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Abstract: A numerical investigation of laminar natural convection heat transfer and flow in two-dimensional wavy 

rectangular enclosures is presented. The enclosure is heated from the flat bottom wall and cooled from the wavy 

(undulated) top wall which is expressed by sinusoidal functions. The lateral walls are adiabatic. The numerical 

simulations were carried out by the commercially available CFD software—namely the FLUENT. The steady-state 

continuity, Navier-Stokes and energy equations which are subjected to the Boussinesq approximation are solved 

using the SIMPLE algorithm. The convergence criteria for all equations are set to 10
5

.  The Rayleigh numbers which 

are considered in the numerical simulations ranged from 5×10
4
 to 10

7
 while the value 0.7 was used for the Prandtl 

number of air. The enclosures with aspect ratios of  L/H=1, 2, 4 and 8 were studied. The period, , for the sinusoidal 

functions imposed on the wavy wall was 1.5, 2.5 and 4.5 while the wave-amplitude was kept constant at a/H=0.1. The 

temperature field and the flow structure were analyzed for varying Rayleigh numbers. The aspect ratio, L/H, the 

number of undulations of the wavy wall, and the mean Nusselt numbers obtained from the bottom wall are computed 

and analyzed for each case.  

Keywords: Natural convection, Laminar flow, Wavy enclosure, Heat transfer. 

 

SİNUSOİDAL DUVARLI KAPALI DİKDÖRTGEN KUTULARDA HAVA AKIŞI VE 

DOĞAL TAŞINIM İLE ISI GEÇİŞİ 

 
Özet: İki boyutlu sinusoidal duvarlı dikdörtgensel kapalı kutuda akış ve laminer doğal taşınım ile ısı geçişinin sayısal  

araştırması incelenmiştir. Kapalı kutunun, sinusoidal olarak değişen üst duvarı soğuk, alt duvarı ise sıcaktır. Düz 

duvarlar ise yalıtılmıştır. Sayısal çalışma, FLUENT olarak bilinen, ticari CFD yazılım ile yapılmıştır. Boussinesq 

yaklaşımıyla beraber, sürekli rejimde süreklilik, taşınım ve enerji denklemleri, SIMPLE algoritması ile çözülmüştür. 

Bütün denklemlerde yakınsama kriteri  10
5

 olarak alınmıştır. Sayısal çalışmada havanın Prandtl sayısı için 0.7 değeri 

kullanılırken, Rayleigh sayısı 5×10
4
’den 10

7 
değiştirilmiştir. Ortamın geometri oranı L/H=1, 2, 4 ve 8 olarak 

seçilmiştir. Sinusoidal duvarın genlik oranı a/H=0.1 olarak sabit tutulurken, sinusoidal fonksiyonun periyodu, , 1.5, 

2.5 ve 4.5 olarak alınmıştır. Değişik Rayleigh sayısı için sıcaklık ve akış durumları analiz edilmiştir. Geometri oranı 

L/H, sinusoidal duvarın ondilin sayısına göre, alt duvardan elde edilen ortalama Nusselt sayıları her bir durum için 

hesaplanmış ve analiz edilmiştir. 

Anahtar Kelimeler: Doğal taşınım, Laminer akış, Sinusoidal kapalı kutu, Isı geçişi. 

 

 

NOMENCLATURE 

 

a Amplitude of waves [m] 

A Aspect ratio, L/H 

g Earth’s gravitational acceleration [m/s
2
] 

H Height of enclosure [m] 

L Length of enclosure [m] 

Nu Mean Nusselt number 

P Pressure [Pa] 

Pr Prandtl number [   ] 

Ra Rayleigh number [ 3( )h cg H T T   ] 

T Temperature [K] 

u,v Fluid velocity components [m/s]   

x,y Coordinate axes [m] 

 

Greeks 

 

α Thermal diffusivity [m/s
2
] 

β Volumetric thermal expansion coefficient  [K
-1

] 

ρ Fluid density [kg/m
3
] 

ν Kinematic viscosity [m/s
2
] 

λ Wave period 

 

Subscripts 

 

c cold 

h hot 
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INTRODUCTION 

 

The natural convection in fluid filled rectangular 

enclosures has received considerable attention in recent 

years because of its relation to the thermal performance 

of engineering applications. The natural convection heat 

transfer from wavy surface is interest of several 

engineering applications such as cooling of electronic 

components and sealed electrical and/or electronic 

boxes, heating and cooling rooms, solar energy collector 

designs, heat exchanger designs so on. Thus, the 

characteristics of natural convection heat transfer are 

relatively important. 

 

Yao (1983) theoretically studied the natural convection 

along a vertical wavy surface. He found that the local 

heat transfer rate is smaller than that of a flat plate case, 

and the heat transfer decreased with increasing wave-

amplitude. The mean Nusselt number also showed the 

same trend. Saidi et al. (1987) presented numerical and 

experimental results for heat transfer and flow in a 

sinusoidal cavity. They reported that the total heat 

exchange between the wavy wall of the cavity and the 

fluid was reduced due to the presence of vortices. They 

indicated that the vortices played the role of a thermal 

screen, which created a large region of uniform 

temperature at the bottom of the cavity.  Bhavnani and 

Bergles (1991) obtained local free heat transfer 

coefficients from a vertical wavy wall and observed a 

decrease in heat transfer from the wavy wall. Kumari et 

al. (1997) studied the natural convection boundary layer 

flow of non-Newtonian fluids along a vertical wavy 

surface. Rahman (2001) obtained data on natural mass 

convection from vertical wavy. Mahmud et al. (2002) 

presented numerical solutions of natural convection heat 

transfer inside an enclosure bounded by two isothermal 

wavy walls and two adiabatic lateral walls. They 

observed that aspect ratio is the most important 

parameter for the heat and fluid flow. They also found 

that for a constant Grashof number, the heat transfer is 

higher at low aspect ratios. Mahmud and Islam (2003) 

also solved the laminar natural convection and entropy 

generation inside an inclined enclosure bounded by two 

isothermal wavy walls. They reported that the lower the 

surface waviness, the higher the heat transfer for a 

particular angular position is. Adjlout et al. (2002) 

reported a numerical study of a hot wavy wall in an 

inclined differentially heated square cavity. Tests, for 

one and three undulations, were performed for different 

inclination angles, different amplitudes and Rayleigh 

numbers. The local heat transfer was also wavy and the 

mean Nusselt number decreased in comparison to the 

bare square cavity. Jang et al. (2003) solved numerically 

the natural convection heat and mass transfer along a 

vertical wavy surface by using Prandtl’s transposition 

theorem and investigated the effect of irregular surfaces 

on characteristics of natural convection heat and mass 

transfer. Das and Mahmud (2003) analyzed the natural 

convection heat transfer inside both the bottom and the 

top wavy isothermal enclosures. They indicated that, 

only at low Grashof numbers, the heat transfer rate 

increased when the amplitude wave length ratio 

changed near zero values. Dalal and Das (2005) carried 

out a numerical solution to investigate the heat transfer 

from an inclined right wavy wall enclosure subjected to 

spatially varying temperature boundary condition. Yao 

(2009) investigated the natural convection along a 

vertical complex wavy surface. The numerical results 

showed that the enhanced heat transfer rate depended on 

the ratio of amplitude and wavelength of a surface. 

Varol and Oztop (2006) analyzed the natural convection 

in a shallow wavy enclosure. Their results showed that 

heat transfer increased with the decreasing non-

dimensional wave length and increased with the 

increasing aspect ratio and the Rayleigh number. The 

authors also investigated the natural convection in 

inclined wavy and flat-plate solar collectors (Varol and 

Oztop, 2008).  

 

The purpose of the present paper is to study heat 

transfer and fluid flow characteristics of a rectangular 

enclosure which is heated from the bottom flat wall 

(Benard convection) and cooled from the undulated 

(wavy) top wall. The undulated wall was expressed by 

appropriate sinusoidal functions that yield one, two and 

four undulations. For the fluid flow and heat transfer 

analysis, the local and mean Nusselt numbers for 

various Rayleigh numbers and aspect ratios are 

evaluated along the hot wall, and the isotherms and 

streamlines are depicted. 

 

MATHEMATICAL FORMULATION 

 

The problem under consideration is a two-dimensional 

rectangular enclosure with a wavy top wall. The 

schematic of the geometry and coordinate system is 

depicted in Figure 1. The enclosure of height H and 

length L has a wavy-top wall (cold) and flat (hot) 

bottom wall. The walls are kept at uniform constant 

temperatures while the side walls are flat and adiabatic. 

The enclosure is filled with air (Pr=0.7). The Rayleigh 

numbers considered in this study ranged from 5×10
4
 to 

10
7
. The enclosure aspect ratios considered in the study 

are L/H=1, 2, 4 and 8. The period of sinusoidal function 

imposed on the top-wavy wall is λ=1.5 (one undulation, 

Case 1), λ=2.5 (two undulations, Case 2), and λ=4.5 

(four undulations, Case 3) while the wave-amplitude 

was kept constant at a/H=0.1. 

  

 
Figure 1. Schematic of the problem and the coordinate 

system. 
 

The continuity, momentum and energy equations for 

two-dimensional cartesian coordinate system are solved 
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using the Boussinesq approximation. The governing 

equations are defined as follows: 

 

The continuity equation 

0
u v

x y

 
 

 
                                                                 (1) 

The momentum equations 
2 2

2 2

1u v P u v
u v

x y x x y




     
           

                    (2) 
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 (3) 

and the energy equation 
2 2

2 2

T T T T
u v

x y x y

    

        
                                    (4)  

 

Equations (1)-(4) are subject to the following boundary 

conditions: 

At the bottom wall, ,hT T  

At the top wall,   ,cT T                               (5) 

On side walls,   / 0,T x    

All walls are solid and impermeable; that is, 0u v  . 

 

The wavy top horizontal wall is expressed by the 

following sinusoidal function: 

2
( ) sin

x
f x H a

A

 
   

 
                                            (6)                    

where a is the amplitude, A is the aspect ratio of the 

enclosure and  is the wave-period. 

 

Non-dimensional parameters such as Rayleigh and 

Prandtl numbers are defined as 
3( )

,         Prh cg H T T
Ra

 

 


                              (7)        

 

The mean Nusselt number is computed for the bottom 

hot-wall  

00

1
Nu

L

yx

T
dx

L y



  

 
                                               (8)       

 

Equations (1)-(4) are solved with non-uniform grids 

condensed near the walls. In the differencing scheme of 

the transport terms the “Second Order Upwind” and 

SIMPLE was adopted as the solution algorithm.  

 

For the verification of the results obtained with 

FLUENT, an air filled square cavity, which is heated 

and cooled from the lateral walls, is considered. This 

problem has been studied extensively using various 

methods and plenty of solutions exist in the literature. In 

Table 1, the mean Nusselt number computed using 

100 100  and 200 200 non-uniform grid 

configurations are compared with other works (Vahl 

Davis, 1983; Comini et al., 1995; Bilgen, 2005). 

Additionally, the accuracy of the FLUENT software in 

natural convection and CFD is well established in 

numerous studies (Mahir and Altaç, 2008; Zhoa et al., 

2005; Kasier et al., 2004). 

 
Table 1. Computer code results in comparison with other works. 

 

Ra 

Mean Nusselt Number 

Vahl Davis 

(1983) 

Comini et al. 

(1995) 

Bilgen 

(2005) 

Fluent 

100x100 

(11433 nodes) 

200x200 

(45500 nodes) 

10
4
 2.243  2.245 2.244 2.245 

10
5
 4.519 4.503 4.521 4.521 4.521 

10
6
 8.799 8.825 8.800 8.834 8.827 

10
7
  16.533 16.629 16.653 16.543 

 
Table 2. Grid Sensitivity table. 

Ra 

Mean Nusselt Number 

Number of nodes 

27,600 81,718 162,290 

10
5
 4.586 4.583 4.583 

5×10
5
 6.760 6.744 6.742 

10
6
 7.956 7.925 7.921 

5×10
6
 11.613 11.471 11.452 

10
7
 13.548 13.422 13.395 

 

In this study, the grid sensitivity analysis and code 

verification was based on the convergence of the mean 

Nusselt number. For instance, in Table 2, the 

convergence of the mean Nusselt number for increasing 

Rayleigh numbers and increasing number of grids is 

depicted for A=8 of Case (2). In this study, non-uniform 

grids near the walls, where sharp velocity and 

temperature gradients are expected, were employed. The 

grid structure, in general, yielded about 80 to 162 

thousand nodes depending on the aspect ratio of the 

enclosure. In terms of the sufficiency of the grid 

structure, a two-significant-digit-accurate converged 

value (Ra<5×10
6
) for mean Nusselt number was 

assumed to be adequate.  

 

RESULTS AND DISCUSSIONS 

 

In this study, an air filled (Pr=0.7) enclosure with a 

wavy top-surface and the aspect ratios of A=1, 2, 4 and 

8 are considered. Numerical simulations are carried out 

for the following Rayleigh numbers: 5×10
4
, 10

5
, 5×10

5
, 

10
6
, 5×10

6
 and 10

7
.  

Figure 2 depicts the isotherms and streamlines for A=1, 

2, 4 and 8 and for Ra=5×10
5 

of one undulation 

enclosures—Case (1). In Figure 2 (a) and (b), for A=1 

and A=2, the streamlines and isotherms are in similar 
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form. The clockwise flow is mainly unicellular 

encompassing the whole domain; however, a weak 

counter-clockwise roll is observed in the northwest 

cavity of A=1 enclosure. In Figure 2 (c) and (d), in 

enclosures with A=4 and A=8, four and six rolls are 

observed, respectively. From left to the right, the 

structure of the rolls switches from the counter-

clockwise to clockwise direction. This leads 

hydrodynamic boundary layers to thin out where the 

rolls become tangent to the bottom wall. Similarly the 

isotherms are squeezed about the same locations due to 

the flow structure. Thus, the local Nusselt number 

profiles are affected due to the various formations of 

thermal boundary layers accompanied by an increase in 

the number of rolls. This results in thinner boundary 

layers along the hot wall yielding an increase in the 

number of peaks in the local Nusselt number profiles.

 

 

 

 

 

(a) 

  
 

 

 

(b) 

  

 

(c) 

  

(d) 

  
Figure 2. Isotherms (right) and streamlines (left) for Case (1) and Ra=5×105 (a) A=1, (b) A=2, (c) A=4, (d) A=8. 

 

 

 

 

 

(a) 

  
 

 

 

(b) 

  

 

(c) 

  

(d) 

  
Figure 3. Isotherms (right) and streamlines (left) for Case (2) and Ra=5×105 (a) A=1, (b) A=2, (c) A=4, (d) A=8. 

 

Figure 3, the isotherms and the streamlines for two-

undulation enclosures (Case 2) and for Ra=5×10
5 

with 

aspect ratios of A=1, 2, 4 and 8 are depicted. In Figure 3 

(a), for A=1, the flow circulation extends out to 

encompass the enclosure and it rotates in the counter-

clock-wise direction. In Figure 3 (b), for A=2, two 

strong counter-rotating cells are established. Two 

accompanying small and weak rolls at the corners of the 

top-wavy wall are symmetrical with respect to the mid 

plane. In Figure 3 (c), for A=4, three cells with two 

rising hot plumes and two downward cold plumes are 

formed in the enclosure. The local Nusselt number 

profiles become maximum where the cold plume 

touches the hot wall as the thermal boundary layers are 
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squeezed towards the wall. In Figure 3 (d), six rolls are 

formed in the enclosure and the local Nusselt number 

profile is observed to have four distinct-peaks. 

 

Figure 4 depicts the isotherms and streamlines for A=1, 

2, 4 and 8 and for Ra=5×10
5 

of four-undulation 

enclosures—Case (3). In Figure 4 (a), for A=1, the flow 

is unicellular encompassing the whole domain, and flow 

is in the clockwise direction. The flow region seems to 

be restricted by the horizontal line defined with 

minimum points of the waves. For A=2, in Figure 4 (b), 

two strong counter-rotating cells (clockwise left roll and 

counter-clockwise right roll), along with two small and 

very weak opposite rolls at the corners of the cold wavy 

wall, are observed. In Figure 4 (c), for A=4, three rolls 

are observed in the domain; from left to the right the 

direction of the rolls switch between clockwise to 

counter-clock wise. As a result of this structure, two hot 

and two cold plumes are formed in the enclosure. In 

Figure 4 (d), for A=8, eight rolls are observed in the 

enclosure, since four downward cold plume touches the 

hot wall, four peaks are observed in the local Nusselt 

profile. 

 

 

 

 

(a) 

  
 

 

 

(b) 

 
 

 

(c) 

 
 

(d) 

  
Figure 4. Isotherms (right) and streamlines (left) for Case (3) and Ra=5×105 (a) A=1, (b) A=2, (c) A=4, (d) A=8. 

 

 

 

 

 

(a) 

  

 

 

 

 

(b) 
  

 

 

 

 

(c) 
  

Figure 5. Isotherms (right) and streamlines (left) for Case (1) and A=2, (a) Ra=105, (b) Ra=106 and (c) Ra=107. 

 

In Figure 5, the isotherms and streamlines are depicted 

for Rayleigh numbers of 10
5
, 10

6
, 10

7
 of A=2 and one 

undulation. For all Rayleigh values, a single clockwise-

rotating cell dominates the flow within the enclosure, 

but at the corners of the cold wavy wall in Figure 5 (b) 

and (c), at Ra=10
6 

and Ra=10
7
, two small weak rolls 

rotating in opposite directions are observed. As the 
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Rayleigh numbers increase, the roll gains strength and 

the thermal boundary layers thin out further. 

 

For A=2, Figure 6 depicts the isotherms and streamlines 

for Rayleigh number of 10
5
, 10

6
, 10

7
 of two-undulation 

wall, Case (2). For all Rayleigh numbers, two counter-

rotating cells are established within the enclosure, and 

in Figure 6 (b) and (c), for Ra=10
6 

and Ra=10
7
, two 

small as well as weak rolls at the corners of cold wavy 

wall are observed. With increasing Rayleigh number, 

these small rolls expand out as they get stronger. The 

two hot plumes rise along the adiabatic lateral walls 

while a downward cold plume touches the hot bottom 

wall where thermal boundary layer is getting thinner 

and longer with increasing Ra values. In Figure 7, the 

isotherms and streamlines are depicted for Rayleigh 

numbers of 10
5
, 10

6
, 10

7
 of Case (3) and A=2. For all 

Rayleigh values, two strong counter-rotating rolls are 

formed within the enclosure. As in the previous cases, 

for Ra=10
6 

and Ra=10
7
, two small-weak rolls at the 

corners of cold wavy wall are observed—Figure 7(b) 

and (c). These rolls gain further strength as the Rayleigh 

number is increased. It should be noted that the hot and 

cold plumes become thinner for increasing Rayleigh 

number as the thermal boundary layers are also 

squeezed at the tip of the cold plume where the local 

Nusselt number is the maximum. 

 

 

 

 

 

 

(a)   
 

 

 

 

 

(b)   
 

 

 

 

 

(c)   
Figure 6. Isotherms (right) and streamlines (left) for Case (2) and A=2, (a) Ra=105, (b) Ra=106 and (c) Ra=107. 
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(c) 
  

Figure 7. Isotherms (right) and streamlines (left) for Case (3) and A=2, (a) Ra=105, (b) Ra=106 and (c) Ra=107. 
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In Figure 8, the isotherms and streamlines are depicted 

for Rayleigh numbers of 5×10
4
, 5×10

5
, 5×10

6
 of Case 2 

(wavy wall with two-undulations) and A=4. In Figure 8 

(a), for Ra=5×10
4
, four cells with rising three hot 

plumes and two downward cold plumes are formed in 

the domain. The first roll at the left side of the enclosure 

is always in clockwise direction. The proceeding rolls 

switch directions. In Figure 8 (b) and (c), as the three 

rolls are formed in the enclosure in a similar fashion, 

two hot and cold plumes are observed due to expanding 

stronger rolls are noticed and for increasing Rayleigh 

values thinning plumes are observed. Similarly with 

increasing Rayleigh number, the thermal boundary layer 

on the hot bottom wall thins out where the circular rolls 

become tangent to the hot wall which also correspond to 

the tip of the cold plumes. 

 

In Figure 9, the isotherms and streamlines are depicted 

for Rayleigh numbers of 5×10
4
, 5×10

5
, 5×10

6
 of Case 

(3) and A=8. In Figure 9 (a), for Ra=5×10
4
, eight cells 

with rising five hot plumes and four downward cold 

plumes are observed in the enclosure. For Ra=5×10
4
 

and Ra=5×10
5
, in Figure 9 (b) and (c), the number of 

rolls are reduced to seven due to expanding more 

energetic rolls within the domain. As the Rayleigh 

number increases, the number of rolls in the enclosure 

changes and the rolls expand out while the number of 

peaks in the local Nusselt number remains unaffected. 

 

  
(a) 

  
(b) 

  
(c) 

Figure 8. Isotherms (right) and streamlines (left) for Case (2) and A=4, (a) Ra=5×104, (b) Ra=5×105 and (c) Ra=5×106. 

 

 

  
(a) 

  
(b) 

  
(c) 

Figure 9. Isotherms (right) and streamlines (left) for Case (3) and A=8, (a) Ra=105, (b) Ra=106 and (c) Ra=107. 

 

In Figure 10 (a), the variation the local Nusselt number 

is depicted for A=1 and Case (1). The local Nusselt 

number is higher near the right wall (Figure 2a), but as 

the Rayleigh number increases, for Ra>5×10
4
 the peak 

becomes more distinct, and it shifts towards the middle 

of the bottom wall where the thermal boundaries are 

clearly thin. In Figure 10 (b), the variation the local 

Nusselt number is depicted for A=1 and Case (2), the 

local Nusselt number profile peaks near the left wall due 

to the established flow structure (Figure 3a). Similarly, 

with increasing Rayleigh number, the peak moves 

towards the center of the bottom wall while its 

magnitude increases. In Figure 10 (c), the variation the 

local Nusselt number is depicted for A=1 and Case (3); 

for Ra>5×10
5
, the peak of the local Nusselt number is 

near the right wall. For Ra=5×10
6
, the peak also shifts 

slightly towards to the centre of the enclosure due to the 

flow pattern. 

 

In Figure 11 (a), the variation the local Nusselt number 

is depicted for A=2 and Case (1). For all the Rayleigh 

values which numerical simulations were performed, 

the peak of the local Nusselt number appeared near the 

right wall where strong clockwise circulations skim 

over the bottom wall; thereby, affecting the thermal 

boundary formation and its thickness (Figure 2b) along 
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this surface. In Figure 11 (b), the variation the local 

Nusselt number is depicted for A=2 and Case (2). The 

flow structure and isotherms were given in Figure 3. 

The two counter rotating rolls yield  symmetrical 

streamlines and isotherms with respect to the enclosure 

centerline; thus yielding the maximum local Nusselt 

number at the center of the bottom wall. In Figure 11 

(c), the variation the local Nusselt number profile is 

depicted for A=2 and Case (3). For all the cases and the 

Rayleigh numbers, the maximum of local Nusselt 

number is at the center due to the established 

symmetrical flow pattern (Figure 4b). 
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Figure 10. Variation of local Nusselt number along hot wall for A=1, (a) Case (1), (b) Case (2) and (c) Case (3). 
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Figure 11. Variation of local Nusselt number along hot wall for A=2, (a) Case (1), (b) Case (2) and (c) Case (3). 
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Figure 12. Variation of local Nusselt number along hot wall for A=4, (a) Case (1), (b) Case (2) and (c) Case (3). 

 

In Figure 12 (a), the variation the local Nusselt number 

profile is depicted for A=4 and Case (1). For all 

Rayleigh numbers, three peaks, symmetrical with 

respect to the centerline, are observed. These peaks 

correspond to the thinnest thermal boundary layer 

thickness locations: the middle peak is caused by 

downward cold plume while the other two peaks 

correspond to tangents of the rolls (Figure 2c). In Figure 

12 (b), the variation the local Nusselt number is 

depicted for A=4 and Case (2). The local Nusselt 

number has two peaks due to the flow pattern (Figure 

3c) where thermal boundary layers become the thinnest 

due to downward cold plumes. In Figure 12 (c), the 

variation the local Nusselt number is depicted for A=4 
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and Case (3). Since the number of undulations is 

increased, two detaching hot plumes and two downward 

cold plumes are observed leading to two peaks in the 

local Nusselt number profile as in the case Figure 12(b). 

As the Rayleigh number is increased, the locations of 

the peaks are consistent with the trend of the thermal 

boundary layer thicknesses. 
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Figure 13. Variation of local Nusselt number along hot wall for A=8, (a) Case (1), (b) Case (2) and (c) Case (3). 

 

In Figure 13, the variation the local Nusselt number 

profile for A=8 and (a) Case(1), (b) Case (2) and (c) 

Case (3) is given. For all the wavy-wall cases and the 

Rayleigh numbers, four local Nusselt number peaks are 

observed where the downward cold plumes touch the 

hot bottom wall. As the Rayleigh number is increased, 

due to the strengthening and outward expanding rolls, 

the corresponding thermal boundary layers are getting 

thinner and the local Nusselt number increases. 
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Figure 14. The mean Nu number variation for all Ra numbers. 

 

Figure 14 depicts, for all the cases, the mean Nusselt 

number as a function of Rayleigh number and aspect 

ratio. The mean Nusselt number increases with 

increasing Rayleigh number and aspect ratio. As the 

Rayleigh number increases, for Case (1), A=1 and A=2, 

the mean Nusselt values are almost identical; the 

maximum difference between the two cases is about 

3.17%. For Ra=10
6
 and A=1, the mean Nusselt value 

increases by 0.49%, 40.9% and %35.9%, respectively 

for A=2, 4 and 8. For Case(2) and Ra=10
6
,  mean 

Nusselt number of A=1 compares with other aspect 

ratios cases as 8.14%, 21.92% and 27.04% respectively 

for A=2, 4 and 8. For Case(2), the maximum mean 

Nusselt values were obtained for Ra>10
5
 of A=8. In 

Case(3), Ra=10
6
 and A=1, the increase in the mean 

Nusselt number with respect to other aspect ratio 

enclosures is 20.07%, 23.97% and 38.01% respectively 

for A=2, 4 and 8.  When all the simulated cases are 

considered, with respect to the increase in Rayleigh 

number, the highest rates were obtained in A=4 of 

Case(1) and in A=8 of Case(3). As the number of 

undulation is increased, for the same Rayleigh values, 

the mean Nusselt values increase for A=1, Case(1) and 

Case(2); for Case(3) it increases up to Ra<5×10
5
 then 
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decreases. For all the cases of A=2 and A=8, the mean 

Nusselt number increases while it decreases for A=4 

cases. The largest increase is observed for A=2 as the 

number of undulations increases. For Ra=10
6
 and A=2 

of Case(1), the increase with respect to the mean 

Nusselt values are 15.62% and 21.58% respectively for 

Case (2) and Case (3). 

 

CONCLUSION  

 

Laminar natural convection heat transfer and air flow in 

enclosures with a top wavy cold wall was numerically 

studied. The numerical simulations were performed for 

the Rayleigh numbers ranging from 5×10
4
 to 10

7
 and for 

the aspect ratios of A=1, 2, 4 and 8. The wavy wall with 

one, two and four undulations were considered. The hot 

(bottom)-wall-averaged mean Nusselt numbers were 

computed and reported as a function of Rayleigh 

number, undulation numbers (wave-period) and the 

aspect ratio. 

 

The study concludes the following: 

 For a constant aspect ratio A, the mean Nusselt 

number increases with increasing Rayleigh 

number.  

 For a constant Rayleigh number, the mean 

Nusselt number increases with increasing aspect 

ratio but for A>2 this increase in minimal.  

 The number of undulations influences the flow 

patterns within the enclosure; however, the mean 

Nusselt numbers resulting for the hot wall are not 

significantly affected especially at low Rayleigh 

values.  

 The minimum mean Nusselt number is obtained 

at Case (1) for A=1 and A=2, the maximum 

mean Nusselt number is obtained for A=4 Case 

(1) and A=8 Case (3). 
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