
Clinical Research Article 

Journal of Intelligent Systems: Theory and Applications 8(1) (2025) 35-46 

DOI: 10.38016/jista.1501164 

 
  

_________________________________ 

* Corresponding Author. Recieved : 14 June 2024 

  E-mail: mtarikalay@gmail.com Revision : 22 Nov 2024 

 Accepted : 22 Jan 2025 

Modified Hard Voting Classifier Implementation on MEFV Gene Variants 

Increases in Silico Tool Performance: A Novel Approach for Small Sample Size 

Tarık Alay1* , İbrahim Demir2 , Murat Kirisci3  

1* Ankara Etlik Integrated Healthcare Campus, Ankara, Türkiye 

2 Turkish Statistical Institute (TUIK), Ankara, Türkiye 

3 Department of Biostatistics and Medical Informatics, Istanbul University-Cerrahpaşa, Istanbul, Türkiye 

mtarikalay@gmail.com, idemir@gmail.com, mkirisci@hotmail.com 

Abstract 

Objective: There are a limited number of pathogenic variants known in the MEFV gene. In silico tools fail to classify many MEFV 

gene variants. Therefore, it is essential to implement novel approaches. Our goal is to develop a new strategy to solve the even number 

classification problem while improving MEFV gene variant prediction accuracy using small datasets.  

Material - methods: First, we determined the optimal number of computational tools for the model. We then applied eight distinct 

ML algorithms on the training dataset containing MEFV gene variants using the determined tools. We initiated the application of 

modified hard voting machine learning algorithms, using a training and validation dataset. Subsequently, we implemented a 

comparative analysis between the prediction results and existing algorithms and studies. Finally, we evaluated the gene and protein 

level ascertainment to identify hotspot regions. 

Results: The ensemble classifier scored an average ROCAUC of 88%. The modified hard voting method correctly classified all known 

variants with 82% accuracy, outperforming both the soft voting (75%) and hard voting (70%) methods. The results showed that the 

prevalence of LP variants was approximately 2.5 times higher in domains compared to LB variants(χ2: 13.574, p < 0.001, OR: 2.509 

[1.532-4.132]). 

Conclusion: Considering the limited understanding of the clinical implications associated with MEFV gene mutations, employing a 

modified hard voting classifier approach may improve the classification accuracy of computational tools. 
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MEFY Gen Varyantlarında Modifiye Edilmiş Sert Oylama Sınıflandırıcısı 

Uygulaması, In-Silico Araç Performansını Artırıyor: Küçük Örneklem Boyutu 

İçin Yeni Bir Yaklaşım 

Öz 

Amaç: MEFV geninde bilinen sınırlı sayıda patojenik varyant bulunmaktadır. İn siliko araçlar, birçok MEFV gen varyantını 

sınıflandıramamaktadır. Bu nedenle, yeni yaklaşımların uygulanması gerekmektedir. Sert oylama sınıflandırıcıları ve sağlam 

doğrulama teknikleri sınıflandırma için kullanılabilir; ancak çift sayı sınıflandırması doğru bir şekilde yapılamamaktadır. Amacımız, 

hem çift sayı sınıflandırma sorununu çözmek hem de küçük veri setleri kullanarak MEFV gen varyantı tahmin doğruluğunu artırmak 

için yeni bir strateji geliştirmektir. 

Yöntem: İlk olarak model için optimal sayıda hesaplama aracını belirledik. Daha sonra, belirlenen araçlar kullanılarak MEFV gen 

varyantlarını içeren eğitim veri setinde sekiz farklı makine öğrenme algoritması uygulandı. Eğitim ve doğrulama veri setinin 

kullanımıyla, modifiye edilmiş sert oylama makine öğrenme algoritmalarının uygulanmasına başlandı. Bundan sonra, tahmin sonuçları 

ile mevcut algoritmalar ve çalışmalar arasında karşılaştırmalı bir analiz gerçekleştirildi. Son olarak, gen ve protein düzeyinde 

değerlendirme yapılarak hotspot bölgeler belirlendi. 

Bulgular: Topluluk sınıflandırıcısı, ortalama ROC AUC puanlarının %88 olduğunu gösterdi ve modifiye edilmiş sert oylama 

sınıflandırıcı yöntemi ile bilinen tüm varyantları %82 doğrulukla sınıflandırdı. Bu oran, hem yumuşak (%75) hem de sert oylama 

sınıflandırıcı (%70) yöntemlerinden daha yüksektir. Tüm varyantların kolektif değerlendirilmesi, LP varyantlarının, LB varyantlarına 

göre alanlarda yaklaşık 2,5 kat daha yaygın olduğunu ortaya koymuştur (χ2:13.574, p < 0.001, OR: 2.509 [1.532-4.132]). 
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Sonuç: MEFV gen mutasyonlarının klinik sonuçlarıyla ilgili bilgi yetersizliği göz önüne alındığında, modifiye edilmiş sert oylama 

sınıflandırıcı yaklaşımını kullanmak, hesaplama araçlarının sınıflandırma doğruluğunu artırmak için küçük örneklemlerde makul bir 

yöntem olabilir. 

Anahtar Kelimeler: Sınıflandırma, Ailevi Akdeniz Ateşi,  Makine Öğrenmesi, MEFV, Oylama Sınıflandırıcısı 

1. Introduction 

The widespread utilization of next-generation 

sequencing technology enhances the probability of 

diagnosing familial Mediterranean fever (FMF), 

ascertains the carrier rates within the population, and 

forecasts the likelihood of disease recurrence. Although 

the widespread utilization of Next-Generation 

Sequencing (NGS) assays has led to the discovery of a 

multitude of novel variants within the MEFV 

gene(Kırnaz, Gezgin and Berdeli, 2022)[1], The 

International Study Group on Systemic 

Autoinflammatory Disorders (INSAID) consensus 

criteria found that the clinical outcomes of more than 

half of the MEFV gene variants are categorized as 

variation of unknown significance fort the American 

College of Medical Genetics (ACMG)(Van Gijn et al., 

2018) [2].  

Physicians and patients face difficulties in 

comprehending and interpreting the clinical 

implications of variants of uncertain significance 

(VOUS). In order to ascertain the clinical implications 

of the VOUS variant, it is necessary to conduct well-

executed functional and hereditary investigations. 

However, these studies are associated with substantial 

costs and time requirements. Consequently, there is a 

need for innovative approaches that are both rapid and 

cost-effective, while also posing minimal risk, to predict 

the consequences of MEFV variants(Richards et al., 

2015; Nykamp et al., 2017) [3, 4]. The utilization of 

existing variant prediction tools was considered as the 

second option. Nevertheless, there is a divergence of 

viewpoints regarding the selection and utilization of 

protein prediction methods and meta-predictors for the 

purpose of clinical variant evaluation, as highlighted by 

Richards et al. (Richards et al., 2015)[3]. The ACMG 

and Clingen organizations have recommended 

conducting extensive evaluations at the gene 

level(Pyeritz and for the Professional Practice and 

Guidelines Committee, 2012; Stewart et al., 2018; 

Harrison, Biesecker and Rehm, 2019; Burdon et al., 

2022; Lai et al., 2022)5–9]. Although despite these 

efforts, it is still insufficient to accurately predict the 

clinical implications of most genes, including MEFV. 

Our research endeavours focused on the exploration 

of a novel approach that incorporates an optimal 

selection of tools and machine learning algorithms, 

aiming to achieve a level of accuracy that is close to 

perfection. The accuracy of predicting outcomes is 

dependent on the training data exhibiting high levels of 

responsiveness. Therefore, the implementation of novel 

machine learning selection methods is expected to 

mitigate uncertainties. Nevertheless, numerous machine 

learning algorithms are currently employed in various 

amino acid prediction scores, meta scores, and ensemble 

algorithms. However, conventional machine learning 

(ML) algorithms are developed by choosing the 

classification method that yields the highest level of 

accuracy. This process fails to adequately acknowledge 

the success achieved by other machine learning 

algorithms.  Many ML algorithms work well in large 

datasets(Song et al., 2021). However, some datasets 

contain many uncertainties, making it impossible to 

achieve larger sample sizes(Accetturo, Bartolomeo and 

Stella, 2020; Alay, 2024). Therefore, in these situations, 

it is imperative to develop novel methodologies. Hard 

and soft voting classifiers are employed to enhance the 

performance of in silico tools and to evaluate the 

contribution of multiple scores to the classification 

process. However, hard voting classifiers perform 

binary classification (1 or 0), making accurate 

assignments in cases involving an even number of 

classifiers challenging. Many previous studies have 

reported difficulties in achieving consensus with an even 

number of algorithms(Awe et al., 2024). To address this 

specific limitation, it may be beneficial to develop a 

method that incorporates only the most effective 

algorithms into the prediction process.In this study, we 

propose and evaluate a method called the "modified hard 

voting classifier" designed to overcome this issue. 

This study aims to present a novel methodology for 

improving the accuracy of MEFV gene variant 

classification by utilizing optimal amino acid prediction 

scores and machine-learning algorithms. Our objective 

is to establish a more precise categorization of MEFV 

variants while minimizing uncertainty through the 

development of a new voting classifier. The findings of 

this study will provide valuable insights for clinicians in 

interpreting the clinical significance of variants with 

ambiguous effects on health outcomes and contribute to 

the development of gene-specific interpretation 

guidelines. 

2. Material-Methods 

2.1. Machine Learning Analyses 

Libraries 

Python were utilized for machine learning analysis 

step. The following libraries were utilized: sklearn for 

machine learning analysis, seaborn and matplotlib for 

data visualization, statsmodel for statistical models, and 

pandas and numpy for data manipulation. All versions 

of libraries were compatible with Python 3.7.1. 

Evaluation. 

2.2. Data Retrieval Process 

We obtained 389 MEFV variants from the Infevers 

database (https://infevers.umai-montpellier. fr/web, last 

access date:05/04/2022), focusing solely on single 
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nucleotide variants within the coding region such as 

missense and silent variants. Variants such as 

frameshift/inframe deletions, termination gain, 

termination loss, insertions, , and indels were omitted for 

analysis. In line with Clingen and ACMG guidelines, 

only clinically validated SNV predictors endorsed or 

evaluated by the Clingen group or ACMG guidelines 

were considered(Richards et al., 2015; Ioannidis et al., 

2016; Tian et al., 2019; Savige et al., 2021; Pejaver et 

al., 2022; Cheng et al., 2023) 

2.3.Feature Determination 

During the process of selecting in-silico tools, we 

evaluated a number of conditions. First, we chose in-

silico tools because they were up-to-date, validated, and 

recommended by ACMG guidelines(Richards et al., 

2015) and Clingen Group (Savige et al., 2021; Waring 

et al., 2021; Pejaver et al., 2022; Wilcox et al., 2022). 

Second, we meticulously determined that missing values 

for relevant variant scores in the entire dataset should 

not be included(Palanivinayagam and Damaševičius, 

2023). Third, we compared all scores multicollinearity 

by using Spearman correlation. According to these rules, 

four in silico tools (Revel,MetaLR,SIFT,  FATHM) 

were detected compatible with our algorithms. Other 

details of the selection in silico tool process are indicated 

in Supplementary File 1. 

2.3. Feature Engineering 

Data Preprocessing 

 

For encoding dummy variables, the "Label Encoder" 

and "Ordinal Encoder" methods of 

sklearn.preprocessing are utilized. The "standard scaler" 

method was implemented for data standardization. The 

standard scaler method implemented after dataset split 

into training validation and prediction. 
𝑋−𝑢

𝑍
  (1)  Standardization(Z-score normalization) 

 

Checking for Normality, Data Transformation and 

Dimension Reduction 

 

We examined the distribution patterns for four 

distinct scoring metrics and determined that three of 

them were right-skewed, while the remaining one was 

left-skewed. In response to these findings, we applied 

square root and logarithmic transformations to 

normalize our dataset. Given the non-normal 

distribution of all four scores, we employed the Kruskal-

Wallis H test as the appropriate non-parametric 

statistical method.  

After conducting a thorough investigation, we found 

a total of 266 distinct MEFV gene mutations in our 

dataset. The breakdown can be outlined as follows: The 

recorded values are as follows: The distribution of the 

classifications of the variations is as follows: Benign 

(B): 3, Likely Benign (LB): 46, Likely Pathogenic (LP): 

44, Pathogenic (P): 5, Variations of Unknown 

Significance (VOUS): 110, Not Categorized (NC): 26, 

Unsolved (US): 32. Given the diverse attributes of this 

dataset and the challenges associated with the seven-tier 

classification system, we recognized the need to 

decrease the number of dimensions to achieve a fairer 

and more understandable analysis. Several prior 

research employed the same methodology. (Accetturo et 

al., 2020; Accetturo, Bartolomeo and Stella, 2020; 

Mighton et al., 2022) Figure 1 provides a visual 

depiction and comparative examination of the seven-tier 

and three-tier classification systems. By employing 

dimensionality reduction techniques, we have 

circumvented the "curse of dimensionality," thereby 

defining boundaries that facilitate more accurate 

discrimination between damaging and benign genetic 

variants. 

Upon conducting an extensive review, we identified 

98 clinically recognized variants, evenly split between 

49 likely benign and 49 likely pathogenic. These 

variants were selected to form a balanced training 

dataset. The dataset was subsequently partitioned, 

allocating 80% (n=78) for training purposes and 20% 

(n=20) for validation. Utilizing this set of clinically  

 
Figure 1. MEFV variants distributions according to seven-tier 

and three-tier categories. For this step, we verified whether REVEL, 

SIFT, MetaLR, and FATHMM scores for the classes "LB" vs. "B" and 

"LP" vs. "P" did not show a statistically significant difference. In no 
cases, the medians of the two benign and two pathogenic classification 

groups demonstrated statistically significant differences (Kruskal-

Wallis test not significant for non-parametric ANOVA of "LP" vs. 

"LP/P vs. "P" and "B" vs. "LB"). Therefore, we merged into LB and B 

as LB, LP and P as LP, and NC, VOUS, and US as VOUS. a1,b1) The 

frequency of variants according to infevers seven-tier classification 
system and our three-tier classification system,respectively. 

a2,a3,a4,a5) The box and plot distribution of infevers seven-tier 

classification according to Revel, MetaLR, SIFT, and FATHMM 
classification systems. b2,b3,b4,b5) The box and plot distribution of 

new three-tier classification according to Revel, MetaLR, SIFT, and 

FATHMM classification systems c1,d1) Comparison of variants 
according to exonic placements betwen seven-tier Infevers 

Classification and three-tier new classification system. Most of the 

pathogenic variants were placed in exon 10. c2,c3,c4,c5) Variant 
distribution by cDNA position according to Infevers seven-tier 

classification system. No certain pattern of clustering detected 

d2,d3,d4,d5) Variant distribution by cDNA position according to new 
three-tier classification system. Higher than 0.9 Revel scores most 

likely associated with variant pathogenicity similar to Clingen PP3 
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classification evaluation. No clear distinguished threshold is evident 

for other scores e1,f1) Variant distribution according to pyrin protein 

domains. PF02758: PAAD/DAPIN/pyrin domain, PF00643: Domain 
b-Box Zinc Finger domain, PF13765:SPRY-associated domain, 

PF00622: SPRY domain Most of the pathogenic variants placed in 

SPRY domain of pyrin protein. e2,e3,e4,e5) Variant distribution by 
aminoacid position according to infevers seven-tier classification 

system. f2,f3,f4,f5) Variant distribution by aminoacid position 

according to  new three-tier classification system 

Corroborated variants, our aim was to ascertain the 

optimal number of features necessary for reliable 

predictions. A review of existing literature, coupled with 

sample size determinations, revealed that a quartet of in-

silico tools yielded the most favorable performance 

(Ogundimu, Altman and Collins, 2016; Riley et al., 

2019; Accetturo et al., 2020; Acharjee et al., 2020; Luan 

et al., 2020).  

2.4. Feature Selection 

2.4.1. Selection of Machine learning Methods  

We utilized seven machine learning techniques—K-

nearest neighbor (KNN), Decision Tree(DT), Random 

Forest (RF), Multilayer perceptron Logistic regression 

(LR), Linear Support Vector Machine (SVM-linear), 

and Radial basis function Support Vector Machine 

(SVM-RBF)—to analyze four scores (SIFT, FATHMM, 

Revel, and MetaLR).  

2.4.2. Dataset Evaluation 

We trained RF, DT, KNN, LR, LSVM, KSVM, and 

PSVM on four scores (REVEL, MetaLR, SIFT, 

FATHMM). We did k-fold crossvalidation, leave one 

out of crossvalidation, leave p out of crossvalidation, 

and validation dataset techniques for a model validation 

and generalizability techniques. As compatible with our 

dataset nature k-fold cross-validation put forward best 

results with 10 values. As our training dataset was 

balanced, so we determined our threshold value 

according to the accuracy score. We used other 

paramaters such as precision, recall and F1 metrics for 

dataset evaluation explained at Supplementary File  S2.   

2.4.3. Modified Hard Voting Classifier 

Problem 

A Hard Voting Classifier cannot make an 

assignment in the case of a tie. In such instances, 

weighting is necessary; however, applying weights 

requires prior assumptions about these characteristics. 

This approach neglects the individual performance 

metrics of the algorithms. A new classification method 

that considers performance metrics for binary 

classification could resolve this issue for the Hard 

Voting Classifier. 

Formulas 

Given a set of 𝑛 algorithms {𝐴1,𝐴2, … , 𝐴𝑛} , where 

𝑛 is an even number and 
𝑛

2
 is an odd number, we aim to  

select machine learning algorithms with the highest 

ROCAUC scores and use hard voting to combine their 

predictions. Let the ROCAUC scores of algorithms be 

{ROCA1, ROCA2, …., ROCAn}. 

1. Select the algorithms with ROC AUC scores 

greater than 0.80: 

Successful_algorithms = { 𝐴 𝑖| 𝑅𝑂𝐶𝐴 𝑖
>  0.80 } 

2. Iterative Reduction to an Odd Number 

While the number of successful algorithms is even 

and greater than 1, reduce it by half: While 

|𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠|% 2 =  0 and 

|𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠| >  1: 

Successful_algorithms = 

{ 𝐴𝑖 |𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐴 𝑖
 𝑖𝑛 𝑡𝑜𝑝 ℎ𝑎𝑙𝑓 𝑜𝑓  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠 } 

3. Final Set of Algorithms 

After the iterative reduction, let {𝐴𝑓1, 𝐴𝑓2,..., 𝐴𝑓𝑚} 

be the final set of algorithms, where m is an odd 

number. 

4. Hard Voting Classifier 

Combine the predictions of the final set of 

algorithms using a hard voting mechanism: ŷ =
 𝑎𝑟𝑔𝑚𝑎𝑥𝑘  ∑ 𝜒𝑚

𝑗=1 (𝐶𝐴𝑓𝑗
(𝑥)  =  𝑘)  

𝐶𝐴𝑓𝑗
(𝑥)  is the prediction of algorithm for 𝐴𝑓𝑗 

instance 𝑥, and 𝜒 is the indicator function that 

equals 1 if the condition is true and 0 otherwise. 

Application 

We conducted assessments of machine learning 

algorithms with a focus on those that exceeded a pre-

established accuracy threshold. Our analysis techniques 

were built on ensemble models, specifically using a 

voting prediction approach. This method did not assign 

weighted scores for predictive accuracy; instead, our 

classification system was binary, labeling outcomes as 

either "classified" or "not classified." For instance, 

should all three machine learning algorithms concur in 

identifying variant "X" as LP, it would receive a score 

of “3” and be categorized accordingly as LP. 

Conversely, if only two algorithms determined variant 

"Y" to be LB, it would garner a score of “2” and be 

categorized as LB. Thus, our method operates under 

stringent criteria without utilizing weighted scoring, 

leading us to describe it as a “modified hard voting 

classifier.” 

Consequently, we predicted our variants similar to 

the hard voting classifier algorithm.  However, four 

approaches were different from the hard voting 

classifier: (1) Voting classifier did not solve even 

numbers classification problem. (2)We did not only 

implemented hard voting classifier on not only training 

and validation dataset, but also prediction scores. (3) 

Different from classic hard voting classifier we did not 

calculate all scores, we only included voting a showed 

outstanding area under curve scores which was accepted 

as higher than 80%. (4) We selected each algorithms 
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best paramaters not only combination of best paramaters 

of scores [Figure 2]. 

 
Figure 2. Establishing a modified Hard Voting Classifier 

2.5. Functional and Clinical Level Evaluation 

We evaluated each variant in two categories for 

functional-level ascertainment: gene-level and protein-

level. While we established gene-level evaluation based 

on exonic position, we implemented protein-level 

evaluation by comparison of pyrin protein domain 

distributions. We evaluated MEFV domains initiation 

and termination location according to protein databank 

(https://www.rcsb.org/), Ensemble, Prosite 

(https://www.expasy.org/resources/prosite), conserved 

domain databases 

(https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml

), InterPro (https://www.ebi.ac.uk/interpro/),  and 

existing literature(Grandemange et al., 2011). MEFV 

(NM_000243.3)  

transcripts were based on variants distribution 

on pyrin protein.  

2.6. Sample Size Calculation 

Before implementing machine learning 

analysis, we had to conduct sample size calculations. 

Our sample size calculation was implemented on the 

basis of study of Accetturo et al. (Accetturo et al., 2020). 

Furthermore, the metapredictors and aminoacid 

prediction tools that we implemented in the study have 

already been trained on a larger dataset(Waring et al., 

2021; Pejaver et al., 2022; Sallah et al., 2022). 

Considering the number features and sample size it is 

sufficient to implement machine learning 

methods(Ogundimu, Altman and Collins, 2016; Riley et 

al., 2019; Luan et al., 2020; Rajput, Wang and Chen, 

2023). 

2.7. Statistical Analysis 

Our statistical analyses were performed utilizing 

Python version 3.7.1 alongside SPSS version 25.0 for 

Windows (IBM, Chicago, IL). We established a 95% 

confidence interval for the entirety of our statistical 

tests. The significance levels, denoted as alpha (α) and 

beta (β), were set at 0.05 and 0.20,  respectively. A p-

value threshold was determined to be 0.05, with values 

falling below this cutoff being considered statistically 

significant. 

To evaluate the distribution of both discrete and 

continuous numerical variables, normality was probed 

using a suite of graphical and analytical techniques. 

Conformity with normal distribution assumptions 

allowed the use of means and standard deviations; in 

their absence, medians and interquartile ranges were 

employed. Categorical variables, either nominal or 

ordinal, were quantified and expressed as frequencies 

and percentages, with ordinal variables arranged 

according to their inherent hierarchy. 

Graphical methods such as Q-Q plots, detrended 

plots, boxplots, histograms, and stem-and-leaf plots, 

alongside the analytical Kolmogorov-Smirnov test, 

were utilized to assess the normality of the data. The 

range for skewness and kurtosis was considered 

acceptable between -1 and +1, while skewness and 

kurtosis indices – calculated by dividing the respective 

values by their standard errors – were deemed to reflect 

normality when falling within the -2 to +2 range. 

For variables that adhered to normal distribution, we 

applied the Analysis of Variance test. This was followed 

by post hoc analysis using the Tukey test to identify 

significant pairwise differences. In the case of non-

normally distributed data, the non-parametric Kruskal-

Wallis H-test was administered, succeeded by the Dunn-

Bonferroni test for post hoc comparisons. 

3. Results 

3.1. Evaluation of Training dataset 

It is highly recommended that, when 

developing novel algorithms, one should not only 

concentrate on novelty but also identify a good feature 

dataset(Khalid and Sezerman, 2018). Therefore, we 

examined our training dataset and determined the 

threshold of 80% ROCAUC required for machine 

learning algorithms to succeed. All algorithms exceeded 

the threshold value. However, Adaboost and DT were 

excluded from the model due to their 

overfitting[Supplementary Figure 3 and 4]. Revel score 

is detected as the most important feature when 

classifying datasets according to the most accurate 

classifier algorithm, RF [Figure 3] 
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Figure 3. Feature Importance Metrics according to Random 

Forest Classifier. Revel is the most important feature which is 

contributed roughly about 50% to classifier. 

3.2. Validation and hyperparamater tuning 

Overall 98 known variants analyzed under two 

dataset: training dataset (n=78) and validation dataset 

(n=20). All. After implementing the machine learning 

algorithm, we conducted hyperparameter tuning for our 

accurate machine learning classifier algorithms [Table 

1]. The learning curve demonstrates low bias and 

variance, even when trained on a small dataset, 

indicating robust and reliable model performance 

[Figure 4]. K-fold Crossvalidation (CV)  and nested CV 

methods were used for validation methods which were 

more robust to sample size(Vabalas et al., 2019; 

Larracy, Phinyomark and Scheme, 2021; Dalmaijer, 

Nord and Astle, 2022). 

 
Figure 4. Modified Hard Voting Classifier Learning Curve. Both 

the training and validation curves were generated from a small dataset, 
exhibiting relatively low bias and variance, thus indicating a robust 

and reliable model performance. 

 

 

 

 

 

 

 

 

 

Table 1. Cross validation results in validation dataset(n=78 for 

training dataset, and n=20 for validation dataset) 
ML 

Methods 

Precision Recall Accuracy         ROC 

AUC 

LR 0.79 0.75 0.76 0.9 

SVM-RBF 0.81 0.77 0.77 0.89 

SVM-Linear 0.77 0.86 0.81 0.9 

Gaussian NB 0.89 0.75 0.81 0.89 

kNN 0.82 0.77 0.79 0.85 

RF 0.86 0.79 0.82 0.91 

Stratified K-fold CV implemented (The best results obtained in 10-

fold CV. The 10-fold CV results were represented above). The results 

were checked with nested cv which is more robust to sample size. The 
similar results were obtained. The best parameters obtained for each 

classifier are as follows: RF classifier: - 'bootstrap': False - 'max_depth': 

None - 'min_samples_leaf': 3 - 'min_samples_split': 10 - 'n_estimators': 
10 max_features=3 KNN classifier: - 'algorithm': 'auto' - 'n_neighbors': 

3 - 'p': 2 - 'weights': 'uniform'. DT classifier: - 'criterion': 'entropy' - 

'max_depth': None - 'min_samples_leaf': 2 - 'min_samples_split': 2 NB 

Classifier n_jobs=-1, cv=5, verbose=5, var_smoothing= 1e-6 , LR 

Classifier penalty=L2, C:1000, SVM Classifier 'C': 1000, 'gamma': 

0.01, 'kernel': 'rbf'  SVM-linear Classifier {'C': 1000, 'break_ties': 
False, 'cache_size': 200, 'class_weight': None, 'coef0': 0.0, 

'decision_function_shape': 'ovr', 'degree': 3, 'gamma': 0.01, 'kernel': 'rbf', 

'max_iter': -1, 'probability': False, 'random_state': None, 'shrinking': 
True, 'tol': 0.001, 'verbose': False} SVM-RBF classifier  {'C': 1000, 

'break_ties': False, 'cache_size': 200, 'class_weight': None, 'coef0': 0.0, 

'decision_function_shape': 'ovr', 'degree': 3, 'gamma': 0.01, 'kernel': 'rbf', 
'max_iter': -1, 'probability': False, 'random_state': None, 'shrinking': 

True, 'tol': 0.001, 'verbose': False}. For hyperparameter optimization, 

the GridSearchCV algorithm was implemented with a 10-fold 
CV.  However, due to the overfitting observed in DT and AdaBoost 

Classifier, both of the algorithms were excluded from the analysis. 

3.3. Comparison of the Training Dataset Results 

with Existing Literature 

The next step we compared our results with 

existing literature and scores we used in our dataset. 

According to this comparison, modified hard voting 

classifier has most accurate classifying known variants 

[Figure 5]. The mean ROCAUC of six remaining ML 

methods was detected as 88% in both training and 

validation dataset. Interestingly, modified hard voting 

classifier classified more than 82% of known variants 

correctly in overall (training and validation) dataset. In 

the literature, the second most accurate classifier was 

Linear Discriminant Analysis conducted by Accetturo et 

al. classified variants with 75 % accuracy(Accetturo et 

al., 2020). Most of the predictors classified LB variants 

with higher ROCUAC scores than 80%; however, LP 

classification showed a wide range of variety in 

accuracy scores between 2% - 62.5(Ioannidis et al., 

2016; Liu et al., 2016; Knecht et al., 2017; Tian et al., 

2019; Accetturo et al., 2020).   
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Figure 5. Comparison of modified hard voting classifier with 

existing algorithms by evaluating their success in classifying known 

variants. This figure illustrates the improved classification metrics 
achieved by a modified hard voting classifier for the prediction of 

MEFV gene variants. Traditional in silico predictors have struggled to 

distinguish MEFV gene variants, often performing at levels 
comparable to random chance. The modified hard voting classifier, 

however, demonstrates enhanced accuracy, sensitivity, and specificity, 

showcasing its superior discriminatory power in the analysis of MEFV 
gene variants. Additionally, this classifier has improved the 

classification performance of the existing hard voting classifier. As a 

result, it has outperformed the soft voting classifier. The modified hard 
voting classifier, especially for small sample sizes, can be combined 

with well-tuned k-fold cross-validation or nested CV methods, which 

are not significantly affected by the sample size. 

3.4. Prediction Outcomes and Evaluation of Machine 

Learning Algorithms on VOUS variants 

After the voting classification of training 

(n=78) and validation (n=20) dataset, overall 94 out of 

98 (95.91%) variants were classified accurately in our 

dataset. The same prediction implemented for VOUS 

variants. Overall, we found 85 LP variants and 83 LB 

variants. As a result, we discovered 134 LP variants and 

132 LB variants in the overall dataset.  New distribution 

of all MEFV gene variants indicated in Figure 6.  

 

Figure 6. Visualization of Prediction Algorithm Results. a) 
While, Revel, MetaLR, and SIFT algorithms contributed statistically 

significant effect on model (p<0.05), FATHMM algorithm plays a 

supporting role on it. b1) Domain distribution of MEFV gene variants 
prediction results according to  cDNA position b2) Domain 

distribution of MEFV gene variants prediction results according to  

aminoacid position. While most of the pathogenic variants distributed 
into PF00622 domain  ( 2.595[1.525-4.425], p<0.001) , most of the 

benign variants distributed into PF00643 domain. PF02758: 

PAAD/DAPIN/pyrin domain, PF00643: Domain b-Box Zinc Finger 
domain, PF13765:SPRY-associated domain, PF00622: SPRY domain 

Most of the pathogenic variants placed in SPRY domain of pyrin 
protein. 

3.5. Functional Evaluation 

3.5.1. Gene-level (Exonic) Ascertainment 

In our initial assessment of variants of 

uncertain significance, we ascertained that exon 10 

harbored 37.6% (32/85) of variants predicted as likely 

pathogenic, whereas exon 2 contained 41.0% (34/83) of 

those predicted to be likely benign. Through our 

prediction methodology, it was concluded that 61.5% 

(32/52) of exon 10 variants and 58.6% (34/58) of exon 

2 variants were classified as LP and LB, respectively. A 

disproportionate distribution was observed, with exons 

7, 9, and 10 presenting a greater prevalence of LP 

variants in contrast to the preponderance of LB variants 

in other exons. In particular in exon 10, 42.5% (57/134) 

of the variants were categorized as likely pathogenic 

(LP), and in exon 2, 43.2% (57/132) were classified as 

likely benign (LB). Statistical analysis demonstrated a 

significant discrepancy in the distribution between LP 

and LB variants in these exons. As a result of our gene-

level analyses revealed that exon 10 variants were 2.6 

times more prone to be classified as LP than LB (χ2: 

12.858, p < 0.001, odds ratio [OR]: 2.629; 95% CI: 

1.539-4.493). In contrast, exon 2 variants had a higher 

likelihood of being labeled as LB compared to LP (χ2: 

12.693, p < 0.001, OR: 2.595; 95% CI: 1.532-4.132). 

Afterwards, we combined our prediction outcomes with 

the training datasets (LB and LP) and assessed them 

according to exonic positions [Table 2]. 
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Table 2. Distribution of all variants by exons and variant prediction 

outcomes 

 

 
 

Exons 

Variant 

prediction 

outcomes 

 

 
 

p 

values 

95% Interval 

 

LB 
(n=

132

) 

 

LP 
(n=13

4) 

 

Odds 
ratios 

 

Lowe
r 

 

Upper 

1 4 11 0.118a 2.862 0.887 9.228 

2 57 30 

 

<0.001
b 

0.380 0.223 0.646 

3 20 14 0.334a 0.653 0.315 1.356 

4 3 2 0.683c 0.652 0.107 3.963 

5 14 10 0.463a 0.680 0.291 1.590 

6 - - * * * * 

7 - 4 0.122c * * * 
8 1 4 0.370c 4.031 0.445 36.549 

9 4 2 0.445c 0.485 0.087 2.693 

10 29 57 <0.01b 2.629 1.539 4.493 

a Chi-square(Yates correction), b. Pearson chi-square test, c. 

Fisher Exact test,*not calculated. Evaluation of each exon is based 

on the LP to LB ratio.  

3.5.2. Protein-Level (Domain-based) Evaluation 

Within the domains, we properly identified 

47% (40/85) predicted LP variants and 28.92% (24/83) 

predicted LB variants. After assessing the anticipated 

variations (n = 168), it was discovered that variants 

located within the domain were 2.766 times more likely 

to be classified as LP compared to LB (2:10.566, 

p:0.002, OR: 2.766 [1.462-5.233]). Subsequently, we 

combined the training dataset with the predicted VOUS 

variants. After collectively evaluating all variants, we 

found that LP variants were approximately 2.5 times 

more common in domains compared to LB variants 

(χ2:13.574, p < 0.001, OR: 2.509 [1.532-4.132]). On the 

other hand, B30.2 domain variants had a 2.5-fold higher 

likelihood of being LP compared to LB. This difference 

was statistically significant (χ2:12.693, p < 0.001, OR: 

2.595 [1.532-4.132]). Nevertheless, the likelihood of 

variants that were not found in any domains being LB 

was 2.6 times higher compared to LP (χ2:14.508, p < 

0.001, OR: 0.386 [0.235–0.633]). Upon identifying this 

statistically significant disparity, we assessed all 

variations within their respective domains [Table 3].  

 

 

 

 

 

 

Table 3. Distribution of all variants by domains and 

variant prediction outcomes 
 

 

 

Domain

s 

Variant 

prediction 

outcomes  

 

 

 

p 

values 

95% Interval 

 

LB 

(n=13

2) 

 

LP 

(n=13

4) 

 

Odd

s  

ratio

s 

 

Low

er 

 

Upp

er 

PYD

 

 

  

4  11 0.118a 2.86

2 

0.88

7 

9.22

8 

bZIP 6  1 

 

0.065

b 

0.15

8 

0.01

9 

1.33

0 

B

 

  

 

4  8  0.390a 2.03

2 

0.59

7 

6.91

8 

CC 4 2 0.445

b 

0.48

5 

0.08

7 

2.69

3 

B30.2 31  58 < 

0.001c  

2.59

5 

1.52

5 

4.42

5 

Not 

identifie

d 

83 54 <0.00

1c 

0.38

6 

0.23

5 

0.63

3 

a Chi-square (Yates correction), b Fisher Exact test c. Chi-square 

test 

4. Discussion 

Many novel ML algorithms are designed to predict 

outcomes for larger datasets. However, few strategies 

are available for small datasets(Liu et al., 2013; Vabalas 

et al., 2019; Albaradei et al., 2021; El-Sofany, 

Bouallegue and El-Latif, 2024). In this context, the 

modified hard voting classifier demonstrates superior 

performance, surpassing traditional hard voting and soft 

voting methods while effectively addressing challenges 

such as odd-number classification, which refers to 

scenarios where standard voting methods struggle to 
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make definitive decisions in cases with an uneven 

distribution of votes. By optimizing predictions, this 

approach enhances the accuracy of in silico tools and 

offers a reliable solution for analyses involving limited 

sample sizes. 

New applications and Implementation Steps 

This study includes a number of enhanced methods 

and new technologies. We base our new approach on a 

three-fold framework. The first step involves using big 

data analysis and comparing the datasets with existing 

algorithms and previous research findings. The second 

and the third steps include functional and protein-level 

evaluations, respectively. 

Evaluation of Results 

Initially, we applied seven machine learning 

algorithms on the training set, specifically the LP and 

LB variants. For the prediction of VOUS variants, we 

selected three out of the six machine learning techniques 

that had a minimum ROCUAC of 80%. We obtained 

88% mean ROCAUC results for all 6 algorithms: LR, 

SVM-RBF, SVM-linear, Gaussian NB, KNN, RF. 

According to our sample, our voting classifier model 

correctly classified LB and LP variants. Subsequently, 

we assessed our training dataset by comparing it to 

established variant prediction tools and previous 

research. Based on the comparison results, the modified 

hard voting classifier method demonstrated superior 

performance in classifying MEFV variants compared to 

existing in silico algorithms and previous 

studies(Accetturo et al., 2020). In the second and third 

steps, we conducted a comprehensive functional level 

analysis, evaluating all variants from both gene-level 

and protein-level perspectives. Our analysis at the 

functional level revealed that the SPRY domain(Papin 

et al., 2007), which corresponds to exon 10 (Dundar et 

al., 2022)and accounts for a significant portion of 

predicted damaging MEFV gene variants, exhibited a 

statistically significant increase in LP variants in non-

evolutionarily conserved regions. However, this 

increase was nearly equivalent to that observed in other 

evolutionarily conserved regions, and the difference was 

not statistically significant when compared to these 

conserved regions. 

Modified hard voting classifier 

The modified hard voting classifier introduces 

several novelties in the literature. First of all, the 

modified hard voting classifier approach incorporates an 

optimal quantity of protein prediction tools(Ng and 

Henikoff, 2003) or meta-predictors(Ioannidis et al., 

2016). Additionally, this method assesses the influence 

of all effective machine-learning techniques.  To the best 

of our knowledge, we have made the initial modification 

to a hard voting classifier for the purpose of variant 

classification and two distinct classification methods. 

Rather than relying on the traditional hard voting 

classifier, which explicitly votes on a single target 

variable, our approach utilizes both LB and LP 

variations, establishing a precise threshold for decision-

making. Models that exhibited overfitting or 

underfitting were systematically eliminated, and the 

voting process was repeated until an optimized model 

was identified for predicting classification outcomes. 

Each model was evaluated with its own optimal 

parameters, ensuring rigorous performance testing. The 

modified hard voting classifier incorporates voting 

mechanisms to provide a rigorous classification 

procedure. Our high training data accuracy score stems 

from an optimum number of tools(Megantara and 

Ahmad, 2021; Hu et al., 2024). In contrast to the first 

study on MEFV gene unknown variant prediction 

conducted by Accetturo et al.(Accetturo et al., 2020), 

and existing tools , our prediction was derived from an 

ensemble method rather than relying on the most 

effective sole machine learning algorithm.  

Literature review 

The existing study provides a significant 

contribution to the literature by offering innovative 

solutions to three issues that previous in-silico tools 

have failed to address. The first issue is that current 

methods fail to successfully classify MEFV gene 

variants using numerous variant prediction algorithms 

(Accetturo et al., 2020). Therefore, it is difficult to 

interpret variants according to current in silico 

tools  (Ioannidis et al., 2016).  However, the modified 

hard voting classifier does not rely solely on a single in-

silico tool or one ML method. The selection criteria of 

ML methods and in-silico tools are based on strict 

criteria, and only include most accurate methods or best 

features. Second, a significant issue is that during the 

variant classification process, many predictors correctly 

classify benign variants; however, many tools often fail 

to detect pathogenic variants accurately at the desired 

level (Adzhubei, Jordan and Sunyaev, 2013; Knecht et 

al., 2017; Fortuno et al., 2018; Pejaver et al., 2022; 

Wilcox et al., 2022). The comparative analysis revealed 

that our innovative methodology, the modified hard 

voting classifier, outperformed current in silico 

algorithms in classifying MEFV variants. This outcome 

arises from the modified hard voting classifier, which 

depends on a consensus of multiple machine learning 

techniques. Third, significant novel tools present better 

results day after day; unfortunately, still many variants 

remain unresolved. Even the newly developed in silico 

tool, Alphamissense, cannot classify 20% of all gene 

variants (Cheng et al., 2023). The modified hard voting 

classifier effectively resolves uncertainties in variant 

interpretation. 

Limitations of the study 

Although this method produces very high 

classification rates, it has some drawbacks when applied 

to our dataset.  First, identifying the optimal classifiers 

from among hundreds of in silico tools remains a 

challenging task. (Gunning et al., 2021; Cheng et al., 

2023). Therefore, we only applied ClinGen- and 

ACMG-recommended tools(Waring et al., 2021; 

Pejaver et al., 2022; Wilcox et al., 2022). This approach 

enabled us to use more reliable tools in our study. 

Second, due to the lack of research on MEFV gene 
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classification, we had to base our sample size 

calculations on the study by Accetturo et al. (Accetturo 

et al., 2020). However,  we also confirmed this 

‘optimum number of features’ by looking at the 

literature and their classification  accuracy (Vu and 

Braga-Neto, 2009; Accetturo et al., 2020).  

The main drawback of our study is the absence of 

validation via clinical or functional studies. While 

integrating our model with the ClinVar dataset could 

provide an avenue for external validation, ClinVar 

currently reports only 33 missense variants (Accessed: 

12/5/2024). As we have already integrated all these 

variants into our training dataset, we could not utilize 

them as an external validation dataset. However, the 

explicit methodology of the modified hard voting 

classifier facilitates its straightforward application to 

diverse datasets. Further studies are necessary to fully 

understand the efficacy of the modified hard voting 

classifier. 

5. Conclusion 

Brief Summary of Findings and Evaluation of the 

study 

This study holds significance for both machine 

learning applications and routine clinical practice. In 

this work, an algorithm was developed to enhance the 

performance of hard voting classifiers, demonstrating 

optimal results even with small sample sizes. However, 

the primary limitation of the study is that it has not been 

validated on an external dataset. 

Consequently, this approach addresses the three 

previously identified gaps in in silico tools, reduces 

existing prediction errors of other in silico tools by 

offering gene-specific optimization, and, most 

importantly, provides an alternative method for 

bioinformaticians working on in silico tool optimization 

while also serving as a helpful tool for clinicians. Given 

that 60% of the clinical implications associated with 

MEFV gene variants are still incompletely understood, 

it would be advantageous to apply a modified hard 

voting vote classifier approach to enhance the 

classification accuracy of machine learning techniques. 

However, more testing of the improved modified hard 

voting approach is required on other gene variations.  

 

Future Implications 

 

The impact of this modified hard voting classifier on 

other datasets also needs to be evaluated to better 

understand its significance compared to the standard 

hard voting classifier. Additionally, from a clinical 

perspective, functional studies specifically designed for 

the MEFV gene are required to fully comprehend the 

true success of these classifications. 
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