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Abstract: An adaptive grid method which redistributes grid points according to equidistribution principle was 

implemented to an in-house computational fluid dynamics code capable of simulating blast waves. The resultant code 

was first tested for a shock tube problem. It was observed that benefit of using adaptive grids becomes more evident 

when discontinuities in the flow are stronger. It was also observed that interpolation method used to move the flow 

variables to new grid locations directly affects the accuracy of the solution and interpolation methods which do not 

guarantee conservation of mass may yield highly inaccurate results. Blast wave simulations performed showed that 

the adaptive grid method used here improved predictions considerably without requiring a lot of extra CPU time. 

Keywords: Blast wave simulations, computational fluid dynamics, adaptive grids, Euler equations, conservative 

interpolation. 

 

PATLAMA SONRASI OLUŞAN ŞOK DALGALARININ EULER DENKLEMLERİ VE 

İNTİBAK EDEN ÇÖZÜM AĞLARI KULLANILARAK SİMÜLASYONU 
 

Özet: Çözüm ağı noktalarını eşit-dağılım prensibine göre yeniden dağıtan bir intibak eden ağ metodu, patlama sonrası 

oluşan şok dalgalarını simule edebilen bir hesaplamalı akışkanlar dinamiği programına uygulanmıştır. Elde edilen 

program önce bir şok tüpü probleminde denenmiş ve akıştaki süreksizlikler güçlendikçe intibak edici ağları 

kullanmanın öneminin daha belirgin olduğu gözlemlenmiştir. Ayrıca akış değişkenlerini yeni ağ noktalarına taşıyan 

interpolasyon metodunun çözümlerin doğruluğunu direk etkilediği ve kütle korunumunu sağlamayan interpolasyon 

yöntemlerinin oldukça hatalı sonuçlar verdiği görülmüştür. Daha sonar yapılan patlama sonrası oluşan şok dalgası 

simülasyonları da, uygulanan intibak eden ağ yönteminin sonuçları, harcanan CPU zamanını çok fazla arttırmadan 

iyileştirdiğini göstermiştir. 

Anahtar Kelimeler: Patlama sonrası oluşan şok dalgaları, hesaplamalı akışkanlar dinamiği, intibak eden çözüm 

ağları, Euler denklemleri, korunumlu imterpolasyon.  

 

NOMENCLATURE 

 

c  Speed of sound [m/s] 

Ci  Mass fraction of a species i. 

e  Internal energy per unit mass [m
2
/s

2
] 

E  Total energy per unit mass [m
2
/s

2
] 

f  Flux vector of Euler equations 

h   Source Vector of Euler equations 

H  Total enthalpy per unit mass [m
2
/s

2
] 

N  Number of grid points 

p  Static pressure [Pa] 

q  Conservative variable vector of Euler 

equations 

r  Physical radial coordinate [m] 

t  Time [s] 

u  Fluid Velocity [m/s] 

w  Weight function 

iw   Mass production rate of species i 

α, β  Weight parameters 

ξ  Uniform computational coordinate 

ρ  Density[kg/m
3
]  

 

 

INTRODUCTION 

 

An explosion generates high pressure and temperature 

gases which expand into the surrounding medium to 

generate a spherical shock wave called a blast wave 

(Dewey, 2001). Experimental methods to simulate blast 

waves require handling real explosives. Hence, they 

may be dangerous and very expensive. On the other 

hand, computational fluid dynamics (CFD) can be used 

to generalize and support experimental results in 

simulating blast waves. Sharma and Long (2001) used 

Direct Simulation Monte Carlo (DSMC) method to 

simulate blast waves. DSMC is a very powerful method 

for detonations and flows with chemical reactions (Long 

and Anderson, 2000; Anderson and Long, 2002; 

Anderson and Long, 2003). However, being originally 

designed for rarefied gas dynamics, it can be very 

expensive for continuum flows. Also, if one makes a 

local thermodynamic equilibrium assumption in DSMC, 

the method becomes equivalent to solving Euler 

equations (Dewey, 2001). While the entropy after a 

spherical shock wave decreases radially, the fluid 
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particles behind it moves isentropically (Dewey, 2001). 

Therefore, Lagrangian description of fluid flow (White, 

2006) becomes very suitable for blast simulation 

problems. This description was used by Brode (Brode, 

1955; 1959) for numerical simulation of blast waves. It 

is, however, the Eulerian description of the flowfield 

(White, 2006) that is usually preferred by the many 

CFD methods (Hoffmann and Chiang, 2004). This 

description was used in (Alpman, et al. 2007; Alpman, 

2009) or blast wave simulations and results showed that 

Euler equations and Eulerian description of the flow 

field can be used simulate blast waves and predict blast 

loads on solid structures (Alpman, et al. 2007; Alpman, 

2009; Chen et al. 2007; Chen et al. 2008). A 

combination of both descriptions for simulating blast 

waves in one-dimension can be seen in (Smith, 1999).  

A blast wave expanding in free-air shows spherical 

symmetry hence the flowfield can be modeled by one-

dimensional Euler Equations written in spherical 

coordinates. With today’s computer power, solution of 

one-dimensional Euler equations does not require 

considerable computing time. However, shock waves in 

the solution domain require very fine grid spacing in the 

vicinity of them for accurate resolution of high 

gradients. Since these waves move with time, very fine 

mesh spacing must be used for the entire flow domain. 

 

Figure 1, also shown in (Alpman, 2009), shows radial 

pressure distributions obtained from the explosion of 1 

kg TNT. The figure clearly shows that there are local 

steep pressure gradients (shock waves) in the solution 

domain. However, pressure distribution is very smooth 

in the other regions of the domain. Since the shock 

waves are moving, a very fine mesh spacing must be 

used everywhere even though it may not be required at a 

given time level. This problem may be overcome by 

using an adaptive grid technique in which local grid 

refinement is performed according to the flow gradients 

in the domain. Hence, fine mesh spacing is only used in 

the vicinity of the shock waves.  
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Figure 1. Radial pressure distributions at different times obtained from explosion of 1kg TNT. 

 
The effects of using adaptive grids for numerical 

solutions has been widely studied and well known. One 

can find many applications of using adaptive grids for 

mesh optimization for flows such as separated wakes, 

boundary layers, and stationary shock waves or contact 

surfaces. However in the majority of these applications 

the flowfield is steady. On the other hand, there are few 

applications for unsteady flows with moving 

discontinuities. In these flows the grid should be 

adapted fast enough to follow and resolve the moving 

discontinuity and also the adopted technique should not 

increase the computational work excessively. 

Implementation of such an adaptive grid technique for 

simulation of flows with strong discontinuities is the 

aim of the study.  

 

METHODOLOGY 
 

Numerical solutions are performed using an in-house 

CFD code written by the author in C. The code solves 

one-dimensional Euler equations in Cartesian, 

cylindrical, and spherical coordinates. Governing 

equations were discretized using a second order 

accurate finite volume technique and the fluxes at cell 

faces were calculated using the AUSM+ method (Liou, 

1996). Second order accuracy was achieved by 

extrapolating density, velocity and pressure at the cell 

interfaces. A flux limiter was used to ensure 

monotonicity (Hoffmann and Chiang, 2004). Resulting 

semi-discrete equations were solved using a 2 stage 

modified Runge-Kutta method (Hoffmann and Chiang, 

2004). In the solutions, blast wave was generated by 

explosion of TNT whose effects were introduced to the 

flowfield as initial conditions. Explosive was modeled 

as a uniform high pressure sphere where the magnitude 

of this pressure was obtained using the blast energy 

released by TNT and the Jones-Wilkins-Lee (JWL) 

equation of state (Smith, 1999; Dobratz and Crawford, 

1985). Although a detonation wave generates non-

uniform pressure, density and velocity fields in the 

explosive (Smith and Hetherington, 1994) the above 

initial conditions were used for their simplicity. 

 

Blast wave simulation problem involves two different 

gases; detonation products and surrounding air. 

Therefore, different state equations for these gases were 
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required in the solutions. For detonation products, JWL 

equation of state (Dobratz and Crawford, 1985) was 

used mainly due to its popularity (Kubota et al. 2007). 

For surrounding air, calorically perfect gas assumption 

ceased to be valid because of the temperatures 

encountered during the simulations (Anderson, 2004). 

Gas dissociation effects were included by assuming 

local chemical equilibrium meaning that the chemical 

reactions occur instantaneously (Hoffmann and Chiang, 

2000). Equilibrium relations given in (Tannehill and 

Mugge, 1974) were used for air to calculate ratio of 

specific heat capacities and temperature in terms of 

pressure and density. Temperature of explosion 

products was obtained by curve fitting to the data given 

in (Jones and Miller, 1948). 

 

The adaptive grid technique employed in this study 

redistributes the grid points according to the flow 

gradients in the domain. The distribution was performed 

according to equidistribution principle using local flow 

gradients (van Dam and Zegeling, 2006; Tang and 

Tang, 2003; Soni et al. 2000; Thornburg et al. 1998). A 

grid solver was written for this purpose and coupled 

with the flow solver. Grid generator was called by the 

solver every 20 time steps and the grid was updated. 

This way fine mesh spacing was able to be obtained in 

the vicinity of the shock waves and coarse spacing was 

able to be used for the other regions of the flow domain. 

 

THEORY  

 

One dimensional Euler equations can be written as 

follows (Hoffmann et al. 2002): 

 

 0h
fq
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







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    (1) 

 

where q is the vector containing the conservative 

variables, f is the flux vector, and h is the vector 

containing the source terms: 

 

  TEu q     (2) 
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In the above equations, ρ is the fluid density, u is the 

fluid velocity, p is the static pressure, E and H are total 

energy and total enthalpy per unit mass.  
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In equation (5), γ is the ratio of specific heat capacities 

and in equation (4) n = 0 for Cartesian coordinates, n = 

1 for cylindrical coordinates and n = 2 for spherical 

coordinates.   

 

In this study, equation (1) was discretized using a 

second order accurate finite volume technique and 

fluxes at cell faces were calculated using AUSM+ 

method (Liou, 1996). To ensure monotonicity, Superbee 

flux limiter was employed. 

 

Explosive Modeling 

 

In this study, a simple model was used for introducing 

explosion effects to the flowfield. Here, the explosive 

was modeled as an isobaric high pressure sphere. The 

solution domain starts from the center of this sphere. 

Pressure inside this sphere was calculated to be 8.381 

GPa, using the JWL equation of state (Dobratz and 

Crawford, 1985) and the specific explosion energy of 

TNT. Density of TNT was taken to be 1630 kg/m
3
. 

These are the same conditions used in (Tai et al. 1997) 

to study underwater explosions. The radius of the high 

pressure sphere was obtained according to the amount 

of TNT used. Effects of the explosive were introduced 

as initial conditions where density and pressure at the 

grid points lying inside the sphere were initialized to the 

values given above. Outside the sphere, density and 

pressure were initialized to 1.225 kg/m
3
 and 101320 Pa, 

respectively. Initial fluid velocity was set to zero for the 

entire solution domain. 

 

Equation of State for Detonation Products 

 

Two different gases were involved in the solutions; 

detonation products and surrounding air. These gases 

were separated by a contact surface which was moving 

with the local fluid velocity. Different equations of state 

were used for different sides of this contact surface. As 

mentioned before, JWL equation of state was used for 

detonation products (Smith, 1999): 
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where e is the specific internal energy and ρ0 is the 

initial density of TNT (1630 kg/m
3
). Coefficients; A, B, 

R1, R2 and ω are given in (Smith, 1999). Solutions also 

require calculation of speed of sound. Using 

thermodynamic relations for perfect gases and equation 

(7), speed of sound, c, was calculated using equation 

(8).  
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ADAPTIVE GRID GENERATION 
 

Adaptive grid technique based on point redistribution 

was performed using equidistribution principle: 

 

 constwr      (9) 

 

where r denotes the physical coordinate, ξ denotes the 

uniform computational coordinate and w is a positive 

weight function defined using local flow gradients. 

Subscript means derivative. Differentiating equation (9) 

in ξ direction yields: 

 

   constwr 
   (10) 

 

Using central differencing, one can approximate 

equation (10) as: 

 

     012/112/1   iiiiii rrwrrw   (11) 

 

where subscripts i, 1i  denote grid points (cell centers) 

and 2/1i  denote mid points (cell faces). Using a 

Gauss-Seidel-type iteration (Tang and Tang, 2003), new 

grid points can be obtained using equation (12). 

 

 
 
  01

11
2/1

1
12/1













i
k

i
k

i
k

i
k

i
k

i
k

rrw

rrw
  (12) 

 

The weight function used in this study was an arc 

length-type weight function (van Dam and Zegeling, 

2006): 
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Here, derivatives in equation (13) were approximated 

using central differencing. In equation (13), α and β are 

user defined weight parameters. Actually this weighting 

function is problem dependent and requires user input 

for the parameters. There are more sophisticated 

functions which require less or no user input in the 

literature (van Dam and Zegeling, 2006; Soni et al. 

2000; Thornburg et al. 1998). However, this function 

was selected due to its computational simplicity.  

 

Interpolation of Flow Variables 

 

When grid points are redistributed, flow variables must 

be interpolated to new grid locations. This process can 

significantly affect the accuracy of the numerical 

solution. When there are large gradients in the flow 

field, using typical polynomial or spline interpolation 

would generate spurious oscillations in the vicinity of 

shock waves and contact discontinuities. Therefore, a 

monotone interpolation technique (Fritsch and Carlson, 

1980), based on limiting the slopes of flow variables, 

must be used for such cases. However, although a linear 

or cubic monotone interpolation (Fritsch and Carlson, 

1980) prevents spurious oscillations, it can violate 

conservation of mass. Therefore, a second order 

accurate conservative interpolation technique described 

in (Tang and Tang, 2003) was also used in this study. 

Unlike in (Tang and Tang, 2003), Superbee limiter 

(Roe, 1986) was used here to limit the slopes of the flow 

variables and provide monotonicity.  

 

RESULTS AND DISCUSSION 

 

This section contains the results obtained by the 

developed code. Numerical solutions were performed 

on a 1.80 GHz Intel® Core™ 2 Duo processor with 1 

GB of memory. 

 

Shock Tube Solution 

 

Since blast wave simulation is basically a moving shock 

wave problem, developed code was first tested for Sod’s 

shock tube problem (Sod, 1978). In this problem, a 

stationary high pressure fluid is separated from a 

stationary low pressure fluid by a barrier. At t = 0 the 

barrier is removed. This leads to a shock wave and a 

contact discontinuity move towards the low pressure 

region and an expansion fan move towards the high 

pressure region. In this study a shock tube problem with 

very strong discontinuities was solved using static and 

adaptive grids and results were compared with the exact 

solution (Sod, 1978). 

 

The initial conditions were given as follows: 

ρ = 1 kg/m
3
, u = 0, p = 1x10

5
 Pa, 1r m 

ρ = 0.0001 kg/m
3
, u = 0, p = 10 Pa, 1r m 

 

These were same the conditions studied in (Tai et.al, 

1997) as an extremely strong discontinuity case. This 

case was selected because it more closely resembles a 

blast wave simulation problem. This problem was 

solved in Cartesian coordinates, size of the solution 

domain was 5 m and both fluids were calorically perfect 

air. Weight parameters α and β were taken as 100 and 

20, respectively. Figure 2 shows density predictions 

obtained using an adaptive grid with N = 126 and three 

interpolation methods mentioned above. Please note the 

logarithmic scale used for the vertical axis. From this 

figure inability of the non-conservative methods to yield 

accurate solutions is evident. Actually, this was 

expected because linear and monotone cubic 

interpolation methods do not guarantee conservation of 

mass, hence they gravely affected the accuracy of the 

numerical solution. Conservative interpolation method, 

however, performed much better compared to others. 

Therefore, from this point on, only conservative 

interpolation method will be used in the computations. 

Figure 3 displays density distributions obtained using 

adaptive (N = 126) and static (N  = 126 and N = 251) 

grids. CPU times spent for each solution are shown in 

Table 1. From this figure, one can clearly see the 
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improvement made by the adaptive grid when the same 

number of grid points was used. Of course, adaptive 

grid solution required more CPU time, however, its 

predictions were comparable to the static grid solution 

on twice number of grid points, and in 25% less CPU 

time. Although adaptive grid technique did not provide 

much benefit in case 1 where discontinuities were 

moderate, it really improved the quality of the solution 

in case 2 where discontinuities were much stronger just 

as in the case of a blast wave.  

 

Distribution of mesh spacing at t = 1.2 ms along with 

welocity predictions obtained using adaptive gird were 

displayed in Figure 4. Note that adaptation was 

performed according to density and velocity gradients. 

Examining Figure 4 one can clearly see that the grid 

points were successfully clustered in locations where 

gradients were high. 

 

 
Figure 2. Density distribution at t = 1.2 ms obtained using 

adaptive grids with different interpolation methods. (ρ0 = 

0.0001 kg/m3) 

 

 
Figure 3. Density distribution at t = 1.2 ms obtained using 

adaptive and static grids. (ρ0 = 0.0001 kg/m3) 

 

 
Table 1. CPU Times spent for numerical solutions.  

 CPU Time 

Adaptive Grid (N = 126) 18 sec. 

Static Grid (N = 126) 14 sec. 

Static Grid (N = 251) 24 sec. 

 

 
Figure 4. Mesh spacing and velocity distribution at t = 1.2 

ms obtained using adaptive grid (N = 126). 

 

Blast Wave Simulation 

 

In this section, blast waves generated from explosion of 

1 kg of TNT are displayed. It was assumed that when 

detonation occurs, explosive material transform the gas 

phase instantly. Here, the explosive was modeled as an 

isobaric high pressure sphere in which the density was 

1630 kg/m
3
 and pressure was 8.381 GPa. Outside this 

sphere, ambient air density and pressure were 1.225 

kg/m
3
 and 101320 Pa, respectively. Simulations 

involved two different fluids; detonation products and 

ambient air for which different state equations were 

used. Problem was solved in spherical coordinates and 

size of the solution domain was 5 m. The weight 

parameters α and β were taken as 10 and 2, respectively.  

 

One of the important variables in blast wave simulation 

is the over-pressure, which is the rise of pressure above 

the ambient pressure downstream of the primary shock 

wave. Unlike planar shock waves, where shock strength 

is constant, strength of a spherical shock wave decreases 

radially (Dewey, 2001).  

 

Figure 5 shows comparison of over-pressure predictions 

obtained using adaptive (N = 251) and static (N = 251 

and N = 500) grids with the data obtained from (Smith 

and Hetherington, 1994) which states that these results 

are curve fits to the data used in the weapons effect 

calculation program CONWEP (Hyde, 1991).  

 

In this figure, r was measured from the explosive center. 

Numerical solutions mainly over-predicted over-

pressure especially at regions close to the explosive. 

Simple explosive model used here and neglecting any 

combustion effects that might occur due to detonation 

were the main reasons for this effect.  

 

However, numerical solutions started to show better 

agreement with data from (Smith and Hetherington, 

1994) as the distance from the explosive increases. 

Among the three numerical solutions displayed, adaptive 

grid solution gave the best predictions when r > 1 m.  
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Figure 5. Over-pressure predictions using adaptive (N = 251) 

and static (N = 251 and N = 501) grids. (p0 = 101320 Pa) 

 

CPU times spent by the numerical solutions are given in 

Table 2. Unlike the shock tube problem described in the 

previous sections, CPU time requirement for adaptive 

grid solution was only slightly higher than that of static 

grid solution. This was because of not making 

calorically perfect gas assumption for the solutions. 

Actually, here, the code spent considerable time to 

compute thermodynamic properties of detonation 

products and high temperature air. Considering the data 

displayed in Figure 5 and Table 2, one can clearly see 

the benefit of using adaptive grid for blast wave 

simulations. 

 
Table 2. CPU Times spent for numerical solutions. 

 CPU Time 

Adaptive Grid (N = 251) 253 sec. 

Static Grid (N = 251) 238 sec. 

Static Grid (N = 501) 481 sec. 

 

Figure 6 shows pressure distributions in solution 

domain at different times obtained using adaptive grid. 

Here, both the primary and secondary shocks can be 

visualized. As expected, the secondary shock, which 

develops after the primary shock, moves away from the 

explosive for a while. Then, it turns back and moves 

toward the origin to reflect from the origin. This is 

typical behavior that had been observed in the previous 

blast wave simulations (Brode, 1955, 1959; Smith, 

1999).  

Finally, Figure 7 displays the distribution of mesh 

spacing at t = 0.2 and 12.4 ms described in Figure 6. It 

is evident from these figures that mesh was refined only 

in the vicinity of shock waves and coarse mesh was 

used everywhere else where the gradients are not high. 

 

 
Figure 6. Pressure distribution at different times. (Adaptive 

grid solution with N = 251). 

 
Figure 7. Mesh spacing distribution at t = 0.2 and 12.4 ms (N 

= 251). 
 

All the blast wave solutions presented above were 

obtained with the assumption of local chemical 

equilibrium, meaning that chemical reactions in air 

occur instantaneously. In order to check the validity of 

this assumption previous blast wave simulations were 

repeated including the chemical nonequilibrium effects. 

This is accomplished by solving additional equations for 

the mass fractions of reacting species. In this study a 

five-species, five-reaction chemical model (Hoffman et 

al. 2002) was used to include nonequilibrium effects. 

For the forward and backward reaction rates one-

temperature model of Park (Park, 1990) was employed. 

The size of the solution domain was 1 m with N = 51 

which resulted in a mesh spacing of 2 cm. Taking mesh 

spacing as the characteristic length of the flow, the 

Knudsen number was calculated to be on the order of 

10
-6

 around which equilibrium assumption is valid 

(Hoffman et al. 2002). This resulted in very high 

reaction rates and made the system of equations very 

stiff. Figure 8 displays pressure distributions at various 

times obtained for nonequilibrium (solid line) and 

equilibrium (dashed line) flows.  

 

Predictions are generally in good agreement except in 

the vicinity of the secondary shock wave. However, 

peak pressure predictions are very close to each other 

which also showed the validity of equilibrium 

assumption. It is also useful to note that nonequilibrium 

flow calculations required nearly seven times more CPU 

time compared to equilibrium flow solution.  

 

 
Figure 8. Pressure distributions obtained for nonequilibrium 

(solid line) and equilibrium (dashed line) flows. 
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CONCLUSIONS 

 

Simulating shock waves require very fine grid spacing 

in the vicinity of them for accurate resolution of high 

gradients. When these waves move, very fine mesh 

spacing must be used for the entire flow domain if one 

uses a static grid. Using an adaptive grid, however, only 

refines the grid where it is necessary and may save 

considerable computer time and memory. In this work, 

an adaptive grid technique based on equidistribution 

principle was implemented to an in-house 

computational fluid dynamics code, which is capable of 

simulating moving shock waves. The method used an 

arc-length type weight function to redistribute the grid 

points. Three interpolation methods; linear, monotone 

cubic and conservative, were used to interpolate the 

flow variables to new grid locations.  

 

Developed code was first tested on planar shock tube 

problems. Linear and monotone cubic interpolation 

method yielded inaccurate results due to their lack of 

ability to conserve mass. Hence, a conservative 

interpolation method was necessary for accurate 

predictions. Predictions showed that the benefit of using 

adaptive grids becomes more evident, when the 

discontinuities in the flow domain are strong, as in the 

case of a blast simulation problem.  

 

Over-pressure predictions performed for blast waves 

due to explosion of 1 kg of TNT showed that using 

adaptive mesh technique can improve the results 

without requiring a lot of extra CPU time.  

 

Validity of the equilibrium assumption made for blast 

wave simulations was also tested by repeating 

numerical solutions by including chemical 

nonequilibrium effects. This was achieved by using a 

five - species, five-reaction chemical model. Pressure 

predictions obtained for nonequilibrium and equilibrium 

flows were in good agreement which also reinforced the 

validity of the equilibrium assumption used in the 

computations.  
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APPENDIX A 
 

Nonequilibrium Flow Equations 

 

Governing equations for nonequilibrium flow was 

obtained by coupling Euler equations (Eq. 1) with 

species continuity equation (Hoffmann et al. 2002). For 

the five-species model used the governing equations 

become: 

 wh
fq











rt
   (A.1) 

where 

 

___________________________________________________________________________________________  

 

  TCCCCEu 4321 q
     (A.2) 

  TCuCuCuCuHupuu 4321
2  f      (A.3) 

  TCuCuCuCuHuuu
r

n
4321

2 h      (A.4) 

  Twwww 4321000 w      (A.5) 

______________________________________________________________________________________________ 
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Here, Ci is the mass fraction and iw  is the rate of mass 

production of species i (Hoffmann et al. 2002). 

Conservation of mass requires 

 

 1

5

1


i

iC  and 0

5

1


i

iw  (A.6) 

 

The five reactions used in the solutions were as follows: 

 

 

NONNO

ONONO

MONMNO

MOMO

MNMN











2

2

2

2

2

2

   (A.7) 

 

where M is a species which remains unchanged during 

the reaction. The forward and backward reaction rates 

and the corresponding rates of mass productions were 

calculated using Table 4.14 and Section 4.7.3 of 

(Hoffmann et al. 2002).  
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