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ABSTRACT. In this paper, we introduce the concepts of left and right general-
ized conformable fractional integrals, alongside the corresponding derivatives.
Additionally, we extend our investigation to derive the generalized conformable
derivatives for functions within specific spaces, elucidating their inherent prop-
erties.

1. INTRODUCTION

Fractional calculus, with its roots dating back to 1695, has evolved significantly
over the years and garnered increasing significance, particularly in applied sciences.
Its applications span various fields including physics, mechanics, electronics, chem-
istry, biology, and engineering [2 — 7], [16]. Two commonly used approaches in
fractional calculus are the Caputo and Riemann-Liouville derivatives.

The Riemann-Liouville approach entails iteratively applying the integral opera-
tor n—times, resulting in fractional integrals of non-integer order. This method has
found widespread use due to its versatility across different disciplines. However,
the standard fractional calculus framework may not always be sufficient for certain
applications, necessitating the introduction of specialized kernels for a more unified
approach to fractional derivatives.

The differentiation operator serves as a fundamental starting point for the it-
eration method in fractional calculus. By incorporating the required kernels, re-
searchers aim to achieve a more comprehensive understanding and application of
fractional derivatives across various scientific and engineering contexts [8 — 10],
[19 — 20]. In the present case, Abdeljawad defined as the following the left and
right conformable derivatives, respectively[18],

JTOf (7)) = (1= ¢) " f'(7),
(1.1)

Tef(r)=(6—7)""f (7).
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In this context, assuming f is a differentiable function, we possess left and right
conformable integrals as the following forms, respectively [1]

) ayB-1
Brafp(r) = L [T (r=9)"=(0=¢) do
(1.2) o1 f () = 157 Js ( o ) 10) ==
and
o § [ (6—m)—(6—0) P 1
(13) Pt ) = i [T () 0) e

In [1], authors introduced novel fractional operators characterized by two pa-
rameters, each with kernels distinct from conventional ones. Our paper closely
examines the findings of [1], focusing on their implications and further develop-
ments. We extend upon their work by deriving new generalized fractional integrals
and derivatives using the newly defined fractional operators.

Moreover, we provide a thorough exposition of basic definitions and tools es-
sential to classical fractional calculus. These foundational concepts serve as the
groundwork for our subsequent discussions and advancements.

Definition 1.1. ([17],[21]) Let v (7) be an increasing and positive monotone func-
tion on [0,00). Furthermore, we’ll consider v as a monotonically increasing and
positive function defined on the interval [0, o), with its derivative v being contin-
uous and 7 (0) = 0. The space X;l (0, 00) is the following form for (1 < d < o0),

(1.4) 1lxa = (J5=1F @1 (7) o) " < o
and if we choose d = o0,
(15) IFlxe =ess sup [7(6)7" ()]

Additionally, if we take y(7) = 7 (1 <d < o0) the space X,‘f(O,oo), then we
have the Lg4[0,00)—space. Moreover, if we take v(7) = 7:—: (I1<d<oo, k>0)
the space Xff(O, 00), then we have the Lg x[0, co)—space [17].

The authors derived the generalized left and right fractional integrals for 3 be-
longing to the complex numbers (5 € C) with Re () > 0 in [§],

a_a\B—
(16) (o1 1) (0) = 5y 2 (252) " 1 )
and

a_pga\B—1
(L.7) (1°r) O = et Jy (552) 1) %,
respectively.

The authors obtained left and right generalized fractional derivatives for 3 be-
longing to the complex numbers (5 € C) with Re () > 0 in [9],

(4D f) () =" (oI" P2 ) (6)
) = 1 (25) T )

and
(DF7) 0 = (=" (122 (0)

(1.9) n—p-1
o _C n 5 @ _go
- F((n*)ﬁ) f9 (y o ) f (y) yflga
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respectively, where o > 0 and where ¢ = '~ 4

do-
The left and right generalized Caputo fractional derivatives, as defined by the

authors in [15] through the utilization of [9], are expressed in the following forms,
respectively,
(1.10) (§075)0) = (¢I"‘B’“ )" £) (0

’ _ —ut AL f d

- F(n fq& ( «a ) = ‘)1 .
and
(D5 f) 0) = (oI P2 (=0)" 1) (0)

(1.11)

_ 1 fé(yte“)”*"“( Q" )y
5 Jo \ " a e

After introducing the generalized fractional conformable integral and derivative
operators, we will highlight their significant implications and key characteristics.
Additionally, we will delve into the properties of the defined generalized conformable
derivative and extend our analysis to include the generalized conformable fractional
derivatives within the Caputo framework. As a result, we will consolidate our find-
ings and build upon the previously established consequences for both the generalized
conformable derivatives and integrals.

2. THE GENERALIZED CONFORMABLE OPERATORS

In light of Abdeljawad’s work on conformable integrals, which were extended to
higher orders in reference [10], and Jarad et al.’s definition of fractional integrals
in [1], we aim to establish a generalized conformable derivative. To achieve this,
we’ll consider v as a monotonically increasing and positive function defined on
the interval [0,00), with its derivative 4/ being continuous and + (0) = 0. With
these conditions in mind, our objective is to formulate the generalized conformable
derivative based on the existing definitions of the conformable derivative

f<9+5(w(8) 4N ﬂ)ff((,)
3T f (0) = lim. 5 ©

g

(2.1)

By taking into account equation (2.1). In here,

((O)=y(@))* = _ Aty (0)
(2:2) At=e200) T E T G
we select At in the form. Then,

Yo _ (@) =N ¢
(2.3) JTof(6) = QO (g

We can assert formula of generalized conformable derivative, respectively,

¥ o N CIOERTC))
(2.4)

TS (0) = O (6).

Additionally, we acquire generalized conformable integral operator. For this reason,

(2.5)

j‘ 01)d91 91 Y (92 d02 j‘ n—1 7 (G,L (9 )den
4 (7(91) (@) o (v(02)—v(e))' e (v(0n)=7()) 1~
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we should take n—times repeated integrals of the forms. Furthermore, If we employ

a method akin to classical fractional integral techniques, then we write the equality
Y n,a _ 1 (O @) (@) VT A @) f©0)do

(2.6) }o f(r) = T(n) f¢ { a } V(@) =)' "

Furthermore, we can acquire definition of the following for generalized conformable

integrals drawing upon the equality presented in reference [2].

Definition 2.1. Let f € X,(0, 00). Moreover, we will consider 7 as a monotonically
increasing and positive function defined on the interval [0, c0), with its derivative
v being continuous and «(0) = 0. The left and right generalized conformable
fractional integrals of order n € C, Re (n) > 0 and « > 0, respectively,

n—1 ’
o Y pmar oy 1 [ @) (O (@) + (0)7(6)d8
(2.7) oI (7) r<n>f¢{ a } G0
and
map N _ 1 (0 (48 =r() (&) =) 1" A (0)7(6)de
08 I = ) : | oo

Within this context, we introduce the subsequent definition, leveraging the frame-
work provided by the generalized conformable derivative and integral operators.

Example 2.2. Let’s calculate the result of the generalized conformable fractional
integral J.J2:1f (1) for f (7) = 473,

Proof. If we choose v (z) = =, f(0) =463, a=1,n =1 and ¢ = 0 in (2.7), we

2
have ) .
G (1) = = / (r—6)"% 463d6,
I'(z) Jo
Furhermore, by using variable change 0 = 7u and df = 7du, we acquire
WL (T) = w0t (1—u) "% uddu
_ 4.0 1
- 4855 (4.4
_ 402T(4)
r(3)

The proof is done with Beta function and property of Beta function . O

~27)

N
)

o=

Example 2.3. Let’s calculate the result of the generalized conformable fractional
integral J.J 2! (gJ%J (47'3)> .

NN

Proof. If we choose v (z) =z, f(0) = 4?(1;()4), a=1,n=1%and ¢ =0in (2.7),
we get ’
| ] 1 _1 4057 (4
gJz! (gJTl (47’3)> = — / (r—10) il el 9( )d9.
I'(z) Jo r(3)
Moreover, by utilizing variable change 6 = Tu and df = Tdu, we take

The proof is done with Beta function and property of Beta function . O
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Definition 2.4. Let f € X,(0,00). Furthermore, we will consider v as a mono-
tonically increasing and positive function defined on the interval [0, 00), with its
derivative 7' being continuous and 7 (0) = 0. The left and right generalized con-
formable fractional derivatives of order 8 € C and Re (8) > 0,

JDPeg(r) =)o (L) £ ()

(2.9)
Yne _ o _ a1n—p—-1 /
_ N [(v(r) V(N =((O)=(¢)) ] v (0)£(0)do
T(n—p) J¢ a (v(O) = (@)~
and
(2.10)

D f(r) =T () £ ()

I GVl fé [(W(é)—v(f))“—(v(é)—v((?))“}n_ﬁ_l ~ (0)f(6)de
r(n=p) = a (v (&)= ()T~

where n = [Re (8)] + 1,
Ypn,a _ Ype Ypa ypa
ITme = IT ITLT,
—_—

n—times

(2.11)
VL =0T TS LT
n—times
gTa and 77§ are the left and right generalized conformable differential operators.
Example 2.5. Let’s calculate the result of the generalized conformable fractional
derivative J D=1 f (1) for f (1) = 4.

Proof. 1f we choose v (z) =z, f(0) =0*, a=1,n=1, =3 and ¢ =0 in (2.9),
we get

=2
N~
=
=

D (=S [ (-0 i,
0

r(3)
Furhermore, by using variable change § = 7u and df = 7du, we have
1 s 1 _1 9
IDTf (1) = w1 Jo 1 —u) 2 uf2du
9\ 1
= F(I%)d% (92) Jout(1—u)"2du
_ 1 943 r)r(i)
2" )
_ (502
r(3) -
The proof is done with Beta function and property of Beta function . ([

Example 2.6. Let’s calculate the result of the generalized conformable fractional
4
derivative J D! (gD%’lf(T)) for f (1) = %
7
Proof. If we choose v (z) =z, f(0) = 28292 =1, n=1,8=1and ¢ =0in

(2.9), we get
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Furhermore, by using variable change 6§ = 7u and df = 7du, we have

7

ypii (LE)T2 )\ _ _d5 TGl 4

v (N5) =l a-wtia
_ r'(G) d 1z
= ey 09 Jy i (1 -0 au
_ 1 TG yp3p (9 1
=B G)
=1 T 4sT(E)0(G)

r(i)r(g) I'(5)
= 463,
The proof is done with Beta function and property of Beta function . O

Theorem 2.7. Let f € X,(0,00). Moreover, we will consider y as a monotonically
increasing and positive function defined on the interval [0, 00), with its derivative '
being continuous and v (0) = 0. Then, we have fractional integrals for Re (8) > 0
and Re (s) > 0,

Jase (30e°) £ (7) =3 JEHep (7),
(2.12)
YOI () =TT ().
Proof. With the assistance of equation (2.7), we obtain
(2.13)
VJB,a (’YJg,a) f (T)

[(v(r W(¢))”*(v(9)*v(¢))”}ﬁ_l (375°)7 (0)5(6)d0
a (7(9)—7(05))1’“

- 1“(,6’) f
_ f (y(n)— w))a (y(8) = ()
¢
S

F(ﬁ)F

<([° [( 7(0)=(8))* ~(v(w) (&) r b wfde o 0)f(0)do
¢ @) ) BB =)

o o +¢—1 ’
A =2(6)°~G=1(6) l [ e A HLE
4

e

B F(ﬁ)F(C f¢ [ (v(w)—y(p))'
_ I [(w(r) ’Y(¢))”—(’v(u)—v(¢))“} Y (Wb wdu
F(B+<) é a (Y(w) = ()~

:; JB+e f (1),

In here, we employed the change of variable,
(2.14)

(V(0) =7 (@)" = (v (u) =y (@) +z[(v (1) =7 (£))" = (v () =7 ()]

The proof of the second formula can similarly be illustrated using the similar ap-
proach. (Il

Lemma 2.8. Let f € X,(0,00). Furthermore, we will consider v as a mono-
tonically increasing and positive function defined on the interval [0,00), with its
derivative ' being continuous and v (0) = 0. We possess for Re(r) >0,

- af+r—1
o 15) lJﬁ,a (’Y (9) PN ((b))a(r—l) (T) _ . (Fﬂ(i)r) [(’Y (T) 'Ya(;b)) } :
. . . B+r—1
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Proof. With the assistance of (2.7), we hold

377 (7 (8) =7 ()" (7)
= L7 [(W(T)—v(aﬁ))“—(7(0)—7(¢))“ P 00 —1(6)) 2y (0)do
L(B) J¢ @

(2.16) s wBhrmt 1 » (1) =)'~
— [( )F&g()?g_]l fo (1 —z)ﬂ =1
_ _T(r) [((m)=v(e)]* 7t
T(B+r) af '
Moreover, we employed the change of variable,
(2.17) (Y (O) =7 (@) =z(v(T) = ()"
The proof of the second formula can similarly be illustrated using the similar ap-
proach. O

Lemma 2.9. Let f € X,(0,00). Moreover, we will consider v as a monotonically
increasing and positive function defined on the interval [0,00), with its derivative
v being continuous and -y (0) = 0. We possess for Re (n —a) > 0,

305 (7 (0) =1 ()™ V] () = FEg [ () =7 ()T
DF (3 (8) = )V (1) = T (@) — v ()T

Proof. With the assistance of (2.9), we hold
(2.19)

207 (v(0) =1 ()] (7)

Ay [(w(ﬂ—w))a—(w<e>—v(¢>>a]"““ [((0)—1(6)°]"~" ' (8)do
LT ) GO=v(@)*
T [(v(T)=y()) " TP 1 n—B—1 _,_

"’B T B)an—? Jo 1 =2) A=l r=1q,
a”T'(r ar—FB—1

= F(T,(g)) [(7 (T) _’7(¢)) ] .

In here, we employed the change of variable,

(2.18)

(2.20) (Y (O0) =7 (@) =z(v(r) —7(8)" .
The proof of the second formula can similarly be illustrated using the same ap-
proach. O

Remark 2.10. It can be illustrated that
YNB,x £ — YV I8,—«
¢D f= ¢J
(2.21)
TDPf= gl

3. GENERALIZED CONFORMABLE FRACTIONAL DERIVATIVES
ON THE SPECIFIC SPACES

In this section, we will introduce several definitions pertaining to lemmas and
theorems. Furthermore, we will showcase the significant outcomes of the generalized
conformable fractional derivatives within the spaces C7 4 and Cy, ;.

Definition 3.1. [18] For 0 < o < 1 and an interval [¢, d], we describe

sy i) = {f:60 =R f0) = (1P) (1) + 1 (0)
for some ¢ € "Ly (¢)}
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and
(3.2) ol ([¢,9]) = {g g, 0] 2 Rig(r) = (Uf%) (1) + g (5)

for some ¢ € "L, (0)}.
Where

(83)  La(0)={p:[0.0] > R, (JI*70) (7) exists ¥ 7 € [6,]}
and

(3.4) Lo (5) = {gp L [6,0] = R, (w;»%) (r) exists V 7 € [¢, 5]} .
Definition 3.2. We can define for a € (0,1] and n =1,2,3, ...,

C2 5 (19,0]) = {1 :[6,0] > R such that JT""1f € "I, ([6,6))},
Cr s ([6,0) = {+ 16,0 > R suey that I3 f € 11 ([6,9])} .

s

(3.5)

Lemma 3.3. Let f € C} ,([¢,0]) for a > 0. Moreover, we will consider v as a
monotonically increasing and positive function defined on the interval [0,00), with
its derivative y' being continuous and v (0) = 0. Then f is expressed as the following
form,

fr f [7(7) ()™= (v(8)— 7(@5))‘*} "l o0)y (9)de
= (n— 1)' a (Y (O) =~ () ™

I [M} LT f(9).
In this place is p (0) = (;Ts’af> (0).

Proof. If we take f € CF ,([¢,0]), JT"""*f € "1, ([¢,d]) and ¢ is continuous
function, then we acquire,

(3.6)

n—1,a (0) (8)do n—1,a
GT b (7) f¢W+lT bef ()
(’Y(”');I’Y((j;)) ddr (’Y Tn—2, af ) _ fd) o 9)9)1((5)))(119 _ +’Y Tnfl,ozf (¢)
(3.7) n-2,a () (0)7' (9)do
<7T fm) ) Wv(aﬁ = Jo 5@ 1@)1 g

(T) n—1,a
Rl f(¢)]

If we integrate both of parties (3.7) from ¢ to 7, substituting 7 with 6 and 6 with
s on the both side of the equation, then we have

o (v(s)=v(8)'

(35) Z)Tn—&af (r) = f(;' L(’Y(T)—’Y(@)D‘—(’Y(S)—’Y(¢))a} p(s)y (s)ds
+ (v(r —a"/(¢)) .’;Tn—l,af (¢) +Z5 Tn—Q,af (¢) )

By applying the equation (3.8) again same method, we get

2 ’
Ym—3,a _ (71| (™)== (v (s)=v(e)* w(s)y (s)ds
e ORES | a | moes

a2
(39) +% [(’Y("’)—a"/(@) :| .’(;Tn—l,af (¢)

+ (v T)—a"/(‘ﬁ))a .;Tn_Q’af (¢) +Z$ Tn—B,(xf (¢) .
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By applying the same method iteratively n — 3 times, then we have,

n—1 ’
- 1 T (D= (@) =(v(0) =7($))? ©(0)y (0)do
F@O = o ks [ a 1 (v(0)=v(¢))'~

(3.10) Ly {M} LT f(¢).

For ¢ (0) = T™f(0). It is evident that an analogous lemma holds for right
generalized conformable fractional derivatives. O

Lemma 3.4. Let f € Cp , ([¢,0]) for a > 0. Furthermore, we will consider v as a
monotonically increasing and positive function defined on the interval [0, 00), with
its derivative ' being continuous and v (0) = 0. Then, f is expressed in form,

_ 1 0| (v(O) =y (TN = (v(8) =¥ (8N n=t ©(0)y (0)d0
f(r) = n—1)! fT [ a } (v(8)—~(0))'
Ly [(wa)—vm)ar (=) T ()

a s!

(3.11)

In this place is ¢ (0) = (VT3 f) (0) .

Proof. The proof follows a similar structure to lemma 3. O

In the Theorem 2, we will establish the generalized conformable fractional deriva-
tives within the spaces Cy , and Cf 5.

Theorem 3.5. Let 8 € C, Re () >0 and n = [B] + 1. Moreover, we will consider
v as a monotonically increasing and positive function defined on the interval [0, 00),
with its derivative v' being continuous and v (0) = 0. The left and right generalized
conformable fractional derivative are illustrated in the form for f € Cy , and f €
Cq s Then, we write

yDRef (r) = (”J”*ﬁ (3zmes)) ()

(3.12) YT 1) qm—B
2: 7)—v(¢
m= O F(m B+1) |:(’Y( : 07( = :|

and

iefm = (W OTEn) ()

e V{0 ) [T T m—F
oyl Gt [m( =) } .

(3.13)

Proof. By using f € C7 ; ([¢,d]), we should select f(7) in the Lemma 3, substitut-
ing 7 with € and 6 with s that is as following form

_ 1 0 [ (v(O) =7 (@)™~ (r(s)=v(e))* ]~ F 3T™ “f ()Y (s)ds
f(e) - nfl)l f¢ |: a ";| ('Y(S) (d)))l

(3:14) ~1 [((@)=v(eN*]" 1
+Z {%} H; m,af((b)_
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In here, we can state the following equality by using (2.9) for (3.14),
(3.15)
gD f (7)

_ o I [(w(r) )= (O ()" }" A=t o)r@as
T(n=p) Jo GO @)

’YTn @

S [ TGRL OO w))ar A=
=g Jo

1

X

f [(»v(e) OO w))a]" Lormef(s)y (s)ds 5 (6)do
”*U' (S =@ ) (v (@) (@)

'YT )— o _ « 7571
+F = f¢ {(7() () * = (3 (0)—7(¢))

n=1 [GO)=)" ™ m.a @
X(Zm:o[ = } sl f(¢)) IO

By employing techniques such as changing the order of integration, the gamma
function, and the beta function, along with the utilization of the following equations
(3.16)

(v () =7 ()" =(v(s) =7 (@) +2[(v (1) =7 (9)" = (v (5) =7 (#)]

and

Then we obtain following form

1D (1)
oI e 2T () ()ds
A=t Jo (v(s)=y (@)= N
(317) X (fo (1 - 2" (" ) [l e

o
n— 1 ST 5T f ()
+ Z F(n B).m!

X (fo (1- u)”*ﬁfl (u)™ du) [M}

In here, we obtain by means of the operator JT™,
(3.18)
a o —-B-1 ./ npa
v DB _ 1 T [ (v (D)= (@)* = (v () =7 (&) |" v ()5 T f(s)ds
D7) = S [ a } ) A=

G 0) [ ()=o) ™
+Zm OFm ﬁ+1)|:’y 07 :|

n—pB+m

We have successfully concluded the proof. The proof of the right generalized con-
formable fractional derivative can be conducted in a similar manner. O

Theorem 3.6. We assume that is Re (8) > m > 0 for m € N. Furthermore, we
will consider v as a monotonically increasing and positive function defined on the
interval [0, 00), with its derivative ' being continuous and v (0) = 0. Then, we have

yrme (JaPef(n) = JIBmes (7).
(3.19)
e (vaa f (T)) = VI f (7Y
Proof. We have by using (2.7),
(3.20)
1

@ @ 6_ ’
v (1 7By _vpma |1 7 [0~ (G0)—1(@) 2 (0)(0)de
o1 (¢J f(T)) =T {r( 7o { a } OB =
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By utilizing Leibniz rule for integrals, we get

e (ser ()
— ypm—la LT {<v(r)f~y<¢))“f<v<0)fw<¢))“}5’2 ' (0)£(0)do
¢ T(B-1) J¢ a (v(O) =y ()~

_ypm-2a |_1 fT[(W(T)fv(qﬁ))“*(7(9)*7(45))“}5_3 7 (6)£(6)do
G- Jo a GO ()

I [(7(7)*7(@)“*(7(9)77(@)“r_m_lM
T(B—m) Jo¢ « (7(9)—7(45))17&
L

@

— J,B—nL,af (7_) .

The poof is successfully completed. The proof of the second formula can be similarly
illustrated. U

Corollary 3.6.1. We will consider v as a monotonically increasing and positive
function defined on the interval [0,00), with its derivative v' being continuous and
v (0) = 0. If we take Re(s) < Re (5), then we write

Jose (P f () =) S f (7).
(3.22)

Dy (VP () =1 I ().

Proof. By employing Theorem 1 and Theorem 3, we acquire

ppee (res @) =g (e (300 ()
(3.23) = yrme ’;Jﬁ+m—§,af (T))
= ;Jﬁ*’af (7).

The poof is successfully completed. The proof of the second formula can be similarly
illustrated. (]

Theorem 3.7. Let 3 > 0 and f € C} ,[9,6] (f €Chs [gb,(ﬂ). Moreover, we

will consider v as a monotonically increasing and positive function defined on the
interval [0, 00), with its derivative v being continuous and vy (0) = 0. Then, we have

0P (15 f () = £(7),
(3.24)

"YD?’O‘ (WJ(;B’O‘f (T)) = f (7).
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Proof. If we possess by using (2.7) and (2.9), then we have

’YDﬁ,a (’YJB,af (7_))
__ Tt (y(r)— "/(¢))a (v(0)=v())*
= e o Js |

" [(7(0) () = (y(w) = w(qs))ar Vs o 00
. @)@ ()-8~

= ot b L [0 (D) =7 (@) = (v (6) - <¢>>“]" o
sy X100 =10 — () —7(6)' ™ G, e

an o

n—pg—1

_ f u)'y (u)du
I‘(n BT(B) Jo (v(u)—~(¢)'

JHL =)t ()P 1dy> {(w(r)—w))a—w(u)—ww))‘*}”

[e3%

_ Ln-ALE) (7 {(7(7)*7(@)(’*(7(“)*7((25))”}n_l Fw)y (wdu
T—BT@E T Jo o W —(e) "

= e (e ) (7)
= /().

-1

X
~

We complete the proof . (Il

Theorem 3.8. Let Re(8) > 0, n = [Re(f)], f € X, andA’Jﬁ “f ey 9,9 (VJf’af €Cys [d),cﬂ).
Furthermore, we will consider v as a monotonically increasing and positive function

defined on the interval [0, 00), with its derivative ' being continuous and v (0) = 0.
Then, we have

(3.26) 1% (J07f (7)) = £ (r) — oD S (@) [wm—v(@)“r—j

S TE-i+1) a

and
(3.27) . -
o a ()" DI () [(r(0) =y ()]
i (i) =10 = 3 gy [P
Proof. We can write by using (2.7) and (2.9),
3.28
(VJB,)a (vpﬁ,af (T)) S {(W(T)—v(qﬁ))a—(7(9)—7(05))"}5_1 2T (G0 1(0)) 0)d0
¢ @ T T(B) e « (v(0)=v(e)'~

By using the integration by parts once, we get
(3.29)

ol o «1B ‘YTn,a('YJn—ﬁ,af(g)) /(G)dG
v 18,0 (VY DB oI QM= (@)= (0) = () é ¢ il
o/ (¢D f(T)) - fem dy { a } @O

iy (e (0)) [’
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By using the integration by parts n—times, we obtain

(3.30)
7JP (gDﬁ”If (7'))
S Cl o4 [(W(T)—7(¢))a—(7(9)—7(¢))a]ﬁ_" (G772 1(0))y (0)do
T(A—n+1) Jo o (@)= (et
n QTG 0) [ =) ]I
=it T(F+2—j) o
B B n ypn—ge "rJnfﬁyaf(qb) ) — a1B—7+1
:; Tl ;Jﬁ n+l,a (;Jn B g (7.)) -~ ijl é F((ﬂ¢+2—j) ) {(w( ) av(aﬁ)) }
N o " 'YTnfj,a('anfﬁ,af((b)) )=y ($))* B—j+1
:g T (;);Jl, f (7_)> . Zj:l 6 1"(5—&-2—3‘) [(7( ) 07( ) }

n ’YDﬁfj,af(qﬁ) ) «1B—J
= f(r) -, e {m )=1(¢) } .

The proof is successfully completed. The proof of the second formula can be illus-
trated in a similar fashion. O

4. GENERALIZED CONFORMABLE FRACTIONAL DERIVATIVES
WITHIN CAPUTO FRAMEWORK

In this section, we will introduce several definitions relevant to the theorem, while
also elucidating some properties of the generalized conformable derivative within
the Caputo setting.

Definition 4.1. Let « > 0, Re(8) > 0 and n = [Re(B)] + 1. Moreover, we
will consider v as a monotonically increasing and positive function defined on
the interval [0,00), with its derivative 4/ being continuous and 7 (0) = 0. If we

get f € Chy ( fe C;L’(;), then, we acquire the left and right generalized Caputo
conformable fractional derivatives, respectively.

(4.1)

n—1 "/Tm,a i a\ m
(D55 () = 0% [f 0-5 ¢ mlf(gb) ((7(0) av(aﬁ)) ) ](T)

m=0

and

(4.2)

(D55 (7)) = "Dpe [f -5 CUIEO) (ma) —2(0) ) ](T).

m=0

Theorem 4.2. Let Re(8) > 0 and n = [Re(B)] + 1. Furthermore, we will con-
sider v as a monotonically increasing and positive function defined on the in-
terval [0,00), with its derivative v/ being continuous and v (0) = 0. If we take

fecy, (f € Cg’a), then we obtain the left and right generalized Caputo frac-
tional conformable derivatives in Caputo setting, respectively.

@ () e )
and

(4.4) (veDier ) =g OTO f (7).
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Proof. By considering De finition 5, we possess

(4.5)
(39D ()
=) DA [f 0) — s T 1) ((«o)w(@)“)m} (r)
. @ n—1 JT™f(¢) ;T™ )—v(¢))* n—p+m T'(n—B)I'(m+1
=5 DS (T) = Yo S T {(7( e )ﬂ) ] F((n—/s)+(m+1))
n—1 JT™f(9) - 1™
:l DB,af (1) — Zm:() ?(m7ﬁ+1) [(’Y( ) a’Y(¢)) } )
The proof is done. O

Lemma 4.3. Let a > 0, Re(8) > 0, n = [Re (B)] + 1 and Re (8) ¢ N. Moreover,
we will consider v as a monotonically increasing and positive function defined on
the interval [0,00), with its derivative 7' being continuous and v (0) = 0. If f €

0.6 ([9:0]) (f € CF 5 ([¢,0])) then we have

10 () =0,
(4.6) fors=0,1,...n— 1.
;Zjﬁfs’af (6)=0

Proof. We hold
(4.7)
premsep(n) =) pee (rter (n)
—_1 fT{(v(r)—w(as))“—(v(e)—vw))“}B*H F(0) (0)de
T(B—s) Jo

o (VO —v(e)' "
In here, we can express through Hélder’s inequality,
(4.8)

77 f ()]
1 B—s—1

’ q q
L (o @) (7 (e - ae ) 70y (8)d0
< ot (s @) (17 ([ - ) )
[EAES (m(r)fw(qb))“)(”(ﬁ)*s)

1

A

S GeB) (B3
For 7 = ¢, we say that
(49) LIPS0 f (9) = 0.
The proof is done. O
Lemma 4.4. Let a > 0, Re(8) > 0 and n = [Re(B)] + 1. Furthermore, we

will consider vy as a monotonically increasing and positive function defined on the
interval [0,00), with its derivative ~' being continuous and v (0) = 0. If we get

e e on [6,6] (ng’a ecn, [¢,5}) , then we obtain

JODPef (9) =0,
(4.10)
CDPF (8) = 0.

Proof. Tt is clearly seen that

IN

4.11 7,C 1, ||3>Tn,a||x (v ()=~ ($))™ (n—re(B))
( ) h D O‘f (T> (nfre(ﬁ))r(nlﬁ) ( o )
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and
(412) 'y7CDB,O¢f (7_) < ||’YT(;L‘O‘HX’Y ((7(5)_,),(7_))a ) (n—re(B))
9 = (n—re(B))I'(n—p) o :
The proof is done. 0

Theorem 4.5. Let Re (B) > 0, n = [Re (B)]+1 and f € C}, ,[¢,6] (f € C} 5(9,6]).
Moreover, we will consider v as a monotonically increasing and positive function
defined on the interval [0, 00), with its derivative ' being continuous and v (0) = 0.
We can say that

(1) If we take Re (B) ¢ N or 8 € N, then we acquire

oD (Jates (n) = £ (1),
(4.13)

eDPe () = 1),
(2) If we take Re(B) # 0 or Re (8) € N, then we get

o7 (9) [m=aten] np

LDt (e () = () -

I'(n—p) *
(4'14) ~ 7B—n+1l,a
J “f(9) o) all M
v,C bse (v 78,2 _ ) (v(&)=v(7))
i (17 () =) T (n—p) el N
Proof. By using De finition 6, we have,
o0 (201 0) |
Yo T )— a_ 0)— a]n—p—1
= /(1) ~ tomsy J3 {(v( )—7(#)) a(w() v(4)) }

n—1 37" (9) ([ () —v(@)*\™ 5 (0)do
(4.15) X(Zmo il ( o ) @@ "

n—1 I f(9) JTme
= f(T) - Zm:lo 2 m! I?(nfﬂ
x [T [(“/(T)*"/((b))“*(7(9)*7(@)“]n_ - [(7(9)*“/(45))”}7” 5 (0)do
¢ o o (@)=

In here, by using the following the change of variable,

(4.16) (v (0) =y (@) =z(v(1) = v(9)*

we can hold
(4.17)

,C n—1 ’YJmiﬂ’af(d’) T)— a]m—F
; DB (;Jﬁ’af (7.)> =fr) - ¢F(m75+1) ) [(’Y( ) a’v(¢)) } )

In here, we establish gJB*S’O‘f (¢) = 0 and "J; *“f(8) = 0 for Re(B) ¢ N by
using Lemma 4. The case 8 € N is inconsequential. Additionaly, if Re(8) € N,
then we assert that g,]ﬁ’s’af (¢) = 0 and 7JI "> f () = 0 for s = 0,1,...,n — 2 by
using Lemma 4. ([

Theorem 4.6. Let f € C and f € C ;[¢,] (f €Cy 5o, 5]) . Furthermore, we

will consider v as a monotonically increasing and positive function defined on the
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interval [0,00), with its derivative ' being continuous and v (0) = 0. We have

a (1.C o n—1 4T “f(¢) =y (e)N> 1™
poL (Zﬁ Db f(T)) = £ (7) = m St [(v( J=(9)) ] 7

(4.18)

R R n—1 "T{f(8 5=~ (r)) 1™
WJg (”’CDf f(T)) = (1) = X m—o F(Zm+f1()) {(W( : 07( B } .
Proof. In here, we can write the following as,
« )C «@ oY n— « mn,o
178 (; DP: f(T)) =7 g (3 gn=p (;T : f(T)))
=) e (Jrmef ()

(419) 'YDB*j"lf(qb) B—j
— (M) =y(e)*
=fn- jF(ﬂfjJrl) [ S l
T f(¢) )— «
=f(r)— ¢F(m+1) [(’Y( ) O7(¢>)) } )
The proof is done. (]

Theorem 4.7. Let f € CZ:;: (@, 0] (f € CZ:ST (@, 6]), Re(B) > 0, Re(u) > 0,

r—1<[Re(f)] <randp—1<[Re(p)] < p. Moreover, we will consider vy as a
monotonically increasing and positive function defined on the interval [0,00), with
its derivative v being continuous and vy (0) = 0. Then, we write

a0 1epre (YD (f(n)) = FODI R (),
.20
1D (PCDE (f (7)) = HODFT (7).

Proof. The proof can be successfully completed by using Theorem 1, Theorem 4,
Theorem 6 and Lemma 5. (]

5. FRACTIONAL INTEGRALS CLASS
1. Taking « (1) = 7 in Definition 2,

a 181
8 ja B S WO e () £(0)do
oI ) = v L { a } O—g) =

We acquire the left fractional conformable integrals in [1].
2. Taking v(7) = 7 and a = 1 in Definition 2,
SIPf(r) = g J5 (r = 0)7 £ (6) db.
We obtain the left Riemann-Lioville fractional integrals.
3. Taking v(7) =7, a = 1 and ¢ = —c0 in Definition 2,
P T —1
LIRS (r) =k [T (=07 (0) db.
We get the left Liouville fractional integrals.
4. Taking v(7) =7, ¢ =0 and a = 1 in Definition 2,
2 () = ol Jy (=07 f(0)db.
We have the left Riemann fractional integrals.
5. Taking v(7) = In7T and o = 1 in Definition 2,
a _ T \B=1 f(6
JIRf(r) =i fo ()" L de.
We achieve the left Hadamard fractional integrals [11].
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6. Taking v(7) =7™, g (1) =7™"f (1) and a = 1 in Definition 2,
_ =B+
7B 3 gheg (r) = migme s [Tgmatmel (rm— gm)PTL £ () df.
We acquire the left Erdélyi-Kober fractional integrals.
7. Taking v(7) =7, g (1) =7™"f (1), ¢ =0 and a = 1 in Definition 2,
—m a mr Bt mn+m— m
=Bt 3 gBeg (1) :W)"I gmn+m=1(zm _ g )B L £(9) df.
We obtain the left Erdélyi fractional integrals.
8. Taking v(7) =7, g(7) =7"f (1), ¢ =0 and a = 1 in Definition 2,
_ o (8+m) -
T3P (r) = Ty f, 07 (m=0)77 £ (6) db.
We get the left Kober fractional integrals.
9. Taking v(7) =7, g(7) =77 f (1) and o = 1 in De finition 2,
K o Em =P 7T pmn4m— m m\P—
TG (n) = T g (= 6m)° T £ (6) do.

mP

We have the left generalized fractional integrals that unify another six fractional
integrals.
10. Taking y(7) = 7™ and « = 1 in Definition 2,

LJbef(r) = rw) f¢ g1 (rm — ™)L £ (6) db.

We achieve the left Katugampola fractional integrals.

6. FRACTIONAL DERIVATIVES CLASS

1. Taking ¢ = 0, a = 1 and v (7) = 7 in Definition 3, we acquire Riemann-
liouville fractional derivative
) TG 1

)
— F(n " G ~5=L 1 (6) do.

2. Taking ¢ = 0 and a = 1 in Definition 3, we obtain the y—Riemann-liouville
fractional derivative

gD f (7) VT"( g “) f(T)
= F(n B8) fO -7 (0)]n_ﬂ_17 (9) f (9) db.

3. Taking v(7) =7 and a« = 1 in Defzm'tion 3, we get the Caputo fractional
derivative

’

DRef(r) =gt (1) £ (7)
T n—p-1 n
= gy J] I — 6] (3r) £ () as.
4. Taking oo = 1,in De finition 3 we have the left y—Caputo fractional derivatives
gDﬂ,af (T) — "/Jn—ﬂ,a (’YTn) f( )
n—pB—-1 7
= i Jo V(1) = O (@), T (6) do

5. Taking v (7) = 7 in De fzmtzon 3, we achieve the left fractional conformable
derivatives in [1],

A (”Jn*ﬂva) f(7)

_ T J3 [e=er=to=er A p0)a
= TP -9
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6. Taking v (7) = 7 8 = 0 and a = 1,in Definition 3, we acquire the Katugam-
pola fractional derivative
D7) =0 (G dt) T ().
7. Taking v (1) = 7 and o = 1 in Definition 3, we obtain the Riemann-Liouville
fractional derivative
n T n—p3—1
WPt (r) = ()" gy Jo T — O (0) do.

8. Taking v (1) = 7 and @ = 1 in de finition 3, we get the Caputo—Katugampola
fractional derivative

pﬁ.;Dﬁ,af (r) = pﬁ.gjniﬂ’a (pTi—l %) f(r).

9. Taking v (1) =In7 and o = 1in Definition 3, we have the Caputo—Hadamard
fractional derivative in [12 — 14]

SDPf () = riey Jy Mg]" " (63)" £ 0)

10. Taking v (7) = In7 and a = 1 in Definition 3, we achiev the hadamard
fractional derivative

IDBef (1) = (Td)" o JT g T (0) L.

7. CONCLUSION

In this study, we introduced the left and right generalized conformable fractional
integrals and derivatives. We explored significant implications and fundamental
properties of these operators. Additionally, we derived the generalized conformable
fractional derivatives within the Caputo framework. Ultimately, we presented clas-
sical consequences in the context of generalized conformable derivatives and inte-
grals.
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