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Abstract: An implementation of Runge-Kutta Discontinuous Galerkin method was performed to simulate flows with 

strong discontinuities. The method was tested for a planar shock tube problem with extremely strong discontinuities, 

and numerical solutions were compared with predictions of a finite volume method and exact solutions. It was 

observed that when there are strong discontinuities in the flowfield, the limiter function adopted for solution clearly 

affects the overall quality of the predictions. An alternative limiting strategy, which uses combination of different 

limiters for different flow variables, was tested and great improvements in the solutions were observed. The method 

was also extended to moving adaptive grids by using Arbitrary Lagrangian-Eulerian formulation. Blast waves 

generated by an explosion were also simulated with and without including high temperature effects for surrounding 

air. Despite the high temperatures encountered, using calorically perfect gas assumption for air did not produce 

negative consequences.  

Keywords: Runge-Kutta Discontinuous Galerkin method, Blast waves, Shock tube, Strong discontinuities, Arbitrary 

Lagrangian-Eulerian formulation, Moving grid. 

 

GÜÇLÜ SÜREKSİZLİKLER İÇEREN AKIŞLAR İÇİN RUNGE-KUTTA 

DISCONTINUOUS GALERKIN METODU UYGULAMASI 
 

Özet: Güçlü süreksizlikleri içeren akışları simle etmek için Runge-Kutta Discontinuous Galerkin metodunun bir 

uygulaması yapılmıştır. Metot aşırı derecede güçlü süreksizlikler içeren düzlemsel şok tüpü probleminde denenmiş ve 

sayısal sonuçlar sonlu hacim yöntemiyle elde edilen tahminlerle ve kesin sonuçlarla karşılaştırılmıştır. Akış alanı 

içinde güçlü süreksizlikler olduğunda, kullanılan sınırlayıcı fonksiyonun sonuçların genel kalitesini belirgin bir 

şekilde etkilediği gözlenmiştir. Farklı akış değişkenleri için farklı sınırlayıcı kombinasyonları kullanan alternatif bir 

sınırlayıcı stratejisi test edilmiş ve sonuçlarla büyük iyileşmeler gözlenmiştir. Metot, Arbitrary Lagrangian-Eulerian 

formülasyonu kullanılarak intibak eden çözüm ağlarına da uyarlanmıştır. Patlama sonrası oluşan şok dalgaları da, 

etrafı saran hava için yüksek sıcaklık etkilerini ekleyerek ve ihmal ederek simle edilmiştir. Çok yüksek sıcaklıklara 

rastlanmasına rağmen, hava için kalorik olarak ideal gaz varsayımı yapılmasının negatif etkiler yaratmamıştır.  

Anahtar Kelimeler: Runge-Kutta Discontinuous Galerkin metodu, Patlama sonrası oluşan şok dalgaları, Şok tüpü, 

Güçlü süreksizliker, Arbitrary Lagrangian-Eulerian formülasyonu, İntibak eden ağ. 

 

 

INTRODUCTION 

 

High pressure and temperature gases generated by an 

explosion expand into the surrounding medium to 

generate a spherical shock wave called a blast wave 

(Dewey, 2001). Mainly being a moving shock wave 

problem, blast wave simulations can successfully be 

performed by defining the flowfield using Euler 

equations. In Refs (Alpman, 2009a, 2009b, Chen et al., 

2008, Chen et al., 2007, Alpman et al., 2007) blast wave 

simulations were performed by solving Euler equations 

using a finite volume method. Discontinuous Galerkin 

(DG) methods, which have the features of both finite 

volume and finite element methods, have started to 

become popular for the solution of hyperbolic 

conservation laws like Euler equations (Cockburn, 

2001). DG method represents solution on elements by a 

collection of piecewise discontinuous functions hence 

sometimes considered as a high order accurate 

extension of finite volume method (Cockburn, 2001). 

One class of DG methods is the Runge-Kutta DG 

method (RKDG) where spatial discretization is 

performed using polynomials which are discontinuous 

across element faces. Then the resulting system of 

ordinary differential equations is solved using a total 

variation diminishing (TVD) Runge-Kutta scheme 

(Gottlieb and Shu, 1998).  

 

The details of the RKDG scheme can be found in 

references (Cockburn and Shu, 1989, 1991, 1998, 2001, 

Cockburn et al., 1989, 1990). An alternative to the 

RKDG method is the Space-Time Discontinuous 
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Galerkin Method (STDG) in which the space and time 

discretizations are not separated (van der Vegt and van 

der Ven, 2002a, 2002b). This method is particularly 

suitable for numerical solutions on adaptive meshes.  

 

This study includes an implementation of RKDG 

method to simulate one-dimensional, moving 

rectangular and spherical discontinuities on static and 

moving grids. Predictions were compared to the results 

obtained using a second order accurate finite volume 

method.  

 

THEORY 

 

Euler equations in arbitrary Lagrangian-Eulerian (ALE) 

form can be written as (Smith, 1999) 
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In equations (2) and (3) ρ is the fluid density, V is the 

fluid velocity, p is the static pressure, Vs is the velocity 

of the control volume (Ω), n is the unit normal vector to 

the control surface (S) , E and H are the total energy and 

total enthalpy per unit mass as given below. 

 

  21

VV 







p
E      (4) 



p
EH       (5) 

 

In equation (4) γ is the ratio of specific heat capacities. 

Using Gauss Divergence Theorem (Kreyszig, 2006) 

equation (1) can be rewritten in differential form for one 

space dimension as: 
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Here, su  is the velocity of the grid points. In equation 

(9) s = 0 for Cartesian coordinates, s = 1 for cylindrical 

coordinates and s = 2 for spherical coordinates.  

The DG method is derived by multiplying equation (6) 

by a test function j(r) and integrating over a control 

volume (element) (K) 
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Using Gauss divergence theorem, the second and third 

integrals in equation (10) can be rewritten as: 

 

   
 

 




 K

s

K

s

K

s dK
dr

rd
uKdrudKr

r

u 
 qq

q   (11) 

   
 

 




 KKK

dK
dr

rd
KdrdKr

r


 ff

f
  (12) 

 

Here ∂K is the closed surface surrounding element K. 

Specifically for one space dimension equation (10) 

takes the following form for an element i: 
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In the DG method, the numerical solution q is 

represented using a collection of polynomials on an 

element. Since the polynomial continuity across element 

faces is not enforced, the solution may be discontinuous 

at the element faces and hence the flux vector f may be 

multi-valued in the fifth and sixth terms of equation 

(13). This problem is overcome by replacing this flux 

term with numerical flux f̂ , which must be a 

conservative and upwind flux (Cockburn and Shu, 1998, 

2001). Note that equation (13) reduces to finite volume 

formulation for (r) = 1 (Cockburn and Shu 1998).  

 

Normally in a DG method the solution and the test 

function belongs to the space of polynomials of degree 

smaller or equal to some k. This way a (k+1)th order 

accurate approximation to the solution can be obtained 

(Cockburn and Shu, 1998, 2001). The approximate 

solution can then be written as:  
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where q
j
(t) are called the degrees of freedom of q and 

j(r) are the bases of the polynomial solution space. 

Typically Legendre polynomials are chosen as bases 

because of their orthogonality property (Cockburn, 

2001, van der Vegt and van der Ven, 2002a, Calle et al., 

2005, Qiu and Shu, 2005). Therefore, Legendre 
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polynomials were also used in this study as bases 

below: 
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where 2/12/1   iii rrr  and Pj(r) is the Legendre 

polynomial of degree j.  

 

Submitting equation (14) into equation (13) and using 

basis polynomials as test functions one can obtain the 

following set of differential equations for the degrees of 

freedom thanks to the orthogonality of Legendre 

polynomials (Cockburn and Shu, 2001): 
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The above system of ordinary differential equations can 

be solved using a TVD Runge-Kutta method (Gottlieb 

and Shu, 1998). Integrals appearing in equation (16) are 

solved using a quadrature method.  

 

METHODOLOGY 

 

Numerical solutions were performed using an in-house 

computer code written in C language. The code solves 

equation (16) in Cartesian, cylindrical, and spherical 

coordinates and then constructs the numerical solution 

using equation (14). Numerical solution of equation (16) 

requires a numerical upwind flux function. The selected 

flux function affects the quality of the solution. 

Performance of RKDG method with different numerical 

fluxes can be found in (Qiu et al., 2006). Numerous 

different methods were used in literature for flow 

problems involving shock waves. Among these methods 

AUSM (Advection Upstream Splitting Method) -family 

of methods provide algorithmic simplicity by using a 

scalar diffusion term (Liou, 2000). Hence, unlike many 

other upwind type methods, AUSM-family methods do 

not require the knowledge of the eigenstructure of the 

flow problem and this helps generate very efficient 

implementations. In this study the AUSM+ method 

(Liou, 1996) was used to calculate the numerical fluxes 

mainly because this method has previously been used by 

the author for moving shock wave simulations with 

satisfactory results (Alpman 2009a, 2009b, Chen et al, 

2007, 2008, Alpman et al, 2007). Performance of this 

method was also tested against performance of van Leer 

(van Leer, 1982), HLLE (Einfeldt, 1988) and Roe’s 

(Roe, 1986) upwind methods. Numerical solutions were 

obtained for k =1 and 2 which correspond to second and 

third order spatial accuracies, respectively. The integrals 

in equation (16) are obtained using a quadrature 

method. According to (Cockburn, 1998), for a given 

value of k, the applied quadrature rule must be exact for 

polynomials of degree 2k for the interior of the elements 

and three-point Gauss-Legendre rule (Chapra and 

Canale, 2006) was used in that reference for k = 2. This 

method however, requires calculation of flow variables 

at the interior locations of an element. Therefore, three-

point Simpson’s rule (Chapra and Canale, 2006), which 

uses the flow variables at element faces and center, was 

also used in this study although it is exact up to the 

cubic polynomials only. Numerical solutions obtained 

using these two integration techniques were compared 

with each other. DG method solutions for k > 0 generate 

spurious oscillations in the vicinity of flow 

discontinuities (Flaherty et al., 2002). Therefore, some 

kind of stabilization strategy is needed. Cockburn et.al. 

(Cockburn 2001, Cockburn and Shu 1991, 2001) 

adopted a generalized slope limiter with a TVB 

corrected minmod limiter (Cockburn and Shu 1989), 

Calle et. al. used an artificial diffusion term in their 

stabilized discontinuous Galerkin method (Calle et al., 

2005), van der Vegt and van der Ven (van der Vegt and 

van der Ven, 2002a) used a stabilization operator, and 

Qui and Shu (Qui and Shu, 2005) used WENO type 

limiters to avoid spurious oscillations in their studies. 

Slope limiting approach, which is also used in finite 

volume schemes, is computationally the simplest. 

Therefore, a slope limiting procedure was used in this 

study. It is known that minmod limiter is the most 

dissipative limiter (Roe, 1986, Sweby, 1984) and the 

TVB correction mentioned in (Cockburn and Shu, 1989, 

1998, 2001) is problem dependent. On the other hand, 

Superbee limiter (Roe, 1986) is the least dissipative and 

is suitable for flows with very strong shocks like a blast 

wave (Tai et al., 1997). In this study minmod and 

Superbee limiters along with the Sweby limiter (Sweby, 

1984), which is between Superbee and minmod limiters, 

were used for numerical solutions. During the limiting 

procedure, the ratios the successive gradients of (j-1)st 

degree of freedom of an element to the jth degree of 

freedom of the same element were calculated, and 

minimum of these ratios were supplied as input to 

limiting function. Then the jth degree of freedom was 

multiplied by the output of the limiter. This approach is 

similar to the one followed in (Biswas et al., 1994). The 

above steps yield a system of ordinary differential 

equations for the degrees of freedom, which was solved 

using a 2
nd

 order accurate TVD Runge-Kutta scheme 

(Gottlien and Shu, 1998).  
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RESULTS AND DISCUSSION 

 

In this section results obtained for Sod’s shock tube 

problem (Sod, 1978) and blast waves generated from 

explosion of 1 kg of TNT were displayed.  

 

Planar Shock-Tube Problem 

 

In this problem a stationary high pressure fluid is 

separated from a stationary low pressure fluid by a 

barrier. At t = 0 the barrier is removed. This leads to a 

shock wave and a contact discontinuity move towards 

the low pressure region and an expansion fan move 

towards the high pressure region. In this study a shock 

tube problem which yielded very sharp discontinuities 

was solved and numerical solutions were compared with 

the exact solutions (Sod, 1978). The initial conditions of 

the problem were given as follows: 

 

ρ = 1 kg/m
3
, u = 0, p = 1x10

5
 Pa, r ≤ 2m 

ρ = 0.0001 kg/m
3
, u = 0, p = 10 Pa, r > 2m 

 

These were the same conditions studied in (Tai et al., 

1997) as an extremely strong discontinuity case. This 

case was selected because it more closely resembles a 

blast wave simulation problem and it constitutes an 

extremely difficult case for numerical methods because 

of large gradients in the flowfield. The problem was 

solved in Cartesian coordinates, size of the solution 

domain was 7m and both fluids were calorically perfect 

air. Numerical fluxes were calculated using the AUSM+ 

method.  

 

Static Grid Solutions 

 

This section contains numerical solutions obtained using 

a static mesh with N = 701 grid points. This corresponds 

to a mesh spacing of 1 cm. Figure 1 shows density 

distribution at t = 1.2 ms in the vicinity of the contact 

surface and shock wave obtained using finite volume 

(FV) method and RKDG method with k = 1 using 

Superbee (sb), minmod (mm) and Sweby (sw) limiters. 

This way both methods would have the same spatial 

accuracy. Exact solution was also displayed for 

comparison. This figure clearly shows the difficulty the 

methods had experienced while resolving the strong 

discontinuities. Predictions obtained using minmod 

limiter was nearly the same for FV and RKDG methods 

in which results showed a much smeared contact surface 

and over-predicted the shock location. FV method with 

Superbee limiter performed relatively well although the 

numerical solutions are on the overall poor. In order to 

improve the results solutions were performed on a finer 

mesh which was obtained by halving the mesh spacing 

using N = 1401 grid points. Density distributions for this 

case were displayed in Figure 2. Greatest improvement 

was observed for FV method with the Superbee limiter. 

Other solutions were also improved slightly but not as 

much. Overall, the RKDG method predictions were 

poor compared to FV method predictions obtained using 

the same limiter. It is also interesting to note that RKDG 

solutions took nearly 1.5 times more CPU time than FV 

solutions although this was not a big issue for one-

dimensional flow simulations.  

 

 
Figure 1. Density distribution at t = 1.2 ms. (ρ0 = 0.0001 

kg/m3, N = 701) 

 

 
Figure 2. Density distribution t = 1.2 ms. (ρ0 = 0.0001 kg/m3, 

N = 1401) 

 

Pressure distributions at t = 1.2 ms obtained using N = 

1401 grid points were shown in Figure 3. In this figure 

all numerical solutions experienced a spurious 

oscillation right after the expansion region. This 

location and the location of the shock wave are the 

places where discrepancies between numerical solutions 

were most severe. They were pretty much in agreement 

everywhere else in the solution domain. However, in 

Figure 2 there were also considerable differences 

between numerical solutions in the vicinity of the 

contact surface location which was not observed in 

Figure 3. Therefore, it was concluded that prediction of 

shock location could be improved if the contact surface 

could be resolved better.  

 

 
Figure 3. Pressure distribution at t = 1.2 ms. (p0 = 10 N/m2) 
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Comparing Figure 2 and Figure 3 one can see that 

spurious oscillations were observed in the vicinity of the 

contact surface rather than the shock wave. These 

oscillations could be suppressed by using a more 

dissipative limiter however, this was shown to 

negatively affect the overall solution quality; solutions 

obtained using minmod limiter were the worst 

compared to others. Knowing that only density 

experiences a discontinuity across the contact surface 

while pressure and velocity remain continuous, an 

alternative limiting strategy was tested to see if it could 

improve the predictions. In this study limiting was 

performed on the primitive flow variables; density, 

velocity and pressure. Therefore, in this alternative 

strategy minmod limiter was applied for density only 

while less dissipative Superbee and Sweby limiters were 

applied for pressure and velocity. Density distributions 

obtained using this limiting strategy were displayed in 

Figure 4. In the figure legend first limiter was for 

density and second limiter was for pressure and 

velocity. The alternative limiting strategy, especially 

using minmod and Sweby limiters, improved RKDG 

predictions greatly. This strategy also suppressed 

oscillations observed in the previous FV solutions 

however, it negatively affected the prediction of shock 

location. So far, the best predictions were obtained with 

Superbee limiter for the FV method and with minmod-

Sweby combination for the RKDG method. These 

predictions were compared with exact solution in Figure 

5. It is clear that RKDG method with this alternative 

limiting successfully suppressed oscillations after the 

expansion region and in the vicinity of the shock wave. 

Also it made a slightly better shock prediction compared 

to FV method. Considering this improvement, RKDG 

solutions will employ this alternative limiting with 

minmod and Sweby limiters from this point forward.  

 

 
Figure 4. Density distribution at t = 1.2 ms. (ρ0 = 0.0001 

kg/m3, N = 1401, alternative limiting) 

 

In order to see the effect of mesh spacing, solutions 

displayed in Figure 5 were repeated on the previously 

used coarse mesh and results were displayed in Figure 

6. It is clear that RKDG solution was less sensitive to 

mesh spacing compared to FV method.  

 

Spatial accuracy of RKDG methods can be easily 

increased by using a high order polynomial in the 

element. This avoids using a larger stencil as in the case 

of FV or finite difference method (Cockburn and Shu, 

1989). For the problem considered density distribution 

obtained using k = 1 and k = 2 were displayed in Figure 

7. Results obtained with these two polynomials are 

nearly the same except k = 2 case placed the shock 

slightly ahead of the k = 1 case. The reason using high 

order polynomial did not bring much benefit is that the 

limiters applied degrades the high order accuracy in the 

vicinity of the discontinuities. This might be overcome 

by using a limiter which preserves the accuracy like the 

TVB corrected minmod limiter of Ref. (Cockburn and 

Shu, 1998) however that correction was problem 

dependent.  

 

 
Figure 5. Density distribution at t = 1.2 ms. (ρ0 = 0.0001 

kg/m3, N = 1401) 

 

 

 
Figure 6. Density distribution at t = 1.2 ms. (ρ0 = 0.0001 

kg/m3, N = 701) 

 

 

 
Figure 7. Density distribution at t = 1.2 ms obtained using k= 

1 and 2. (ρ0 = 0.0001 kg/m3, N = 701) 
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Effect of the Quadrature Rule 

 

Equation (16) contained integrals which were evaluated 

using a quadrature rule. The predictions displayed 

previously were obtained using three-point Simpson’s 

rule of integration which is third-order accurate (Chapra 

and Canale, 2006). In order to see the effect of the 

quadrature rule, RKDG solution with k = 2 was also 

performed using three-point Gauss-Legendre rule (5
th

 

order accurate (Chapra and Canale, 2006)) and 

compared to the one with Simpson rule in Figure 8. 

According to the figure solution is nearly insensitive to 

the quadrature rule employed. Since three-point 

Simpson rule uses flow variables at the faces (already 

calculated for flux calculations) and the center of the 

element it does not require calculation of flow variables 

at the interior locations of as does three-point Gauss-

Legendre rule. Therefore, it was mainly preferred and 

employed in this study.  
 

 
Figure 8. Density distribution at t = 1.2 ms obtained using 

different quadrature rules. (ρ0 = 0.0001 kg/m3, N = 701) 
 

Effect of Numerical Flux Function 
 

It is also known that the numerical flux function used in 

the computations affects the accuracy of the DG 

solutions. In order to see this effect, performance of the 

AUSM+ method was compared to those of van Leer 

(VL), HLLE and Roe’s methods. Density predictions 

obtained using these flux functions and their 

comparisons with the exact solution were displayed in 

Figure 9. According to this figure performances of these 

methods were close to each other except the HLLE 

method which clearly underpredicted the shock 

location. Among the flux functions tested AUSM+ 

showed the best performance as expected.  

 
Figure 9. Density distribution at t = 1.2 ms obtained using 

different quadrature rules. (ρ0 = 0.0001 kg/m3, N = 701) 

Moving Adaptive Grid Solutions 

 

Among the DG methods, STDG method (van der Vegt 

and van der Ven, 2002a, 2002b) provides a natural 

candidate for adaptive mesh solutions. This method 

does not separate space and time, and uses space-time 

elements which are obtained by connecting space 

elements in two consecutive time levels (van der Vegt 

and van der Ven, 2002a). As a result all mesh 

movements and deformations are automatically 

involved into the formulation. However, its numerical 

implementation may not be as straightforward as the 

RKDG method. Therefore, the RKDG method used in 

previous calculations was extended to moving meshes 

by using the ALE formulation described previously. 

Numerical solutions were obtained by solving equation 

(16) with the AUSM+ method for numerical fluxes. In 

order to adapt the grid, an arc-length type weighting 

function which had been previously used in (Alpman, 

2009a) was also used here. This weighting function 

moves grid points according to the velocity gradient, 

hence grid points were moved so that the mesh refines 

in the vicinity of the shock wave. Resulting grid 

velocities at t = 1.2 and 2.8 ms were shown in Figure 10 

where location of the sudden jump in velocity at a 

specific time is coincident with the predicted shock 

locations.  

 

 
Figure 10. Grid Velocities at t = 1.2 and 2.8 ms. 

 

 
Figure 11. Density distribution at t = 1.2 ms obtained using 

static and adaptive grids. (ρ0 = 0.0001 kg/m3, N = 351 for fine 

grid solution and 176 for other solutions) 

 
Density distributions at t = 2.8 ms obtained using static 

grids with N = 176, 351 and adaptive grid with N = 176 

were displayed in Figure 11. Since the grid is refined 
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around the shock wave only, numerical solutions 

obtained with static and adaptive grids of same size 

were nearly identical around the contact surface 

however, slightly better shock location was predicted 

with the latter. Overall numerical solutions were not 

very good, however the major aim here was not to find 

the best adaptive grid solution but to extend RKDG 

method to moving adaptive grids using ALE 

formulation and show that it can be successfully used as 

an alternative to STDG method.  

 

Blast Wave Simulations 

 

In this section blast waves generated by an explosion 

were analyzed. Here explosive material was assumed to 

transform gas phase instantly after the detonation, thus 

explosive was modeled as a high pressure sphere. This 

way, blast wave problem became a spherical shock tube 

problem where an isobaric sphere of a high pressure gas 

expanded toward surrounding low pressure air. 

Numerical solutions were obtained using RKDG 

method with k = 1, AUSM+ flux function and the 

alternative limiting technique which gave the best 

results for the planar shock tube problem analyzed in 

the previous section. A static grid was used with a mesh 

spacing of 4 mm in a 10 m solution domain. 

 

Numerical solutions were first compared with the 

approximate analytic solutions of blast waves by 

Friedman (Friedman, 1961). The problem considered 

contained a sphere of air compressed to 22 times the 

ambient air pressure. This sphere had a non-dimensional 

radius of one (Sachdev, 2004). Temperature was taken 

to be uniform in the entire solution domain and air was 

assumed to be calorically perfect. Figure 12 contained 

loci of resulting primary shock, contact surface and 

secondary shock. Predictions were also compared with 

numerical solutions by Brode (Brode, 1957). In this 

figure horizontal axis represented distance from the 

center normalized by the initial sphere radius, r0 and 

vertical axis represented time normalized by r0 and 

ambient speed of sound, a0.     

 

 
Figure 12. Loci of primary shock, contact surface and 

secondary shock.  

 

According to this figure RKDG solutions showed only 

qualitative agreement with Friedman’s approximate 

analytic result; however agreement with Brode’s results 

were much better especially during the implosion of the 

secondary shock and its reflection from the center. 

Outward motion of the secondary shock after its 

reflection and its interaction with the contact surface 

were also observed in Figure 12.  

 

Next, blast waves generated by explosion of 1 kg of 

TNT were analyzed and simulated. The explosive was 

modeled as an isobaric high pressure sphere in which 

the density was 1600 kg/m
3
 and pressure was 8.8447 

GPa which was obtained using the blast energy of TNT 

(Smith and Hetherington, 1994) and the JWL (Jones-

Wilkins-Lee) equation of state (Dobratz and Crawford, 

1985). Outside this sphere ambient air density and 

pressure were 1.225 kg/m
3
 and 101320 Pa, respectively. 

Simulations involved two different fluids; detonation 

products and ambient air for which different state 

equations were used. For detonation products JWL 

equation of state was used mainly due to its popularity 

(Kubota et al., 2007). For surrounding air two different 

cases were followed. First case assumed ambient air to 

be calorically perfect. However, after an explosion like 

this one ambient air temperature may easily become 

very high so that calorically perfect gas assumption 

might cease to be valid due to gas dissociations 

(Hoffmann and Chiang, 2000). Therefore, as the second 

case, high temperature effects were included by 

assuming local chemical equilibrium meaning that the 

chemical reactions occur instantaneously (Hoffmann 

and Chiang, 2000). Equilibrium relations given in Ref. 

(Tannehill and Mugge, 1974) were used for air to 

calculate ratio of specific heat capacities and 

temperature in terms of pressure and density. 

 

One of the important variables in blast wave simulation 

is the over-pressure, which is the rise of pressure above 

ambient pressure downstream of the primary shock 

wave. Figure 13 showed comparison of over-pressure 

predictions obtained for calorically perfect and 

equilibrium air cases with the data obtained from (Smith 

and Hetherington, 1994)  which states that these results 

are curve fits to the data used in the weapons effect 

calculation program CONWEP (Hyde, 1991). Both 

cases over-predicted over-pressure with calorically 

perfect case being slightly better.  The main discrepancy 

between both cases occurred between r = 1 and 3 m. 

Except this region both curves were nearly parallel.  

 

 
Figure 13. Variation of over-pressure with distance measured 

from the center. 
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Another important variable in blast wave simulation is 

the speed of the primary shock, which can be used to 

calculate shock arrival times. Primary shock speeds 

computed using RKDG method were compared with 

data from Ref. (Smith and Hetherington, 1994) in 

Figure 14. Here numerical solutions gave higher shock 

speeds close to the explosive but agreement with data 

from Ref. (Smith and Hetherington, 1994) became 

much better after r = 2 m, especially for calorically 

perfect air solution.  

 

 
Figure 14. Variation of primary shock speed with distance 

from the center. 

 

Overall solutions performed by treating air as a 

calorically perfect gas were in better agreement with 

data from Ref. (Smith and Hetherington, 1994). But it is 

known that high temperatures encountered during 

detonation of high explosives like TNT makes 

calorically perfect assumption invalid. Since this 

assumption ignores any chemical reaction that might 

occur, it may yield unrealistically high temperatures 

after a shock wave. Such problems are usually 

encountered for hypersonic flows over reentry vehicles 

(see Ref. (Anderson, 2004), chapter 16). In order to 

check this for our problem, temperature behind the 

primary shock wave predicted by the two cases of air 

were displayed in Figure 15. It was clear from this 

figure that temperatures predicted using the two 

assumptions were very close except in the region 

between r = 1 and 3 m, where major discrepancies 

between these numerical solutions took place. Since 

temperature predicted using calorically perfect and 

equilibrium air assumptions were very close, the 

potential negative consequences of using the former, 

was not experienced in this problem. Nevertheless, the 

predicted temperatures at lower r values were still high 

enough to make γ non-constant. In order to see the 

effect of temperature on γ, its values calculated using 

the equilibrium air assumption was compared with the 

constant value of 1.4 for calorically perfect gas 

assumption. This comparison was displayed in Figure 

16 where a considerable drop in γ can be easily 

observed when r is less than 3m. This explains the 

relatively less pressure and temperature drop yielded by 

the equilibrium air assumption for the same amount of 

outward expansion. (See figures 13 and 15).  

 

 
Figure 15. Variation of temperature behind primary shock 

with distance from the center.  

 

 
Figure 16. Variation of ratio of specific heat capacities behind 

primary shock with distance from the center. 

 
RKDG predictions for blast waves represented above 

were obtained using the alternative limiting approach 

because it yielded better results for planar shock wave 

problem where the strength of the discontinuities remain 

constant. However, in a spherical shock problem the 

strength of the discontinuities decrease as high pressure 

gases expand and author’s experience with planar shock 

tube problem with different discontinuity strengths 

showed that the performances of different limiting 

strategies became closer to each other as the 

discontinuity strengths decreased. In order to see the 

effect of limiting procedure on blast wave simulations 

density distributions at t=0.1 and 1.6 ms were plotted in 

Figure 17 and Figure 18 for the blast wave generated by 

the explosion of 1 kg of TNT. Density was plotted in 

order to see the contact surface. Here the ambient air 

was assumed to be calorically perfect air. Predictions 

include RKDG solutions with minmod (mm), Sweby 

(sw), superbee (sb) and alternative (mm for density, sw 

for pressure and velocity) limiters. Finite volume 

solution with superbee limiter was also included in the 

figures. According to Figure 17  RKDG solutions are 

very close to each other especially for secondary shock 

wave. The major differences are in the vicinity of the 

contact surface where solutions with mm and mm-sw 

limiters yielded more smeared contact surfaces as 

expected. At the same time finite volume (FV) solution 

showed a considerable discrepancy with RKDG 

solutions. Nevertheless, the strength of the discontinuity 

at the contact surface is small compared to that of the 

the planar shock tube problem studied above. Therefore, 
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the discrepancies at the contact surface location did not 

affect the shock predictions considerably. This was also 

supported in Figure 18 which showed density 

distributions well after the secondary shock wave 

reflected from the origin and crossed the contact 

surface. Again RKDG predictions are very close to each 

other and disagreement with the FV solution is evident.  

 

 
Figure 17. Density Distribution at t=0.1 ms. 

 

 
Figure 18. Density Distribution at t=1.6 ms. 

 
CONCLUSIONS 

 

An implementation of RKDG method was performed to 

simulate moving planar and spherical shock waves 

(blast waves). An in-house computational fluid 

dynamics code which solves Euler equations using a 

finite volume technique was further modified to include 

an RKDG method. The code was tested with a Sod’s 

shock tube problem with the so-called extremely strong 

discontinuities (Tai et al., 1997). Predictions were 

compared with the predictions obtained using a finite 

volume technique and to the exact solutions. It was 

observed that the limiter used in the solutions clearly 

affected the overall quality of the predictions. The 

RKDG method was not able to produce satisfactory 

results with neither of the limiter functions used and 

was out-performed by FV method using the same 

limiter. After observing that spurious oscillations occur 

around the contact surface rather than the shock wave 

and alternative limiting strategy which used more 

dissipative minmod limiter (Sweby, 1984) for density 

and less dissipative Superbee or Sweby limiter (Sweby, 

1984) for pressure and velocity was tested. This strategy 

clearly improved the solutions of RKDG method and 

RKDG with minmod-Sweby combination gave the best 

results. It was interesting to see that this alternative 

limiting strategy did not produce a similar improvement 

for the FV method. Overall RKDG method with this so-

called alternative limiting outperformed FV method for 

the analyzed shock tube problem with very strong 

discontinuities and it was shown to be less sensitive to 

grid coarsening compared to FV method.  

 

The resulting method was tested for different flux 

functions and comparison of the results showed that the 

AUSM+ (Liou, 1996) method performed relatively 

better compared to the HLLE (Einfeldt, 1984), van Leer 

(van Leer, 1982) and Roe’s (Roe, 1986) methods. The 

implemented method was also modified to handle 

moving adaptive meshes using ALE (Smith, 1999) 

formulation. This way the RKDG method used can be 

considered as an alternative to STDG (van der Vegt and 

van der Ven, 2002a, 2002b) method which is a natural 

candidate for solution on adaptive meshes.  

 

Blast waves were simulated by modeling the explosion 

problem as a spherical shock tube problem. For blast 

waved generated by explosion of 1kg of TNT, the 

numerical solutions were performed with and without 

including the high temperature effects for the 

surrounding air. Although high temperatures were 

encountered in the solutions, using calorically perfect 

gas assumption for air did not produce negative effects, 

and even gave better agreement with blast wave data 

taken from Ref. (Smith and Hetherington, 1994). This 

may be due to the fact that equilibrium relations given 

in (Tannehill and Mugge, 1974) were obtained for 

hypersonic flow at the upper levels of the atmosphere 

where pressure and density is low. 
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