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Abstract: This paper deals with the estimation of exhaust gas temperature (EGT) of a CFM56-7B turbofan engine 

using artificial neural network (ANN) at two different power settings, maximum continuous and take-off. The study 

was carried out using the operational parameters of the engine such as net thrust, fuel flow, low rotational speed, core 

rotational speed, pressure ratio, fan air inlet temperature, take-off margin temperature, and thrust specific fuel 

consumption. All these data are taken from test cell measurements during ground operating of the engines. In this 

study, the accuracy of ANN results is compared with the measurements and the results of a regression analysis earlier 

based multiple linear method. The comparison of the predictions of the models indicates that ANN is capable of 

accurately predicting EGT in used turbofan engines. The correlation between the exhaust gas temperature and the 

operational parameters of the engine was found to be 0.99 and 0.99 for training data and  to be 0.90 and 0.97 for test 

data using ANN at two different power settings, maximum continuous and take-off, respectively. For both investigated 

power settings, maximum continuous and take-off, the mean absolute errors were found to be 2.1 per cent and 5.08 

per cent, while the coefficients of variance of root mean square error were found to be 0.5705 and 0.3539, 

respectively. The results obtained from ANN models show good agreement with ground measurements and the 

regression models. Finally, we believe that ANN can be used for prediction of EGT as a predictive tool in this sort of 

application. 

Keywords: ANN, EGT, Turbofan engines.  

  

TURBOFAN MOTORLARDA EGZOZ GAZ SICAKLIĞININ YAPAY SİNİR AĞLARI 

İLE TAHMİN EDİLMESİ  
 

Özet: Bu çalışma iki farklı güç durumu olan, tam güç ve kalkış için CFM56-7B turbofan motorlarının egzoz gaz 

sıcaklığının (EGS) yapay sinir ağları (YSA) ile tahmin edilmesi ile ilgilidir. Çalışma, motor çalışma parametreleri olan 

net itki, yakıt akış oranı, düşük devir sayılı mil hızı, yüksek devir sayılı mil hızı, basınç oranı, fan girişindeki hava 

sıcaklığı, kalkış marjin sıcaklığı ve itki özgül yakıt tüketimi gibi çalışma parametreleri kullanılarak gerçekleştirilmiştir. 

Tüm bu veriler motorun yer çalışması sırasında bremze öçlümlerinden alınmıştır. Bu çalışmada, YSA ile elde edilen 

sonuçların doğruluğu daha önceden sunulan çoklu lineer metoda dayalı regresyon analizi sonuçları ile ve ölçüm 

sonuçları ile karşılaştırılmıştır. Modellerin tahminlerinin karşılaştırılması YSA’nın, turbofan motorlarda kullanılan 

EGS’yi doğru bir şekilde tahmin etme özelliğine sahip olduğunu göstermektedir. EGS ve motor çalışma parametreleri 

arasındaki ilişki katsayısı, eğitim verileri için tam devir ve kalkış güç koşullarında sırasıyla 0.99 ve 0.99 olarak, test 

verileri için ise 0.90 ve 0.97 olarak bulunmuştur. Her iki güç durumu için ortalama mutlak hata maksimum güç için   

% 2.1 olarak kalkış için ise % 5.08 olarak hesaplanırken, RMS hata varyans katsayısı maksimum güç için 0.5705 ve 

kalkış için 0.3539 olarak hesaplanmıştır. YSA modelinden elde edilen modeller yer ölçümleri ve regresyon modeli ile 

iyi bir uyumluluk gösterir. Sonuç olarak YSA bu tip uygulamalarda tahmin aracı olarak EGS tahmini için 

kullanılabilir. 

Anahtar Kelimeler: YSA, EGS, Turbofan motorlar. 

 

NOMENCLATURE 

 

AEHMS automated engine health monitoring 

system 

AI artificial intelligent 

ANN artificial neural network 

CVRMSE the coefficient of variance of root mean 

square error 

CFM56 trademark of CFM international company 

EGT exhaust gas temperature 

EKF extended kalman filter 

FN net thrust 
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LKF linearized kalman filter 

MAE mean absolute error 

MLP  multi-layer perceptron 

MSE mean squared error 

N1 low rotational speed 

N2 core rotational speed 

PR pressure ratio 

RMSE root mean square error 

SD standard deviation 

TA air temperature at engine fan inlet 

TM take-off margin temperature 

TSFC thrust specific fuel consumptions 

UKF unscented kalman filter 

Y the value of Y predicted at ANN analysis 

X1, X2,., Xn measurement values 

n   the number of observations 

p   the number of model parameters 

Y dependent variable at performance 

analysis 

 Ŷ  the value of Y predicted at performance 

analysis 

 Y  mean value of Y 

 levenberg-marquardt constant 

 
 

INTRODUCTION 

 

Gas turbine engines, based on terrestrial and 

aeronautical, are used for a wide range of power 

generation applications, including aerospace, co-

generation, power plants and the like. The turbine 

engines produce thrust by increasing the velocity of the 

air flowing through the engine. A turbine engine consists 

of an air inlet, compressor, combustion chambers, 

turbine section, and exhaust. The turbine engine has the 

advantages of less vibration, increased aircraft 

performance, reliability, and ease of operation. Gas 

turbine performance analysis is very important in terms 

of condition monitoring of operating engines and 

Research&Development (R&D) of engines. Of course, 

the analysis needs high cost and much time. The 

performance analysis that have economic and high 

quality is obtained by accurate and reliable applications 

such as neural network, fuzzy logic etc. 

 

In aircraft gas turbine engines, the EGT is a primary 

measure of engine health. The higher EGT causes the 

more wear of the engine and thus the performance of the 

engine deteriorates. For every aircraft engine, a certain 

EGT limit is certified by the FAA. When a turbofan 

engine reaches its EGT limit, temperature of turbine 

blades rises to its melting limit. Therefore, the engine 

must be torn down for maintenance. This entails a high 

maintenance cost. For this reason, the estimation of 

EGT of a gas turbine engine is very important in terms 

of both the performance and the structural of gas 

turbine. 

 

ANNs (Haykin, 1994) are developed from 

neurophysiology by morphologically and 

computationally mimicking human brains. Although the 

precise operation details of ANNs are quite different 

from those of human brains, they are similar in three 

aspects: they consist of a very large number of 

processing elements (the neurons), each neuron connects 

to a large number of other neurons, and the functionality 

of networks is determined by modifying the strengths of 

connections during a learning phase. Ability and 

adaptability to learn, generalizability, smaller 

information requirement, fast real-time operation, and 

ease of implementation features have made ANNs 

popular in the last few years. Because of these 

fascinating features in this study, ANN used to the 

estimation of EGT of fifty CFM56-7B engines. 

 

There are several studies in the literature estimation and 

monitoring the EGT values. Demirci et al.(Demirci et 

al., 2008) performed a study to develop an automated 

engine health monitoring system (AEHMS) for 

commercial aircraft. The study was carried out using 

fuzzy logic which uses engine performance parameters 

gathered from aircraft for every flight during cruise. 

They found that the new method is not only to save time 

but also to keep the expert knowledge in maintenance 

companies. Simon (Simon, 2008) presented a systematic 

comparison of various Kalman filter based estimation 

approaches for the evaluation of aircraft engine health. 

The result of the paper revealed that both the EKF, and 

the UKF outperform LKF. A diagnostic system, based 

genetic algorithm, was proposed by Zedda and Singh 

(Zedda and Singh, 1999). The proposed system, tested 

with a two spool low by pass ratio turbofan engine, was 

found the high level of accuracy. Yılmaz (Yilmaz, 2009) 

investigated the relationship between EGT and engine 

operational parameters using multiple linear regression 

analysis in CFM56-7B turbofan engines. In the study, 

the predicted EGT values in maximum continuous and 

take-off power settings were compared with their 

measured values and the correlation were found to be 

R2=0.73 and 0.69, respectively. A study based ANN to 

determine engine condition monitoring and fault 

diagnosis was performed by Lu et al. (Luo et al., 2001). 

The result of the study shown that the success rates for 

both four-input and eight-input ANN diagnoses achieve 

high scores which satisfy the minimum 90 percent 

requirement. Kobayashi and Simon (Kobayashi and 

Simon, 2005) used a hybrid technique based neural 

networks and genetic algorithms to estimate the engine 

internal health. They found that the technique is 

promising for reliable diagnostics of aircraft gas turbine 

engines. Pashayev et al.(Pashayev et al., 2007) 

presented the temperature estimation of the gas turbine 

engine using soft computing methods including fuzzy 

logic and neural networks. The soft computing methods 

were determined to have certain advantages in 

comparison with traditional statistical methods. 

Bettocchi et al. (Bettocchi et al., 2007) carried out a 

study to the selection of the most appropriate neural 
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networks structure for gas turbine diagnostics. They 

concluded that the neural networks represent a quite 

easy-to-implement solution both for modeling the 

behavior and for performing the diagnostics of gas 

turbines. An assessment of the feasibility of a pro-active 

engine diagnostic-tool using ANNs examined by Joly et 

al. (Joly et al., 2004) to use recorded engine data more 

effectively. They concluded that the obtained results 

illustrate the potential for ANNs as diagnostic tools. 

 

Above literatures brings out the fact that, no significant 

work has been reported on use of ANN for prediction of 

the EGT of the CFM56-7B turbofan engine, as the 

present study proposes to do. In this study, an ANN 

model to estimation of the EGT of the CFM56-7B 

turbofan engines is presented and compared with engine 

test cell measurements data and the estimations of the 

multiple regression models performed at same operating 

conditions, maximum continuous and take-off. 

 

EGT ESTIMATION USING ANN 

 

The EGT means the measured mean temperatures of 

combustion gas along the turbine from high pressure 

turbine to low pressure turbine at different measurement 

ports depending on the engine types in the present study. 

ANN is computational network which attempts to 

simulate the networks of neurons of the biological 

central nervous system (Graupe, 2007). ANN is a 

branch of artificial intelligence (AI) which is the oldest 

and best known research field which has the goal of 

creating intelligent systems.  

 

In this study, ANN is used to estimate the EGT of the 

CFM56-7B turbofan engines that have been widely used 

around world in commercial aviation (Haykin, 1994). 

To do this, MLP (multi-layer perceptron) models are 

built using the NN tools in MATLAB software. There 

are many ANNs structures and training algorithm. The 

choice of the architecture of ANN depends on the 

problem to be solved. There are no accurate rules for the 

option of the hidden layers number and the neurons 

number in each layer. After several experiments using 

different architectures coupled with different training 

algorithms in this paper, the MLP neural network 

architecture was used to estimate the EGT. MLP is 

composed of simple processing units referred to as 

neuron, which are arranged in layers: input, output and 

one or more hidden layers. Each neuron in a layer is 

connected to all neurons of next layer via weighted 

connections. Despite its limited complexity it is one of 

the most extensively used ANN architecture because of 

its well-known general approximation capabilities. 

MLPs were trained with the Levenberg-Marquardt 

algorithm. The Levenberg-Marquardt algorithm is a 

least-squares estimation method based on the maximum 

neighborhood idea.  

 

The MLP network used in this paper consists of eight 

inputs and one output. Inputs of the NN are net thrust 

(FN), fuel flow (WF), low rotational speed (N1), core 

rotational speed (N2), pressure ratio (PR), air temperature 

at engine fan inlet (TA), take-off margin temperature 

(TM), and thrust specific fuel consumptions (TSFC). The 

output of the MLP network is EGT. The architecture of 

neural model used to estimate EGT is shown in Fig.1.  

 

MLP model was developed for two different power 

settings, maximum continuous and take-off. After 

several trials, it was found in this paper that the most 

suitable network configuration for maximum continuous 

and take-off power settings was three hidden layers with 

ten neurons for the first hidden layer, three hidden 

neurons for the second hidden layer, and one neuron for 

the third hidden layers (Fig. 1). The training is stopped 

when the validation error begins to increase. The input 

and output layers of the MLPs have linear transfer 

functions and the hidden layers have tangent sigmoid 

functions. The input and output data sets were scaled 

between -1.0 and 1.0 before training. The seed number 

was fixed to 121 for the model. The value of  of 

Levenberg-Marquardt algorithm was chosen as 0.001. 

 

In this study, the operational parameters used as inputs 

and outputs of NN were obtained from ground 

measurements of the engine at two different power 

settings. 50 data sets were obtained for each power 

setting. The data sets were divided into training, 

validation and test subsets. The first 26 data of ANN 

analysis were used for training. One half of the 

remaining 24 data were used for validation and the other 

half were used comparison with Yılmaz, 2009. Along 

each engine test, room temperature varies. If tests have 

been carried out in different days, the humidity and 

pressure will interfere together with the temperature. 

The NN models can tolerate these measurement errors. 

Because of this advantage of the NN, in this study 

measured data is directly applied NN without additional 

arrangements.The features of the experimental apparatus 

elements used to obtain training and testing data set are 

summarized as below: The N1 and N2 parameters are 

measured using N1 and N2 speed sensors. These sensors 

have 3 independent sensing elements. Each sensing 

element has a pole piece and electrical winding around a 

magnet. The WF is measured using fuel flowmeter. The 

FN is measured using two measuring load cells at thrust 

frame. TSFC  value is calculated at  DAS.  The  EGT 

value is measured using T49.5 termocuples with K type 

sensor. 
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Figure 1. The architecture of ANN used in the study. 

 

 

The number of the data set used in the NN completely 

depends on the problem to be solved. The diversity of 

the dataset is much more important than the quantity of 

samples you are feeding to the network. The only way to 

know whether the trained NN has good generalization is 

to use validation data which is not used in the training. 

When performance of the trained network on the 

validation data begins to drop, the NN is probably 

trained too far. For this reason, training process is 

terminated when the validation error begins to increase. 

If the trained network gives good result for the unseen 

test data set, it has good generalization. In this study, 

obtained good test results show that used data set for 

training is sufficient to estimate EGT. 

 

The estimated EGT values obtained from ANN model 

were compared with the measured EGT values and 

estimated EGT values obtained from (Yilmaz, 2009) for 

maximum continuous and take-off power settings. A 

performance comparison was made between ANN 

model and (Yilmaz, 2009)  in terms of the coefficient of 

variance of root mean square error (CVRMSE) and 

mean absolute error (MAE). CVRMSE, RMSE and 

MAE are defined as follows, respectively (Yezioro et 

al., 2008): 
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In these equations, Y  is the mean estimated EGT value, 

iY  is ith measured EGT, Ŷ  is ith estimated EGT, n 

number of the observations, p the number of model 

parameters, predictedEGT  is mean predicted EGT value, 

and measuredEGT  is mean measured EGT value. 

 

The data statistics used for the prediction of the EGT 

using ANN models is given in Table 1. 

 

RESULTS AND DISCUSSION 

 

A program code, including neural network toolbox, is 

written in Matlab language for ANN simulations. EGT 

has been predicted using ANN for the CFM56-7B 

turbofan engine at two different power settings, 

maximum continuous and take-off. In the study, the 

operational parameters such as FN, WF, N1, N2, PR, 

TA, TM, and TSFC are used to determine the EGT for 

both power settings in ANN models. Numerical values 

obtained from ground measurement data are used to 

train the network. 

 

In the maximum continuous power setting, comparisons 

of measured and predicted EGT values by ANN and 

regression models (Yılmaz, 2009) are shown in Fig. 2 

and Fig. 3 for the training and testing, respectively. As 

can be seen from these figures, the EGT values obtained 

with ANN are very close to the measured values at 

training and test conditions. The correlation coefficients 

for the ANN model are 0.99 and 0.90 for training and 
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test, respectively, while the regression model has the 

correlation coefficient of 0.73 for maximum continuous 

power setting. From the comparison, it is clearly seen 

that ANN model gives higher accuracy than the 

regression model. 

 

These results show that, the measured engine operating 

parameters can be successfully used to model the EGT. 

The NN can tolerate measurement errors originated 

from measurement set up. As such limited training data 

set is sufficient to successfully training of the NN to 

estimate EGT. There is no other study using the same 

data used in this study. For this reason, only regression 

model proposed in (Yilmaz, 2009) is used for 

comparison. However, there are other studies (Luo et 

al., 2001; Kobayashi et al., 2005; Pshayev et al., 2007; 

Bettocchi et al., 2007; Joly et al., 2004) to determine 

EGT and other parameters of the engines using different 

data sets. 

 

Fig. 4 and 5 present the comparison of measured and the 

predicted EGT values by ANN and the regression 

models (Yılmaz, 2009) for training and test conditions 

in take-off power setting. As depicted in these figures, 

the EGT values obtained using ANN model approximate 

measured values with the correlation coefficient of 0.99 

and 0.97 for training and test, respectively. However, 

the regression model has the correlation coefficient of 

0.69 for take-off setting. It is clear that ANN model has 

higher correlation coefficient than the regression model 

in the take-off power setting. By using single network 

architecture, good EGT estimations are obtained for 

both maximum continuous and takeoff power settings. 

As such a robust NN model is obtained to estimate 

EGT.  

 

In addition to the regression coefficient, the 

performance of the ANN model was also measured by 

CVRMSE (coefficient of variance of root mean square 

error), which is given by Eq. (1) and MAE (mean 

absolute error), which is given by Eq. (3). Table 2 

depicts the calculated CVRSME and MAE using 

equations (1) to (3), respectively, in the investigated 

power settings. It can be obviously seen from Table 2 

that the MAE and CVRMSE values of ANN models 

have considerable small value, as compared with that of 

(Yılmaz, 2009) that uses the regression models to 

predict the EGT of the engines. The MAE values are 2.1 

per cent for maximum continuous and 5.08 for take off. 

The MAE values are calculated as 8.107 and 8.54 for 

maksimum continuous and takeoff power settings using 

regression method proposed in (Yılmaz, 2009). 

CVRMSE values for the ANN model are 0.5705 and 

0.3539 for maximum continuous and takeoff, 

respectively. These values are calculated as 0.7646 and 

0.7444. These values clearly show that better results 

with respect to the regression model are obtained using 

ANN. 

 

It is seen from all obtained results that, proposed neural 

model can be successfully used to estimate EGT of the 

turbofan engines not requiring excessive computation. 

Accurate estimation of the EGT using ANN model is 

fairly important for the aircraft maintenance 

organizations. Because, when the EGT limit of a 

turbofan engine is exceeded, engine must be torn down 

for maintenance. This situation cause high maintenance 

cost. 

 

The variations of MSE (mean squared error) with 

iteration number are shown in Fig. 6 at two different 

power settings, maximum continuous and take-off. Fig. 

6 shows the evaluation of the MSE according to the 

number of epochs. As can be seen from the figure, the 

error is reduced very rapidly at the beginning of the 

training phase. For the NN training error is usually 

smaller than the test error. This situation can also be 

shown from Fig. 6. 

  

  
 

 

 

Table 1. Descriptive statistics of 900 data points derived from Yılmaz, 2009. 

  

 Maximum Continuous Take-off 

 SD Mean N SD Mean  N 

EGT [K] 36.473 1714.932 50 30.103 1726.527 50 

FN [kN] 0.674 118.409 50 0.78 119.739 50 

WF [kg/s] 0.022 6.109 50 0.016 6.234 50 

N1 [rpm] 4.949 5046.5 50 6.364 5085.6 50 

N2 [rpm] 54.447 14382.5 50 56.568 14403 50 

PR [-] 0.382 27.243 50 0.314 27.57 50 

TA [K] 5.197 330.097 50 5.501 329.942 50 

TM [K] 30.723 339.28 50 30.723 339.275 50 

TSFC[kg/h/N] 0.003 0.374 50 0.003 0.377 50 
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Table 2. Evaluation of the ANN model at different power settings. 

  

Power setting 
MAE [%] CVRMSE [-] 

ANN (Yılmaz, 2009) ANN (Yılmaz, 2009) 

Maximum continuous  2.1 8.107 0.5705 0.7646 

Take-off 5.08 8.54 0.3539 0.7444 

  

  

  

  

Figure 2. Comparison of measured and predicted EGT for 

training data. (Max. continuous). 

 

 

 
Figure 3. Comparison of measured and predicted EGT for 

test data. (Max. continuous). 

 

 
 

 

 

 

 

 

 
Figure 4. Comparison of measured and predicted EGT for 

training data. (Take-off). 

 

 

 
Figure 5. Comparison of measured and predicted EGT for 

test data. (Take-off). 
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Figure 6. Variations of MSE error with iteration number. 

 

For EGT predictions, the NN training phase takes 1-2 

s on a Pentium Dual-Core 2.5 GHz PC with 1 GM of 

RAM memory. After training, the calculation time is 

less then a few µs in real time calculation. Thus, the 

neural computation is very fast after training phase. 

Calculation time of EGT prediction with multiple 

regressions is about 5 s depending number of 

independent variables having same PC configuration. 

It is clearly seen that the calculation time of the ANN 

is shorter than that of the regression. 

 

CONCLUSIONS 

 

An ANN analysis was carried out for estimate EGT of 

fifty CFM56-7B turbofan engines. 50 data were used 

in the ANN analysis for each power setting, including 

maximum continuous and take-off, in the study. The 

first 26 data of ANN analysis were used for training. 

One half of the remaining 24 data were used for 

validation and the other half were used comparison 

with the regression model. 

 

The prediction performance of the multiple linear 

regression models developed earlier in the literature 

and the ANN model developed in this study was 

assessed by comparing the estimates of the models 

with actual engine ground measurements for each 

power setting, including maximum continuous and 

take-off. It is shown that the models, including 

multiple regression and ANN, are capable of 

predicting the EGT of the engine for both power 

settings. The predicted values using ANN models 

agreed well with measurements data, which verified 

the validity of the proposed neural network model. 

The multiple linear regression models have lower 

correlation coefficients (R
2
=0.73 for max. continuous 

and R
2
=0.69 for take-off) compared with ANN model 

test results (R
2
=0.90 for max. continuous and R

2
=0.97 

for take-off). It is shown from these results that the 

ANN model has a higher prediction performance than 

the multiple linear regression models. The other 

performance comparison metrics, CVRMSE and 

MAE, given in Table 2 are also shows superiority of 

the proposed neural model.  

 

The results obtained from ANN models show good 

agreement with ground measurements and the 

regression models. The advantages of the neural 

model proposed in this paper are its simplicity and 

accuracy. Finally, it is said that ANN can be used for 

prediction of EGT as a predictive tool in this sort of 

application. 
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