 

temperature, still as much as 1º K. 

  

For an ideal gas the internal energy levels of molecules 

are not excited by definition. In such a case [Van Wylen 

& Sonntag, 1985], we have 

23RCV  , 25RCP  ,    (8), (9) 

and the constant  in Eq. (7) turns to be equal to  

35 .  (10) 

Hence Eq. (6) acquires the form 

ConstantPV 35  . (11) 

 

Any reader in the field, knows that the derivation of this 

latter relationship is presented in any related text book.  

 

Let us though, for the inquisitive reader right away 

specify that, the latter relationship, may not be valid for 

an irreversible transformation. The reason is that, 

through this entire article, we propose to deal with 

 

i)  well established states of the gas at hand (thus 

excluding any transitory regime, and chiefly, any 

turbulence),  

 

ii)  a gas, made of strictly non-interacting constituents,  

whereas an irreversible transformation, may embody 

both a turbulence and interactions between the 

constituents of the gas.     

   

Anyway [Haar & Wergeland, 1960] suggested a 

different derivation of Eq. (11), based on the fact that 

the single-particle energy E of a mono-atomic, non-

relativistic, diluted gas is proportional to V
-2/3

, i.e.  
3/2~ VE .  (12) 

To show this, Haar & Wergeland write the energy of a 

single particle in the i
th

 atom as 
ii fV   32 , where fi 

is some function of quantum numbers and particle mass 

for the i
th

 particle. Involving the adiabatic theorem of 

quantum mechanics (which implies the constancy of fi 

under slow variation of the volume), they 

straightforwardly arrive at Eq. (12). 

 

Further on Haar & Wergeland noticed that the internal 

energy of one mole of gas can be written in the form 

ENE A . (13) 

Combining Eqs. (12) and (13), one obtains: 

ConstantVE 2/3  .  (14) 

 

One can additionally write, as usual [cf. Eq. (1)], 

RTPV  ,   (15) 

and via Eq. (4), we further derive  

PVE
2

3
 .        (16) 

If now, we multiply the two sides of this latter equation 

by 32 /V , and use the constancy delineated by Eq. (14), 

we arrive at 

ConstantPV 3/5 ,  (17) 

which is Eq.(6), written for the ideal gas.  

  

One should mention that just like Eq.(6), provided in all 

related text books; Eq. (17) too, obtained by Haar & 

Wergeland, do not tell us, what the affirmed “adiabatic 

constant” specifically is. Moreover, to the moment 

nobody seems to have even asked what may be the 

particular alphanumeric expression of this constant, if 

any. 

 

Our goal thus becomes to derive specifically an 

expression for this “adiabatic constant”, which - it is 

worth to stress, still remains classically unknown - by 

means of a quantum mechanical description of the ideal 

gas, well applied to the “semi-classical limit”. This 

implies that a principal quantum number for any given 

molecule can be very large, but this does not create any 

conceptual difficulties. At the same time, it is important 

that, in this limit we can use the standard classical 

phenomenological laws, for the ideal gas without any 

limitations. 

  

In our further approach, as emphasized, it is essential 

that the ideal gas, is made of strictly non-interacting 

molecules, each behaving as a simple quantum 

mechanical particle locked up (potential energy – wise) 

in an infinitely high box. The wave functions of such 

non-interacting molecules are not mixed, and thus the 

internal energy of the ideal gas can be found as a simple 

sum of eigenvalues of energy for each molecule. 

Besides, along with the kinetic theory of gases to be 

valid in the classical limit, we well assume that the 

Boyle Mariotte law [(Eq.(1)] holds for even a single 

molecule. That is if R is replaced by the Boltzmann 
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constant k, in these equations, then one lands at 

 kcv 23 ,  kcp 25 , defined for just one 

molecule. This means we can confidently use the ratio 

Cp/Cv or the same, the ratio cp/cv in the quantum world. 

It means, in particular, that the expression (10) is well 

applicable to the one molecule at hand, that is, to a 

single particle confined in a box.  

 

The case of a photon gas will be handled separately. 

 

Let us thus consider a particle of mass m at a fixed 

internal energy state located in a macroscopic cube of 

side L, though without loss of generality. Herein we will 

consider the non-relativistic case. Our approach anyway 

can be extended to the relativistic case with no 

difficulty. The non-relativistic Schrödinger equation 

furnishes the energy nE  of the particle in the box at a 

given energy level, i.e.  

 
2

2222

2

2

2

2

2

22

88 mL

nnnh

L

n

L

n

L

n

m

h
E

zyxzyx
n

















 ,  (18) 

where nx, ny, nz are the quantum numbers to be 

associated with the corresponding wave function 

dependencies on the respective directions x, y and z. For 

brevity, we introduced the subscript “n” which denotes 

the specific state characterized by the set of integer 

numbers nx, ny and nz.  

 

For an ideal gas the “potential energy” within the box is 

zero. Thus, we have 

2

2

n
n

mv
E  , (19) 

nv  being the velocity of the particle at the n
th 

energy 

level. 

 

At the given energy level, the pressure np  exerted by 

just one particle on either wall, becomes [cf. Eqs. (3) 

and (5)] 

33

2

3

2

3 L

E

L

mv
p nn

n  . (20) 

 

Now let us calculate (for just one particle) the product 

35Vpn : 

 

 

 
m

nnnh

L
L

mL

nnnh

Vp

zyx

zyx

n

12

8

3

2

2222

353

3

2

2222

35






 .  (21) 

 

Hence this quantity indeed turns out to be a constant for 

a given particle of mass m at the given energy level, 

characterized by the principal quantum numbers nx, ny 

and nz. 

 

Recall that the total energy En of Eq. (18) ultimately 

determines the quantized velocity vn of Eq. (19).  

 

When it is question of many particles instead of just 

one, normally we would have particles, in general, at 

different quantized states. This means that, we deal with 

some energy distribution of molecules at the given 

temperature, instead of a fixed eigenvalue furnished by 

Eq. (18), which we derived for a gas consisting of just a 

single molecule.  

 

In order to describe the distribution of energy over the 

molecules within an elaborated quantum mechanical 

approach, we have to abandon the strict ideal gas 

approximation, and add into the Schrödinger equation 

coming into play, an appropriate potential energy term 

responsible of the weak interaction of molecules, which 

will randomly affect all of the molecules of gas at each 

fixed temperature. We have to stress that such a 

distribution of perturbational energy is to be compatible 

with the Maxwellian distribution of velocities. However, 

the analysis of this problem falls outside the scope of 

the present paper. For our immediate purpose, it is 

sufficient to take into consideration an “average 

molecule” at the given temperature T. We can, as 

conveyed, well visualize the average molecule as a 

single particle, obeying Eq. (21), thus situated at the nth 

level, and of course associate the given temperature 

with this energy, along with  Eq. (4). 

 

Not to complicate things, let us get focused on the 

average particle, and simply suppose that all others 

behave the same. Furthermore, all three components of 

the average velocity at equilibrium are expected to be 

the same. Thus, we can rewrite Eq. (21) for the 

macroscopic pressure Pn exerted at the given average 

state n by one mole of gas on the walls of the container, 

as 

m

nh
NVP An

4

22

 .  (22) 

 

Rigorously speaking, one must write  

 
m

nh
N

m

nnnh
VP A

N

i

iziyix

n

A

412

___
22

1

2222







 , (23) 

along with the definition 

 
___

2

1

222

3

1
nnnn

N

AN

i

iziyix

A




.   (24) 

 

Thus it becomes clear that, if all particles bared the 

same set of quantum numbers, each with equal quantum 

numbers along all three directions, i.e. 

nnnn zyx  , then for the average molecule, 

we can write 

__
2nn  . 

 



63 

 

Eq. (22) does indeed disclose the Constant involved by 

Eq. (6). Note that at the average state n (i.e. at the given 

temperature), the mean square speed of the gas 

molecules is vn
2
. The average energy is furnished 

accordingly, via the framework of Eq.(19). Let us 

calculate what would n be, for 1 mole of, say, O2, 

delineating the pressure of 10
5 

Pascal (1 atmosphere), in 

a volume of 1 m
3
. From Eq. (22) we obtain:  

    10

68223

305

10x28
106.62100236.

100.9391823410











n ,      (25) 

which well seems to be a reasonable number, meaning a 

number fitting our conception of daily phenomena.  

 

Note indeed that this number is well below the 

Avogadro number NA (it is in fact even smaller than the 

square root of NA), endorsing well our assumption that 

the gas molecules do not interact with each other. 

 

Thus finally, our result indicates that the behavior of an 

ideal gas is nothing, but a macroscopic manifestation of 

quantum mechanics. In particular, the constancy of 
PV  happens to be rooted to quantum mechanics, and 

seems to be deep. It is that the quantity “mass  PV ” 

turns out to be a Lorentz scalar.  

Thereby, we expect this scalar to be somehow nailed to 

a Lorentz invariant universal constant; this constant, 

more specifically, turns out to be the square of the 

Planck constant. Accordingly, for a given mass m, the 

quantity PV  relates to mh /2 ; this is what we have 

revealed in this paper.  

 

Henceforth:  

 

- The constancy of PV  appears to be an extension of 

quantum mechanics to macroscopic scales.  

 

But even more essentially [Yarman 2004 a & b; Yarman 

2009; Yarman 2007; Yarman 2010]: 

 

-  It delineates how the internal dynamics displayed by a 

gas consisting of quantum mechanical particles made 

of a given mass, is organized in conjunction with the 

size of the container, the dynamics in question takes 

place in, and this universally, at all scales.  

 

Here unfortunately, we have no room to go in any 

further details of this fundamental problem. 

 

We should like to note that, Eq.(6) is not a relativistic 

equation. That is, if ever the constituents of the gas 

move at speeds, which cannot be neglected as compared 

to the speed of light, then it is not a valid relationship, 

and it should be replaced, as insinuated along with Eqs. 

(21) and (22), by 

      ConstantPVmc  2 , (26) 

where  is the Lorentz factor, and m then is the 

relativistic mass of the average particle. 

 

Note further that the above relationship well holds for a 

photon gas, and we spare the discussion of all of the 

interesting points, relatedly coming up, for a future 

work. 

 

CONCLUSION 

 

In this article we aimed to bridge classical 

thermodynamics and quantum mechanics. Though we 

have determined that toward that aim, it is in vain to 

look for a relationship between the Boltzmann constant 

k and the Planck constant h. Indeed, a relationship 

involving both k and h, such as Eq.(5), is nothing more 

than a definition of, say, the temperature (if we choose 

to go from energy to temperature), in terms of the 

translational energy of the particle in hand [see the 

discussion we provided below Eq.(5)]. Thus we have 

picked up on purpose, the relationship 

ConstantPV 3/5  to work with, because it constitutes 

distinctively a closed form of basic gas relationships, 

which does not involve the Boltzmann constant. 

 

To avoid possible confusions, let us stress that, our goal 

was not of course, to show that 35/PV  remains constant 

through an adiabatic transformation; this is a well 

known classical relationship. Our goal, was to calculate 

specifically, the particular constant, coming into play, 

which remained obscure up to now. 

 

In the present contribution we have solved this problem 

based on quantum mechanics, applied in the semi-

classical limit, thus establishing a new link between 

classical thermodynamics and quantum mechanics in 

the description of an ideal gas. 

 

The particular value of the constancy of 
PV  is 

something totally missed over almost a century in the 

literature. The whole thing, in fact, is rooted to an 

intuition, the first author had developed elsewhere 

[Yarman 2004 a & b; Yarman 2009; Yarman 2007; 

Yarman 2010]. In other terms, the constancy of 
PV  

(and, likewise, the frame drawn by the law of gases) 

seems to be deep, in relation to the fact that the quantity 

“mass  
PV ” turns out to be a Lorentz scalar, to 

cope with the Lorentz transformations on mass, 

pressure and volume, that would come into play, were 

the gas on the whole (thus, together with its container), 

brought to a uniform translational motion.  

 

The Lorentz invariance of “mass  
PV ” we came to 

discover, must further be in a harmony with quantum 

mechanics; in effect this latter discipline, briefly 

speaking, based on the relativistic law of energy 

conservation, and de Broglie relationship, can be shown 

to draw a natural symbiosis with the Special Theory of 

Relativity, delineating a Universal Matter Architecture 

[Yarman 2004 a & b; Yarman 2009; Yarman 2007; 

Yarman 2010],  which precisely shapes interrelations, 

each nailed to the square of  the Planck Constant [cf. 
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Eq.(23)], thus, amongst other things, the frame of the 

relationship mass  
PV =Constant, as we have 

disclosed herein.   

 

Our approach furthermore,  promises the formulation of 

a thermodynamics, along with just the pair [Energy, 

Planck Constant], instead of the pair [Temperature, 

Boltzmann Constant], this latter pair, aside, embodying 

the energy quantity. In any case, the elimination of the 

temperature quantity, from quantitative descriptions, 

would, most likely, resolve the present dichotomy 

between energy and temperature, more precisely 

between Planck Constant and Boltzmann Constant.  
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