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Abstract: An inverse design approach is developed for a mixed convection problem in a partially open cavity with a 

heat generating board using Proper Orthogonal Decomposition (POD). The numerical database analyzed by POD 

consists of distinct CFD simulations varying with a combination of governing parameters determined by Latin 

Hypercube Sampling (LHS). POD’s expansion coefficients together with governing parameters are interpolated by 

Kriging to predict unknown CFD simulations at off-design points. An inverse design problem of finding a target flow 

and/or temperature field is solved where the POD model for velocity outperforms the temperature model. 

Keywords: Mixed Convection, Proper Orthogonal Decomposition (POD), Kriging Interpolation, Inverse Design. 

 

UYGUN ORTOGONAL AYIRIM İLE KARIŞIK KONVEKSİYON PROBLEMİNİN 

TERSİNE TASARIMI 
 

Özet: Bu çalışmada içerisine ısı üreten levha yerleştirilmiş kısmen açık bir kavitedeki karışık konveksiyon (zorlanmış 

ve doğal konveksiyon) için Uygun Ortogonal Ayırım (UOA) yaklaşımı kullanılarak tersine tasarım yapılmıştır. UOA 

ile analiz edilmiş olan sayısal veri kümesini oluşturan simülasyonlardaki yöneten parametreler, Latin Hiperküp 

Örnekleme ile belirlenmiştir. UOA’nın açılım katsayıları, yöneten parametreler ile beraber Kriging interpolasyonu ile 

belirlenmiş ve veri kümesinde bulunmayan simülasyonlara ait parametre değerleri tahmin edilebilmiştir. Bu bağlamda 

UOA modeli kullanılarak hedef akış veya sıcaklık alanı tersine tasarım yöntemi ile çözülmüştür. 

Anahtar Kelimeler: Karışık Konveksiyon, Uygun Ortogonal Ayırım (UOA), Kriging İnterpolasyonu, Tersine 

Tasarım. 

 
 

SYMBOLS 

 

ak  mode coefficient for velocity 

Aki  k
th

 eigenvector of correlation matrix for velocity 

b  board width [mm] 

bk  mode coefficient for temperature  

Bki  k
th

 eigenvector of correlation matrix for temp. 

Cij  correlation matrix 

cp  specific heat [kJ/kgK] 

d  height to the center of the inlet opening [mm] 

D  height of the inflow and outflow openings [mm] 

e  height to the center of the of the board [mm] 

g  gravitational acceleration [m/s
2
] 

G  cavity height [mm] 

J  cost function 

k  solid’s thermal conductivity [W/mK] 

kf  fluid’s thermal conductivity [W/mK] 

lb  board height [mm] 

lo    length of the outflow opening [mm] 

ls  height of the heat source [mm] 

M  maximum snapshot (mode) number 

n  direction vector 

N  snapshot number 

p  pressure [Pa] 

P  non-dimensional pressure 

q  heat flux from the source [W/m
2
] 

rk  thermal conductivity ratio [=k/kf] 

r  thermal diffusivity ratio [=/f] 

T  temperature [K] 

Ti  inlet air temperature [K] 

u,v  velocity components [=u/Ui, v/Ui] [m/s] 

U,V non-dimensional velocity components 

Ui  inlet air velocity [m/s] 

W  cavity width [mm] 

x,y  Cartesian coordinates 

X,Ydimensionless Cartesian coordinates [= x/D, y/D] 

 

Greek Symbols 

  thermal expansion coefficient [1/K] 

  non-dimensional temperature [= k(T-Ti)/(qD)] 

λi  eigenvalue 

  dynamic viscosity of the fluid [Pas] 

ϕk  eigenmodes for velocity 

  kinematic viscosity of the fluid [=/] 

  fluid density [kg/m
3
] 

ψk  eigenmodes for temperature 
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Abbreviations 

CFD Computational Fluid Dynamics 

LHS Latin Hypercube Sampling 

Gr  Grashof number [=gβqD
4
/kfν

2
] 

POD Proper Orthogonal Decomposition 

Pr  Prandtl number [=cp/k]  

Re  Reynolds number [=UiD/]  

Ri  Richardson number [=Gr/Re
2
] 

rms Root mean square error 

 

INTRODUCTION 

 

Proper Orthogonal Decomposition is a powerful data 

reduction method that can be used for a number of 

reasons. It can be used to obtain low-dimensional 

dynamical models for heat transfer and fluid dynamics 

problems as reported by Gunes (2002-a and 2002-b). 

Another application of POD is related to repairing of 

damaged data and construction of missing gappy data. 

In addition a POD model can be developed for 

optimization purposes by using reduced order models to 

capture parametric variation. POD can use numerical 

data consisting of CFD solutions or “snapshots” as an 

available database in the construction of partial data 

obtained from experimental measurements as reported 

by Gunes et al., (2004). 

 

POD approach is combined with a cubic spline 

interpolation and more recently with Kriging 

interpolation to capture parametric variations reported 

by Gunes and Cadirci, (2009-a). This technique enables 

inverse design problems where POD and interpolation 

techniques are combined together. Inverse design via 

POD is a popular approach where the goal is finding an 

optimal geometry and related parameters for the given 

target velocity or temperature field. 

 

In thermo-fluid problems POD has many applications. 

Lumley, (1967) used POD as an effective way for 

extracting structures from turbulent flows. Berkooz et 

al. (1993) analyzed turbulent flow via POD and they 

showed that POD offers a rational method for the 

extraction of coherent structures that are organized 

spatial features appearing repeatedly. Other applications 

of POD include channel flows, square-duct flows, shear 

flows and flat plate boundary layer flows as given in 

Gunes and Rist, (2004). POD can be used as a tool for 

low-order modeling in thermo-fluid problems. Galetti et 

al., (2004) applied POD to obtain low-order modeling 

of laminar flow regimes past a confined square cylinder. 

A further study carried out by Qamar et al. (2009) is 

concerning flow field prediction via POD for a steady 

supersonic flow. A recent study by Selimefendigil 

(2013-a) deals with the POD-based interpolation of 

mixed convection heat transfer in a horizontal channel 

with a cavity heated from below. In a relevant study by 

Selimefendigil et al. (2013-b) a POD-based model has 

been developed to extract modes of the forced 

convection heat transfer in pulsating flow.  

 

The aim of this study is to investigate mixed convection 

in a square cavity with a divided partition and develop 

an inverse-design optimization via proper orthogonal 

decomposition. In this regard we simulated mixed 

convection in the geometry given in Figure 1. In order 

to create a database consisting of various snapshots with 

distinct flow features, we changed the width of heat 

dissipating board (b), conductivity (k) and Reynolds 

number (Re). This database is then evaluated by POD to 

extract coherent structures (modes) of the flow and 

temperature fields that can be used for optimization 

problem. We construct an inverse design problem 

similar to the tracking problem developed by Ly and 

Tran, (2001). They succeeded in finding the hot wall 

temperature so that certain region inside the cavity 

remains below that temperature. Ly and Tran, (2001)  

tried to estimate a target temperature distribution on the 

wall of the cavity (boundary condition) corresponding 

to a specific Rayleigh number via POD expansion. They 

evaluated a cost functional with the aim to minimize the 

Rayleigh number to be predicted. This cost function 

developed for minimization purpose is then solved 

using a combination of golden section search and 

parabolic interpolation. In our study, we use a similar 

unconstrained optimization projection of the 

combination of POD but employ Kriging interpolation 

for a highly accurate prediction of the off-design flow 

and temperature field.  

 

For applications with high heat transfer rates such as the 

electronic equipments, mixed convection is preferred 

since the operational temperatures must be kept below 

the manufacturers’ specified maximum values. A 

singular heat dissipating board in the cavity should 

represent a heat generating part of electronic equipment 

in a partially open cavity where the maximum 

temperature inside the cavity shall be controlled. Many 

researchers investigated mixed convection and indicated 

some characteristics of buoyancy-induced flow. 

Papanicolaou and Jaluria, (1990 and 1993) investigated 

mixed convection in a rectangular cavity where the heat 

source is flush-mounted on an isolated board. They 

found that generally high-or low-velocity recirculating 

cells due to buoyancy forces generated by the heat 

source determine flow patterns. Papanicolaou and 

Jaluria, (1993) found that the velocity levels of both 

forced and buoyancy driven convection affect heat 

transfer rates across the solid-fluid interfaces. In a 

further study Papanicolaou and Jaluria, (1995) 

investigated turbulent mixed convection in a cavity. 

 

How and Hsu, (1998) simulated transient laminar mixed 

convection in an enclosure where they tested the effects 

of a conducting baffle and the Reynolds number on the 

flow and temperature fields. They found that increasing 

both the Reynolds (Re) or Richardson (Ri) numbers 

give rise to an increase of the heat transfer coefficient. 

A further result was that the transient heat transfer rate 

and amount of the recirculation cell depend on the 

height and the location of the heat dissipating baffle. 
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In our case we investigated mixed convection in a 

square cavity with a singular heat dissipating board 

mounted vertically on the bottom of the cavity. Details 

concerning to flow patterns and isotherms and how they 

change by governing parameters such as Re or Ri are 

given in Section ‘CFD Solutions’.  

 

PHYSICAL MODEL 

 

Geometry and Governing Equations 

 

In Fig. 1 the description and dimensions of partially 

open rectangular cavity are given. the dimensional 

variables of the concerning geometry. Here, G/W =1, 

D/G =0,25, lb/G =0,5, e/lb =0,5,  ls/lb =0,5 and d/G 

=0,875. To obtain fully developed flow conditions at the 

outlet, an appropriate ratio is chosen for lo/G =1/8 as 

proposed by Hsu and Wang, (2000).  

 

 
Figure 1. Partially open rectangular enclosure. 

 

The natural convective heat transfer can be expressed by 

Grashof number (Gr). In Eq. (3), Grashof number is 

defined as Gr = gβqD
4
/kfν

2
 (approximately 20000). Here 

 is expansion coefficient, kf  is the fluid conductivity 

and   is the kinematic viscosity. In addition Reynolds 

number is defined as Re = ρUD/μ for the forced 

convection. Both forced and natural convection 

complicate the flow and temperature patterns. The 

relative effect of natural convection over forced 

convection can be expressed in terms of Richardson 

number (Ri = Gr/Re
2
). In all simulations the Prandtl 

number (Pr) of the coolant is taken 0.71. 

 

The flow is assumed to be incompressible but the 

density of the fluid in the y-momentum equation varies 

with temperature as the equation  =i[1-β(T-Ti)] 

according to the Boussinesq approximation. In addition, 

compressibility work and the viscous dissipation terms 

are neglected in the energy equation. The temperature of 

the cooling fluid at the entrance (Ti) is kept constant. It 

should be emphasized that the conductivity of the board 

k is a parameter affecting the heat transfer in the cavity. 

Under the above assumptions, the dimensionless 

conservation equations for the steady flow and heat 

transfer can be written as follows: 
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Equation (1) is the continuity and equations (2) and (3) 

are momentum equations in x-and y- directions, 

respectively. The energy equation (4) is not only valid 

for fluid region but also for the solid region on board. 

As a result the conductivity and thermal diffusivity of 

the board and the fluid should be taken into account and 

their ratios are denoted by rk and r  , respectively. In the 

solid region, the velocities are set equal to zero, thus the 

energy equation reduces to steady heat conduction. In 

the fluid region the ratio is equal to one as given by 

Gocmen et al., (2002) and Gunes et al., (2009-b). The 

variables are non-dimensionalized as in Eq. (5): 
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Computational Domain and Boundary Conditions 

 

Figure 2 shows a typical grid used for numerical 

simulations. The grid is clustered in the vicinity of the 

board and the walls to adequately resolve the high 

gradients of the velocity and temperature. The grid 

independency is checked by refining the mesh in each 

direction. The first geometry given in Table 1 is used to 

test grid independence. A coarse mesh and a fine mesh 

consisting of nearly 10000 and 25000 cells respectively 

are tested and the temperature on the heat generating 

board, maximum x- velocity and the heat flux at the 

outlet have been computed for comparison: On the 

coarse mesh the board temperature is 363,17 K, 

maximum x-velocity is 0,133 m/s and the heat flux at 

the channel outlet is -7,986 W where these values on the 

finer mesh are found to be 363,24 K, 0,134 m/s and -

7,975 W respectively. Since there are no appreciable 

differences in extreme and average values of field 

characteristics, the solutions are shown to be grid-

independent.  

 

All the simulations are carried out by a finite-volume 

based steady laminar flow solver. An implicit pressure-

based solver with SIMPLE (Semi-Implicit Method for 

Pressure Linked Equations)-algorithm is used where the 

discretization for pressure is of second order and the 

discretizations for momentum and energy equations are 

of third-order. For convergence, simulations are 
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performed till residuals are below to 10
-4

 and 10
-6

 for 

momentum and energy equations, respectively. 

 

The boundary conditions for this mixed convection 

problem are no-slip flow conditions at the rigid walls (U 

= V = 0), a uniform flow at the inlet (U = 1, V = 0), and 

at the exit the gradients of all variables are taken zero 

(U/X = V/X =θ/X = 0). A sufficiently long 

protruding part (lo) is added to the exit of the partially 

open cavity to impose valid outflow conditions. The 

boundary conditions for temperature are θ = 0 at the 

inlet, and n = 0 at all adiabatic walls, where n 

represents direction vector perpendicular to the walls. A 

vertical board with a constant heat flux is mounted on 

the bottom wall of the cavity. The heat source is flush-

mounted in the center of the board. The heat flux q is 

uniform and constant for all simulations (291,2 W/m
2
).  

 

The continuity of the heat flux in the solid-fluid 

interface is expressed as in Equation (6)-in other words 

coupled energy equations are imposed (see Fig. 2). The 

velocity and temperature distributions for the governing 

parameters [k, b, Re] are obtained by solving continuity, 

momentum and energy equations using an implicit 

finite-volume based commercial code (Fluent). Time 

histories of speed and temperature reached asymptotic 

state after long transients. 

 

    
   

    
k

FLUID BOARD

r
n n

                               (6) 

 

 
Figure 2. Computational domain and boundary conditions. 

 

CFD Solutions 

 

In this study we investigate the flow and temperature for 

three parameters, the width of the board, the 

conductivity of the board and Re number. Note that 

numerical simulations are carried out in a range of these 

three parameters determined by Latin Hypercube 

Sampling (LHS). LHS is a statistical method to generate 

a plausible collection of parameter values from a 

multidimensional distribution. In this context we 

construct a Latin Hypercube with three dimensions [k, 

b, Re] for a selected range of k, b and Re. We obtained 

50 sample points.  

 

Figures 3a and 3b show velocity and temperature 

distributions of three typical cases out of 50 parameter-

dependent snapshots respectively. The parameters 

determined by LHS in the specified range and the 

maximum temperatures in the computational domain of 

the corresponding CFD solutions are given in Table 1. 

Second geometry has a thin board (0,5 < b < 4,0) [mm] 

and its thermal conductivity is high with respect to the 

conductivity range (0,03 < k < 1,2 ) [W/mK]. The 

cooling effect of forced convection is sufficient causing 

a reasonable temperature drop inside the global domain 

since the Re-number is close to the maximum value 

within the Re-number restriction (10 <  Re < 310 ). As 

Fig.3b indicates, the isotherms of the second snapshot 

diffuse more to the fluid behind the board because heat 

can be conducted appropriately.  

 

 

 

 
Figure 3a. CFD results: x-velocity distribution. 

CFD (#16) 

umax = 0.1993 m/s 

umin = -0.042 m/s  

CFD (#2) 

umax = 0.398 m/s 

umin = -0.104 m/s  

CFD (#31) 

umax = 0.064 m/s 

umin = -0.025 m/s  
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Figure 3b. CFD results: isotherms. 

 

Sixteenth snapshot is totally different from the previous 

example. Compared to the second snapshot, the 

conductivity is much lower, the board is almost seven 

times wider and the Re-number is obviously lower. This 

parameter combination results in a higher temperature 

in the vicinity of heat generating part since a very wide 

board with a low conductivity does not allow heat to be 

dissipated to the fluid and forced convection is not 

sufficient to reduce the maximum temperature. 

 

Thirty-first snapshot with a high conductivity and an 

averaged board width displays maximum values of 

isotherms just on the heat generator. The maximum 

temperature is relatively high since the cooling effect 

cannot be improved because of the low Re-number. 

Additionally the forced convection creates clockwise-

and counterclockwise rotating vortices surrounding the 

board. On the other hand, a high Ri-number indicates 

that natural convection is dominated by forced as 

expected. 

 
Table 1. The database used for the POD analysis. The 

maximum temperature is shown. 

No k [W/mK] b [mm] Re Tmax [K] 

1 0,06 2,6 68 362 

2 1,2 0,5 230 345,3 

3 0,98 2 92 360,6 

4 1,05 3,2 144 350,8 

5 0,84 3 41 357,8 

6 0,28 1,8 125 354,1 

7 0,36 1,4 250 346,9 

8 0,43 4 202 345,5 

9 1,03 2,9 263 344,2 

10 0,21 2,3 188 350,7 

11 0,66 2,2 310 344,1 

12 0,03 3,9 237 377,5 

13 0,48 0,9 27 354,7 

14 0,57 2 296 344,1 

15 0,58 1,3 196 347,5 

16 0,09 3,4 109 363 

17 0,69 3,1 305 344,1 

18 0,97 0,8 210 346,2 

19 0,83 3,3 319 344,3 

20 0,76 0,8 130 352,3 

21 0,38 2,8 163 348,3 

22 0,73 3,5 130 352 

23 1,08 1,6 221 345,9 

24 0,33 1,8 277 345,2 

25 0,71 1,7 32 356,2 

26 0,23 2,4 204 349,2 

27 0,51 1,3 276 344,7 

28 0,34 3,5 285 344,1 

29 0,6 2,2 268 344,1 

30 0,46 1,5 60 358,4 

31 1,01 2,1 18 358,3 

32 1,14 2,6 38 357,4 

33 0,53 3,9 242 344,4 

34 0,87 3,6 82 362,9 

35 0,94 1,1 225 345,7 

36 0,75 0,6 166 351,4 

37 0,25 3,7 257 345,4 

38 0,11 2,4 182 356,8 

39 0,81 2,5 150 350,4 

40 0,12 1,2 158 359,7 

41 0,91 1,4 76 363,9 

42 1,09 1,7 48 357,6 

43 0,63 2,8 117 352,9 

44 0,18 0,7 125 353,1 

45 0,31 0,9 150 354,3 

46 0,16 3,1 10 369,9 

47 0,41 1 290 346 

48 1,17 2,7 173 347,5 

49 0,89 3,7 56 359,7 

50 1,16 3,3 137 351,4 

 

POD MODEL 

  

The proper orthogonal decomposition (POD) provides a 

basis for the modal decomposition of thermo-fluids 

CFD (#16)   

T = 362.9 K 

Ri = 0.88 

CFD (#2) 

T = 345.3 K 

Ri = 0.22 

CFD (#31)   

T = 358.3 K 

Ri = 4.00 
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systems. The basis functions retrieved are called proper 

orthogonal modes. It provides an efficient way of 

capturing the dominant components of a 

multidimensional system and representing it to the 

desired precision by using the relevant set of modes, 

thus reducing the order of the system. Additionally POD 

can be used for natural noise filtration and data 

enhancement of an experimental data.  

 

POD was introduced by Lumley [5] to define coherent 

structures in turbulent flows in the field of fluid mechanics.  

 

Thanh et al., (2003) investigated parametric application 

of gappy POD methodology in transonic aerodynamics 

and combined experimental and computational data 

effectively to determine dominant flow modes and 

showed that gappy POD can be used as an effective 

approach to inverse design of various airfoil shapes. 

 

In this paper we applied snapshot version of POD first 

introduced by Sirovich, (1987) to [k, b, Re] – dependent 

snapshots of numerically obtained velocity and 

temperature fields. The eigenfunctions (eigenmodes) for 

velocity can be determined by linear combination of [k, b, 

Re] - (M = 50) flow fields as in Equation (7) where M 

denotes the maximum snapshot number. In this expression 

Aki are the elements of k
th
 eigenvectors in the correlation 

matrix C. The elements of this matrix are calculated in 

Equation (8) where V(x,y,ki,bi,Rei) and V(x,y,kj,bj,Rej) 

denote the i
th
 and j

th
 velocity fields respectively. 

 

M

k ki i i i

i 1

(x,y) A V(x,y,k ,b ,Re )



                                    (7) 

ij i i i j j j

1
C V(x,y,k ,b ,Re )V(x,y,k ,b ,Re )dxdy

M
       (8) 

 

Matrix C defined in Equation (8) is the M x M 

covariance matrix. This matrix is symmetric and 

positive semi definite thus the eigenvalues of the matrix 

C can be sorted in descending order as given in 

Equation (9):  
 

1  2  3 ..... M  0                                             (9) 
 

The sum of all eigenvalues is equal to the total flow 

energy. Berkooz et al., (1993) showed that each 

eigenvalue represents a contribution to total flow energy 

of the corresponding eigenfunction. Consequently, the 

decomposition offers an objective method for the 

identification of the most energetic eigenfunctions. The 

velocity field in Equation (10) can be represented by a 

series expansion with normalized eigenfunctions, where 

N denotes number of most energetic eigenfunctions 

which are used in expansion of series and generally 

N<<M. With orthogonal property of eigenfunctions, 

parameter-dependent coefficients of eigenfunctions ak 

can be determined as given in Equation (11). 
 

N

b k k

k 1

V(x,y,k ,b,Re) a (k,b,Re) (x,y)



                             (10) 

k b ka (k ,b,Re) V(x,y,k,b,Re) (x,y)dxdy                 (11) 

 

Similar to the velocity field, temperature field can be 

reconstructed using Equations (12) and (13) where ψk  in 

Equation (14) denotes the POD modes for temperature 

field.   
 

P

b k k

k 1

T(x,y,k ,b,Re) b (k,b,Re) (x,y)



                         (12) 

k b kb (k ,b,Re) T(x,y,k,b,Re) (x,y)dxdy                 (13) 

 

Here, ψk can be calculated as: 

M

k ki i i i

i 1

(x,y) B T(x,y,k ,b ,Re )



                                 (14) 

The error in the reconstruction formulae vanishes as N 

approaches to M and the input data can be reconstructed 

to a desired accuracy by increasing N. 

 

RESULTS 

 

Figures 4a and 4b show selected most energetic 

eigenmodes (eigenfunctions) of the temperature and 

flow fields where the mode number is listed in 

decreasing energy. The first mode contains the highest 

energy. By increasing the mode number, the modes 

contain detailed structures about the flow/temperature 

fields since the energy content decreases considerably. 

It would be realistic to indicate the board with a dashed 

shape to be able to represent all 50 distinct boards not 

belonging to the POD database.  

 

The first mode in Fig.4 corresponds to the mean flow 

and temperature fields. With increasing mode number 

the energy content drops and the modes indicate fine 

structures about the flow/temperature fields. 

Considering normalized eigenvectors and their 

respective contributions to the total fluctuating energy 

modes larger than four contain much more detailed 

structures about the flow field, thus the first four modes 

are sufficient to represent the modal features of the 

POD-analysis. 

 

Off-Design Reconstructions   

 

Using a POD model, a desired flow and temperature 

field can be estimated. This is called off-design 

reconstruction. To estimate any flow-and/or temperature 

field which does not belong to the original database, the 

modes and their coefficients must be used. To do this, 

[k, b, Re] should be interpolated in the parameter’s 

range with appropriate increments. Therefore for the 

estimation the expansion-coefficients given in 

Equations (11) and (13) and the three parameters are 

interpolated in the formerly determined parameter’s 

restrictions.  
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Figure 4a. The temperature-POD modes (the mode number 

is listed in decreasing energy). 

 
Figure 4b. The x-velocity-POD modes (the mode number is 

listed in decreasing energy). 

Mode = 1 (T) 

Mode = 2 (T) 

Mode = 3 (T) 

Mode = 4 (T) 

Mode = 1 (u) 

Mode = 2 (u) 

Mode = 3 (u) 

Mode = 4 (u) 



 68 

 

 
Figure 4b. The y-velocity-POD modes (the mode number is 

listed in decreasing energy). 

 

In this regard Kriging interpolation has been applied 

successfully to the expansion coefficients of the flow 

and temperature fields such that Re number with an 

increment of 1 could be estimated as reported in Gunes 

et al. (2009a). Kriging interpolation is applied also to 

data recovery and reconstruction of randomly generated 

laminar gappy flow fields by Gunes et al. (2006). We 

refer to Lophaven et al. (2002) and Venturi et al. (2004) 

for the theory of Kriging and its implementation in 

detail. As a result, the interpolated dataset contains 10 x 

8 x 301 = 24080 predicted solutions including the off-

design points to be estimated.  

 

Figures 5a and 5b indicate the off-design reconstruction 

of the parameter’s combination [k = 0,3 W/mK; b = 2,5 

mm; Re = 250] using the first 5 modes for temperature 

and flow fields respectively. Considering the possible 

maximum mode number of 50, off-design 

reconstructions can be accurately estimated using only 

the first 5 most energetic modes. To compare the off-

design reconstruction, the original CFD simulation is 

also shown in Fig. 5a. It is noted that maximum 

temperature is accurately predicted by a 5 mode POD 

model. We conclude that, validity range of the POD 

models, the flow and temperature fields for off-design 

conditions can faithfully be estimated. Although the first 

5 most energetic modes are sufficient to recover this 

off-design point selected randomly out of the  

 

 

 
Figure 5a. The estimation of the temperature field for  

[k = 0.3 W/mK; b = 2.5 mm; Re = 250].  

 

Mode = 1 (v) 

Mode = 2 (v) 

Mode = 3 (v) 

Mode = 4 (v) 

CFD     

Tmax = 345,81 K  

Mode = 5    

Tmax = 346,06 K  
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Figure 5b. The estimation of the flow field for  

[k = 0,3 W/mK; b = 2,5 mm; Re = 250].  

interpolated quantity; higher modes such as 10 and 20 

are tested additionally using the capabilities of our POD 

model and Kriging interpolation. Increasing the mode’s 

number improves our results slightly with almost 

unnoticeable differences for the flow fields. 

 

Figures 6a and 6b show the off-design reconstruction of 

the parameter’s combination [k = 0,1 W/mK; b = 1,5 mm; 

Re = 150] using the first 5 modes for temperature and 

flow fields respectively. Again as one can clearly 

observe, the POD model justifies that this snapshot which 

is absent in the original dataset can be successfully 

obtained and this is proved by comparing the 

reconstructive results with the original CFD solutions. In 

this example, the POD model for temperature does not 

perform equally well with the velocity model for off-

design conditions as there is approximately 2K 

temperature difference between the CFD solution and 

reconstructive temperature field for mode number M = 5. 

 

 
Figure 6a. The estimation of the temperature field for  

[k = 0,1 W/mK; b = 1,5 mm; Re = 150].  

 

In Fig.7 the expansion coefficients for the velocity (ai) 

and temperature field (bi) on the computed 

eigenfunctions are plotted. Note that, the magnitude of 

the expansion coefficient decreases as the eigenfunction 

number increases.  

 

For the on-design reconstruction, it is known that the 

reconstruction (rms) error decreases as mode number 

increases. However for the off-design estimation this is not 

the case as modes are not necessarily orthogonal for  
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umax = 0,4279 m/s 

umin = -0,0662 m/s  

Mode = 5  

umax = 0,4271 m/s 

umin = -0,0661 m/s  

CFD 

vmax = 0,1854 m/s 

vmin = -0,1204 m/s  

Mode = 5 

vmax = 0,1642 m/s 

vmin = -0,1219 m/s  

CFD     

Tmax = 357,9 K  

Mode = 5    

Tmax = 359,8 K  
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Figure 6b. The estimation of the flow field for  

[k = 0,1 W/mK; b = 1,5 mm; Re = 150].  

 
 

 
 

 
 

 
Figure 7. POD’s expansion coefficients by direct projection 

of snapshots on the eigenfunctions. 
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umax = 0,098 m/s 
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vmax = 0,079 m/s 
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the off-design data. We see in Table 2 that rms error does 

not decrease with increasing mode number. For example, 

depending on the velocity or temperature field to be 

estimated, 5 mode POD model may be more accurate 

than the 10 or 20 mode POD model. So, an optimization 

might be needed here. 

 

The twenty largest eigenvalues and their cumulative 

contribution to the kinetic energy with increasing mode 

number are listed in Table 3 where “ΣλU” and “ΣλT” 

denote the cumulative sum of the normalized energy for 

velocity and temperature respectively. The eigenvalues 

are normalized by requiring Σλi  = 1 and they are ordered 

based on their magnitude. Note that the first eigenvalue is 

purposely left out of the sum as it contains the highest 

energy level. Increasing the mode number has negligible 

effect on the cumulative energy content, M = 20 modes 

respond to capture more than 99,9 % of the cumulative 

energy content, but for an accurate ‘off-design’ 

estimation 5 mode which consists of 94,7 % of the 

cumulative energy content. 

 
Table 2. The rms errors for off-design reconstructions 

[k = 0.3 W/mK; b = 2.5 mm; Re = 250] 

Mode rms (u) rms (v) rms (T) 

5 3,62 x10-3 1,23 x10-3 0,68 

10 4,20 x10-3 1,23 x10-3 0,69 

20 4,29 x10-3 1,19 x10-3 0,69 

[k = 0.1 W/mK; b = 1.5 mm; Re = 150] 

Mode rms (u) rms (v) rms (T) 

5 2,46 x10-3 3,44 x10-3  2,66 

10 2,82 x10-3 3,17 x10-3  2,58 

20 2,81 x10-3 3,05 x10-3  2,57 

 
Table 3. Normalized eigenvectors and their respective 

contributions to the total fluctuating energy 

Mode λU Σλu λT ΣλT 

2 0,71821 71,821 0,904737 90,4737 

3 0,15061 86,882 0,068451 97,3188 

4 0,05020 91,902 0,007284 98,0472 

5 0,02816 94,718 0,005965 98,6437 

6 0,01998 96,716 0,004700 99,1137 

7 0,01237 97,953 0,003728 99,4865 

8 0,00618 98,571 0,001744 99,6609 

9 0,00358 98,930 0,001391 99,8000 

10 0,00305 99,234 0,000619 99,8620 

11 0,00193 99,428 0,000324 99,8944 

12 0,00138 99,566 0,000246 99,9190 

13 0,00108 99,674 0,000222 99,9412 

14 0,00074 99,748 0,000164 99,9577 

15 0,00062 99,810 0,000105 99,9682 

16 0,00047 99,857 0,000090 99,9772 

17 0,00041 99,897 0,000059 99,9831 

18 0,00026 99,923 0,000051 99,9883 

19 0,00020 99,943 0,000032 99,9914 

20 0,00013 99,956 0,000028 99,9942 

 

The following results include inverse design or 

optimization problem to find the snapshot number of the 

unknown flow and temperature field where a 

minimization algorithm is used. According to this POD-

approximation any desired [k, b, Re]-combination can be 

reconstructed as off-design point using the POD modes 

and the interpolated coefficients. Here, the object 

function can be the velocity field as one should optimize 

air mass flow or it can be temperature field for controlling 

the maximum temperature depending on the conductivity 

and the width of the board.  

 

Inverse Design via POD Model  

 

As mentioned before, the aim of this study is to estimate 

an unknown flow and temperature field via a POD model 

using off-design reconstruction and then to apply the 

POD model for an inverse design problem. In the validity 

range of our POD model, we define cost functions for 

velocity and temperature fields given in Equations (15) 

and (16) respectively as given by Ly et al. (2001): 

 
 

 
Figure 8a. The variation of the normalized cost functions 

with k,b,Re  [k = 0,3 W/mK; b = 2,5 mm; Re = 250].  
 

   
2

Re ( , ,Re)M

V tJ V k b V dxdy                         (15) 

   
2

Re ( , ,Re)M

T tJ T k b T dxdy                         (16) 

 

In these formulations subscript “t” for velocity and 

temperature denote the target fields, while superscript 

“M” defines the mode number in the POD model for 

velocity and temperature fields. An inverse design 
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problem of finding a target flow and/or temperature field 

is solved using POD model, Kriging interpolation and 

an unconstraint simple search algorithm. 

 

Figures 8a and 8b show the minimization of normalized 

cost functions for two target flow and temperature 

fields. The prediction of unknown target fields is carried 

out using a 5, 10 and 20 mode POD models. As Fig. 8 

shows, the local minima are at the off-design points.  

Note that the prediction of the flow field is exact for the 

parameter combination [k = 0,3 W/mK; b = 2,5 mm; Re 

= 250] or snapshot number “6261”, while there is a 

small error in predicting the temperature field as the 

minima are located at approximately 6270. This 

interpretation is valid for the other case [k = 0,1 W/mK; 

b = 1,5 mm; Re = 150] or snapshot number “643”. The 

prediction of the flow field performs better than the 

temperature field. But in this case minimum points for 

velocity and temperature indicate 644 and 648 

respectively, instead of 643. Generally, we can say that 

the predicted value of snapshot number is independent 

on the POD mode number as the lines for M = 5 and M 

= 10 and M = 20 are almost identical (see Table 4 for 

the maximum and minimum values obtained from CFD 

simulations and reconstruction). 

 

 
 

 
Figure 8b. The variation of the normalized cost functions 

with k,b,Re  [k = 0,1 W/mK; b = 1,5 mm; Re = 150].  

Table 4. Normalized eigenvectors and their respective 

contributions to the total fluctuating energy. 

 
[k = 0,3 W/mK; b = 2,5 mm; Re = 250] 

  
Tmax 

[K] 

umax 

[m/s] 

umin 

[m/s] 

vmax 

[m/s] 

vmin 

[m/s] 

CFD 345,81 0,4279 -0,0662 0,1854 -0,1204 

M=5 346,06 0,4271 -0,0661 0,1642 -0,1219 

M=10 347,04 0,4277 -0,0663 0,1616 -0,1217 

M=20 346,75 0,4280 -0,0665 0,1609 -0,1218 

 
[k = 0,1 W/mK; b = 1,5 mm; Re = 150] 

  
Tmax 

[K] 

umax 

[m/s] 

umin 

[m/s] 

vmax 

[m/s] 

vmin 

[m/s] 

CFD 357,9 0,108 -0,030 0,088 -0,042 

M=5 359,8 0,098 -0,029 0,079 -0,043 

M=10 359,7 0,097 -0,032 0,077 -0,041 

M=20 359,7 0,097 -0,031 0,077 -0,042 

 

CONCLUSIONS 

 

In this study, we present a POD based off-design 

reconstruction method and solve an inverse design 

problem, i.e., mixed convection in a partially-open 

cavity with a vertical board with a flush-mounted heat 

source. First we obtain a numerical database including 

50 different steady CFD solutions with distinct 

parameter combinations (k, b and Re) affecting the flow 

and temperature fields. The numerical data required for 

POD analysis is obtained by a finite-volume based 

simulation of the governing equations with the related 

boundary conditions. As we aim to perform off-design 

reconstruction and inverse design via POD model, we 

performed POD analysis to obtain the eigenmodes and 

their coefficients. Then we applied Kriging interpolation 

to the original parameter’s combination and their 

corresponding POD coefficients in order to predict the 

unknown flow and temperature data.  It is shown that 

off-design reconstruction via POD model could be 

performed accurately using the first most energetic 5 

and more modes and their interpolated coefficients. An 

inverse design problem of finding the parameter 

combination (k, b and Re) for a target flow and/or 

temperature field is solved using POD model (based on 

M modes) and Kriging interpolation in an unconstraint 

simple search algorithm. It is shown that our POD 

model is capable of reconstructing any unknown flow 

and temperature field in a convenient way as this is 

confirmed by the true CFD simulations. 
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