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Abstract

The generalized progressive censoring scheme has been considered one of the most general
cases of censoring schemes. In this study, we consider two Weibull populations under a
jointly generalized progressive hybrid censoring scheme as a more flexible extension of the
exponential distribution. The methods presented in this paper let experimenters evaluate
life testing studies in the case of the most generalized censoring scheme based on a flexible
distribution that has increasing, constant, and decreasing failure rates. The maximum
likelihood method is used to obtain point estimates of the unknown parameters and the
corresponding approximate confidence intervals by using asymptotic theory and bootstrap
sampling. The Bayesian inferences are handled under informative and non-informative
priors. The highest posterior density credible intervals are also obtained for the Bayesian
estimations. We further obtained results with a challenging task an optimal censoring
scheme using the A-optimality, D-optimality, and F-optimality criterion to let researchers
determine the optimal censoring plan before conducting experiments or collecting data.
Following the numerical results within this paper, A-optimality and D-optimality proposed
the same scheme, while F-optimality proposed a scheme similar to them. In the last part
of the study, we provide simulation studies under different censoring plans and use a
numerical example to exemplify the theoretical outcomes. It is observed that the best
estimation performances are obtained by informative Bayesian methods.
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1. Introduction

Due to advanced technological improvements and customer expectations on product
quality, it is very rare to get a significant number of failures in a short period of time. This
results in a challenging task to efficiently collect sufficient failure time data, within a limited
time, from a life testing experiment. Therefore, censoring is widely used in reliability
engineering. Different censoring schemes are available in the literature for various life
testing experiments. Time censoring (Type-I) and failure censoring (Type-1I) are the
most basic censoring schemes. Whereas, in time censoring, we pre-fixed the experimental
time and in the failure censoring scheme, we pre-determined the number of failures, say,
m, before starting the experiment.

In particular, if the experimenters want to remove the experimental units during the
test, then a progressive censoring scheme is a good choice for such cases. The progressive
Type-II censoring scheme can be briefly described as follows. Suppose, n number of items
are put in a life-testing experiment. Also, before the experiment, we prefixed an integer
m < n. Further, the progressive censoring plans R = (Ry, Ry, -+, Ry,) with R; > 0 are
pre-specified in such a way that it satisfies the linear equation n = m+ 3> ;| R;. Now, R;
surviving units are removed from the experiment at the time of the first failure. Again, at
the time of the second failure, Ry number of surviving units is removed from the remaining
(n— Ry —1) units and the experiment continues till the m‘* failure occurs. Finally, the test
terminates at the time of the m!” failure, when all remaining surviving units are excluded
from the test. For more details on the progressive censoring scheme, one can see [7] and
the citations therein. The major drawback of this censoring scheme is to get m failure at
a reasonable time, for highly reliable products.

Kundu and Joarder [26] introduced progressive hybrid censoring schemes which is ben-
eficial over the progressive Type-II censoring scheme. Although, there may be some cases
where very few failures may occurred before the pre-fixed time point T'. To overcome such
a scenario, Cho et al. [12] proposed a generalized progressive hybrid censoring scheme
(GPHCS) which always ensures a fixed number of failures at the end of the experiment as
in progressive Type-II censoring. We now describe this scheme as follows.

Suppose n identical units are put in a lifetime experiment in which the associated
lifetimes are described by independent and identically distributed (i.i.d.) random variables
(X1, X2, -+, X,). Further, suppose pre-fixed a time point 7" and pre-determined integers
k,r such that 1 < k < r < n. Also, a predetermined censoring plan, (R, Ra, -+, R,),
as described in the above for progressive Type-II censoring scheme. Now, at the time
of the first failure, say Xi.,.,, remove R; surviving units randomly from the experiment.
Similarly, at second failure, X9.,.,,, remove Ry units from remaining (n — R — 2) surviving
units and continues until the termination time

T* = maX{Xk:'r:nu min{T, Xr:r:n}}a

occurred and removed all the remaining units from the experiment (see Figure 1). There-
fore, the possible types of failure times are observed in the following pattern

Xl:r:na X2:r:na ce an:r:na it T< Xk:r:n < Xr:r:n (Case—I)
Xl:r:na X2:7":n, T 7XD:T‘:7L7 if Xk:r:n <T< Xr:r:n (Case—II)
Xl:r:na e 7Xk:r:n, T 7XT‘:T:7L7 if Xk:r:n < Xr:r:n < T> (Case—III)
where D denotes the number of observed failures until pre-determined time point 71" such
that Xp.y < T < Xp41:4m. Notice that in this censoring scheme, we can always get k
failures at termination time 7*, which was the main drawback of the progressive hybrid

censoring scheme. Some recent contributions on GPHCS can be found in the papers by
23], [17], [29], [5], [21] and [42].
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Figure 1. Schematic representation of generalized progressive hybrid censoring
scheme.

Instead of a single sample progressive censoring scheme, Balakrishnan and Rasouli [8]
proposed a joint Type-II censoring scheme for two exponential populations, they have
shown that the usefulness of the joint censoring schemes compared to single sample cen-
soring schemes. Recently, in the literature, many authors considered different kinds of
joint censoring schemes like [9] proposed joint Type-II censoring for k-exponential pop-
ulations. Ashour and Abo-Kasem [6] handled joint progressive Type-I censored scheme
for two exponential populations. Doostparast et al. [16] studied Bayesian estimations for
joint progressive Type-II censored data. Krishna and Goel [25] studied jointly Type-1I
censored Lindley distributions. Rasouli et al. [34] proposed the joint progressive Type-II
censoring scheme, Mondal and Kundu [30] studied the Weibull distribution based on the
balanced joint progressive censoring scheme. The balanced adaptive progressive censor-
ing scheme proposed by [39], has the advantage of having lower experimental time over
the balanced joint progressive censoring scheme proposed by [31]. Abo-Kasem et al. [1]
studied a new two sample generalized Type-II hybrid censoring scheme and Elshahhat
et al. [18] handled a new jointly hybrid censored Rayleigh populations. Almuhayfith [4]
studied joint adaptive progressive type-II censored under comparative generalized inverted
exponential distributions, Shi and Gui [37] handled two Gompertz populations under a
balanced joint progressive Type-II censoring scheme, Rahman et al. [33] and Alam et
al. [3] studied multiple censoring approaches under partially accelerated life test plans.
Recently, Cetinkaya et al. [11] proposed a jointly generalized progressive hybrid censoring
scheme (J-GPHCS) under two exponential distributions and made some inferential results
based on maximum likelihood and the Bayesian inference methods. Following this paper,
joint Type-II generalized progressive hybrid censoring scheme is studied by [35].

It is known that exponential distribution is important for the analysis of lifetime which
has constant hazard. However, decreasing and increasing failure rates have a great deal in
reliability analysis. The flexibility of the Weibull distribution let the experimenters apply
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life tests under increasing and decreasing hazards with also constant hazard. On the other
hand, the Weibull distribution is an expansion of the exponential distribution and it can be
reduced the exponential model when its shape parameter equal to 1. Therefore, the idea
of J-GPHCS for two exponential distributions can be extended for Weibull distributions
to put forward to provide more flexible censoring plan.

In this paper, we consider two independent Weibull populations with different shape and
scale parameters when the data is coming from joint generalized progressive Type-I hybrid
censoring scheme (J-GPHCS). In Section 2, we have described the model and obtained
the maximum likelihood estimators (MLEs) of the unknown model parameters in Section
3. In Section 4, we also obtain the asymptotic confidence intervals as well as bootstrap
confidence intervals (ACI) for the unknown model parameters. We further consider the
Bayes estimators, using the squared error loss function (SELF), of the unknown parameters
under the assumptions of independent gamma priors in Section 5. Furthermore, in section
6, the optimal censoring plan has been calculated by using different optimality criteria.
To assess the efficiency of the estimates, simulation studies are performed in Section 7.
Also, we illustrate the proposed methods through one real-life data analysis in the same
section, while Section 8 ends with some concluding remarks.

2. Model Description

In the framework of the proposed study, we assume that X = (X1, Xo,---,X,,) are
independently and identically distributed (i.i.d.) lifetimes of the test units of Sample-I of
size m, similarly, Y = (Y7,Ys, -+ ,Y},), test units from Sample-II of size n, are also i.i.d.
and X;’s and Y}’s are independently distributed. We assume that X and Y have Weibull
distributions such as WE(«, 1) and WE(A, B2). Then, the probability density function
(pdf) and cumulative distribution function (cdf) based on Sample-I and Sample-IT are
given by

flxsa, Br) = Oéﬁlwﬁl_le_mﬁl, F(z;a,81) =1— e~z
g\, B2) = ABayTe ™M Gy A, o) =1 — e M

where x > 0,y > 0 and o, A, 81, 82 > 0.

Then, it is assumed that Wy.,.n), Waunys -+ W) denotes the combined ordered
samples form of test samples (X;,Y;) where N = m + n and 7 is the number of observed
failures. Thus, J-GPHCS can be described as follows. We assume T to be the prefixed
time point and also to have fixed two integers r, k such that 1 < k < r < N in advance.
Firstly, at the time of the first failure (which may be from sample I or sample II), the
R; surviving units are randomly withdrawn from the remaining (N — 1) surviving units.
Similarly, at the time of the second failure (either from Sample-I or Sample-1I), Ry units
are randomly removed from the remaining (N — R; — 2) surviving units, and this scheme

continues until the termination point T* = max{Wk:T: N, min{T, W,.,.. N}} has arrived.

Under the J-GPHCS the possible values of T* would be

Wk:r:N 7if T< Wk:r:N < Wr:r:Ny

T =<T 7if sz:r:N <T< WT:T:N>

WTZT:N aif Wk:r:N < WT‘:T:N < Ta
and the corresponding number of observed failures are n = k for Case-I, n = D for
Case-11 and n = r for Case-III where D denote the number of observed failures until pre-

determined time point T for Case-II such that Wp..n < T < Wpi1..n. The schematic
representation of the J-GPHCS model can be seen in Figure 2.
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Figure 2. Schematic representation of the J-GPHCS.

In this jointly censoring scheme, the total number of failures n for different cases and
the progressive censoring scheme Ri, R, --- , R, are pre-specified. Furthermore, suppose
Ri=s+4+¢q 1i=1,2,---,n, where s; and ¢; denote the number of units withdrawn at
the time of i—th failure that belongs to Sample-I and Sample-II, respectively. Note that
s; and ¢; are random variables. Therefore, R = (Ry, Ra,--- ,R,) can be decomposed as
R =S+ @, where S = (51,82, ,8y) and @ = (q1,42, - ,qy). In particular, if n =
then the J-GPHCS reduces to a joint Type II progressive censoring scheme established by
(34]. Let Z = (Z1,Zs,- -+ , Zy) for which Z;, (Vi =1,2,--- ,n) takes two values either 1 or
0 depending on W; from Sample-I or Sample-11I, respectively. Then, under J-GPHCS the
likelihood function of (W, Z, R) based on the parameters § = (a, A, 81, f2) where can be
written as

K Fwi)gw) = [Fw)] ™ [Glw)]” * Casell
w(0) =C H 21 f(wi)7 g(wi)' > [F(wz)}:z [G(wi)}qz: [F(T)}RS [C_}(T)}RQ , Case-11
i1 f(wi)Fig(wi)' =% [F(wi)} Z [é(wi)](h , Case-I11,

WhGI‘GFZl*F,é:l*G D1—2?1Zz, DQ—ZZ 1(1721), L 1sl+zl 1% =

YLy Ri, Rg=m— Dy~ 1 s, RH=n—D; - S°P [ (R; — s;) and constant
T, [ (s1 + 20 [0y (R — s0) + (1 — 2))] , Case-]
C =TT [0 (s + 20)] [0 ((Ri — 80) + (1 — z))] , Case-II

i1 [Zf:j(Si +2)] [ imi((Ri —si) + (1= z))] ,Case-IIl.

On the other hand, if we take s; =0, ¢; =0fori=1,2,--- ,;m—1and s, =m—>], z,
g =n—>71,(1—2) ie., if we will not remove any surviving items in between the test,
only the removals can occur at the stopping time of the test, then we obtain the model
proposed by [38].
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3. Maximum Likelihood Estimation

This section deals with the classical maximum likelihood estimations of unknown model
parameters of the jointly censored Weibull distributions under J-GPHCS. From the ex-
pression of Ly (#) the likelihood function of 6 = («, A, 81, B2) is obtained as

L(9|W, )O(OéDlADQ,BDlﬁDQ 51 Z: zi In(w;) BQZ" 1(1 zi) In(w;) 7a5(51) AE(B2) (31)

where Dy = Y0 1 z;, Do =n— >0, 2,
n n
§B) =D (2 +si)w + 0T Ry and £(B2) = > (1 — 2z + qi)wl? + TR},
i=1 i=1
where § = 1 for Case-II or § = 0, otherwise. Thus, the log-likelihood function may then
be written as

n
0(8|w, z) o< Dy (log(ar) +1og(B1)) + D2(log(\) + log(B2)) + b1 Zzi In(w;)
i1
(3.2)
n
+ B2 > (1= zi) In(wi) — a&(B1) — AE(B2)-

i=1
We take derivatives of ¢(0|w, z) with respect to ; for i = 1,2,3,4 and we obtain

86(0|W, Z) N D1
T e o £(B1),
W 51 L 12:12, In(w;) — af (51), -
oL(0|w, '
) 01
ol(0|\w, z) ! B B
) = 02 20— ) o (5,
where
n
f (B1) = Z(Sl + zi)fwfl In(w;) + sT™ In(T')Rg,

.
I
—

@H4—%)?mm0+ﬂﬁm@ma

M:

£(Bo) =

-
Il
—

Remark 3.1. If it is assumed that X = (X3, Xo, -, X,,) are i.i.d. by the Weibull(«, 1)
and Y = (Y1,Ys, -+ |Y),) are i.i.d. by Weibull(}, 52), then under the J-GPHCS, the MLEs

of a and A for fixed 1 and (2, denoted by & and \, are exist and given by
Dy N Do
and A= .
§(B1) §(B2)
Remark 3.2. If it is assumed that X = (X1, Xo, -+, X,;,) are i.i.d. by the Weibull(«, /1)
and Y = (Y1,Ys, -+ ,Y,) are i.i.d. by the Weibull(A, 82), then under the J-GPHCS, the

MLEs of 81 and 81, denoted by 31 and /32 are exists and can be obtained with the solutions
of the two following non-linear equations separately

a =

’

5(51) _
+Zz:1zz w;) 5( D) =0,

B
Dy &, £(B)
52 —1—122 (1 = z) In(w;) — Dy €B) 0.

H(B2) =



Analysis of two Weibull populations under J-GPHCS 269

These non-linear equations H (1) and H(f3) cannot be solved analytically and an iterative
method is needed to solve such equations, such as the Newton-Raphson method.

The proofs of the existence and uniqueness of 6; for ¢ = 1,2, 3,4 are presented in the
Appendix.
4. Approximate Confidence Intervals for MLEs

In this section, we discuss the asymptotic confidence interval and bootstrap confidence
intervals for the unknown model parameter 6.

4.1. Asymptotic Confidence Interval

In this section, based on the asymptotic normality results of the MLEs, we provide
asymptotic confidence intervals for the MLEs of the unknown parameters by using the
observed Fisher information matrix. We assume the parameter vector 6§ = («, A, 81, 82).
Then, the observed Fisher information matrix is given by

2 a2 a2 a2
0a’? dad\  Oadfy 00 B2
9 oz o ot
F—(f»-)—_<al>__ OV NPT DN
= (fi;) = =
’ 09:90; o7 9Bk
o
0 ) @rpgy (4D
fu fiz fis fua
_ fa2 fas foa
I3z f3a
faa
The elements of the Fisher information matrix are obtained as in the following
D, Do / /
fu=_3, fm=5, fs=[a=¢ (B1),  foa = fa2 =& (B2)
.D]_ 1 D2 "
fas=—3 —af (B1), fuu=—5 — A (Ba)
51 Bl

where

n
€' (1) = (si + z)w!" In(w;) + 6T n*(T) R
=1
n
€' (B2) = 3 (qi + 1 — 2w In®(w;) + 6T In®(T) Ry,

=1

or f;; = 0, otherwise. Then, the asymptotic distribution of 0= (&, ;\, Bl, BQ)T is given by
0 — 6 ~ N4(0, F~1). Therefore, the 100(1 — )% ACI of 6; is given by

0; = Z1_3/Viis

where v;; is the (i,7)™ element of the inverse of the observed Fisher information matrix
and z, denotes the 100yth percentile of the standard normal distribution N(0,1).

4.2. Bootstrap Confidence Intervals

This section deals with bootstrap confidence intervals as alternatives to ACIs. For
this purpose, we obtain the parametric percentile bootstrap method (boot-p) and the
studentized bootstrap method (boot-t) to obtain approximate confidence intervals for the
MLEs of the unknown parameters. The corresponding algorithms defined by [40] can be
described as follows. For boot-p confidence intervals
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Step 1: Generate a sample X of size m from Weibull(«, 51) and sample Y of size n from
Weibull(), B2) respectively.

Step 2: Evaluate the censored sample {w1,ws, - ,wy; 21, 22, - - - , 2y} where 7 is the num-
ber of failures for different cases of J-GPHCS. Then, calculate the MLEs of
0 = (&, \, b1, B2) using the remarks 3.1-3.2.

Step 3: Generate bootstrap samples X and Y for i = 1,2,...,m, j = 1,2,...,n based
on Weibull(&, Bl) and Weibull(:\, Bg), respectively. Then compute the bootstrap
estimates of # which is denoted by 6*.

Step 4: Repeat steps 2-3 for B times and obtain bootstrap estimates é;‘ forj=1,2,---,B.
For boot-p intervals;

Step 5: Let G1(A) = P(6* < A), for i = 1,2, be the cumulative distribution function
(CDF) of 8. Define éiBootfp = G7'(A) for a given A. Then, the approximate
100(1 — v)% confidence interval of 6;, for ¢ = 1,2, is given by

(gmn) é%(l—“//Q))_

LBoot—p ’ 1Boot—p

where é:g)t_p is the v percentile of éj‘, 1=1,2,---,B. For boot-t intervals;

Step 5: Compute Var(f?) from the inverse of the observed Fisher information matrix.
0:—0; .
i=1,2,3,4.

Step 6: Calculate ¥* = e

Step 7: Let Go(A) = P(U* < A) be the CDF of U*. From the values obtained ¥*, the
approximate 100(1 —~)% confidence interval of 6;, for i = 1,2, 3,4 can be obtained
as follows. For a given A, define

OiBoot—t = 0i + G5 1 (AW Var(8;).
Then, the approximate 100(1 — )% confidence interval of 6;, for ¢ = 1,2, is given by

(émm) éf‘(l—”//Q))_

1Boot—t’  'Boot—t

A

_, is the « percentile of 67 i=1,2,---,B.

4*(7)
HiB 1Boot—t’

where

5. Bayesian Inference

In this section, the Bayesian inference of the unknown parameters is given as an al-
ternative method to the likelihood inference. In this purpose, we assume that the pa-
rameters 6 = («, A, B1, f2) are random variables and we can assume vague priors such as
m(0;) < 1/6;, i = 1,---,4 as non-informative prior distributions. On the other hand,
the gamma distribution is versatile for adjusting different shapes of the density function.
It has a log-concave density function in the interval (0,00). Due to the importance of
the gamma distributions, we have chosen gamma priors to obtain Bayes estimates in the
informative case. Further, Jeffery’s prior can be obtained as a special case of the gamma
prior.

5.1. Non-Informative Prior

In this case, we prefer to use the following vague priors for the unknown parameters

1
7T(Oé, )\7/61762) X 04)\/3162

which are appropriate [22]. Then, the joint posterior distribution for a, \,, f; and (s is
given by

L0, w,z) = L(w,z|a, \, f1, f2)7(a)m(AN)7(S1)7(B2),
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and the joint posterior density of «, A, 51 and B3 given data is obtained by

L(9|W Z) _ L(WazlaaA:ﬁlaﬁQ)ﬂ(a)W()‘)W(ﬂl)ﬂ(52) (5 1)
’ f()oo f(]oo J‘OOO f()oo L(W7 Z‘Oé, A7 /817 BQ)W(Q)W()‘)W(/BI)W(B2)da A dﬁl d/62
Then, the Bayes estimate of # in the case of the vague prior, denoted by #50, under the
squared error loss function, can be obtained as the mean of the posterior function in
equation (5.1) as given in the following

E(6lw,2) — /OOO y ./OOO 6 L(0:|w, z)d6; (5.2)

Thus, the joint posterior density function of a, A,, 51 and (32 is obtained as
L(0|W, Z) x aDl—1)\D2—161D1*I/Bé)gfle—ag(ﬂl)—)\f(ﬁz)

« 6’81 Zinzl z; ln(wi)eﬂg ?:1(1—zi) ln(wi)‘ (53)

Then, the conditional posterior density functions of the parameters can be obtained easily
as in the following

m(aldn) o GA (D €(3) ).
T(A[B2) o GA(Dz,ﬁ(ﬂz))
m(Bule) o B exp{ﬂl ézi In(w;) — 05(51)},

n
(o)) o BP2! exp{ﬁz S (1 — 2) In(wi) — Ag(@)},

=1

where GA denoted the gamma distribution with rate parameter. It is seen from (5.4)
that the samples for o and A can be easily obtained by using gamma densities. However,
the densities from 7(f1]a) and 7(f82|\) can not be reduced analytically to well-known
distributions and therefore it is not possible to generate samples directly by standard
methods. We observed that the density plots of the conditional posterior densities of 1
and (9 are like to the Gaussian distribution as seen in Figure 3.

=== Conjugate Prior m==  Conjugate Prior

30-

m== \fague Prior m== \fague Prior

0.006 -

20-
0.004 -

0.002 -

0.000~

(o= 1.25; 1 = 0.75; B, = 2.25) (c=1.25;%.=0.75; B, =2)

' ' . . ' ' ' . '
1.0 1.5 2.0 25 3.0 1.0 1.5 2.0 25 30 35

B (i

Figure 3. Plots for the conditional posterior probability density function of 5,
and s in the case of m = n = 35 and CS-IL.
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Hence, the Metropolis-Hasting (M-H) algorithm with normal proposal distribution as
suggested by [19] can be used for the Bayesian estimation of . The algorithm for Gibbs
sampling with the M-H method can be described as follows:

Step 1: Start by using the initial values of (a9, )\(0)75?), ﬁéo))
Step 2: Set t =1

Step 3: Generate a(® from GA <D1,§(5£t))>.

Step 4: Generate A) from GA (Dg,f(ﬁét))).

Step 5: Generate BY) from 7(51|a) by using the M-H algorithm with normal proposal as
e Let v = ﬁit_l) and generate w from the proposal as w = N(B%t_l), 031).

r(w]a)N@woy )

’ 7r(v|a(t))N(w,aBI) }

e Generate U from U(0, 1), then accept proposal if U < p(v,w) and set 6?) =w

o Let p(v,w) = min{l

or otherwise BY) =0
Step 6: Calculate ﬁét) by using the same method given in Step 5.
Step 7: Set t =t + 1.
Step 8: Repeat Step 3 to Step 7, for M times.
Step 9: To compute the HPD credible intervals of 8, order the MCMC sample of 61,
t=1,2,...,M as 0(1),02),...,0r. Then, following the algorithm proposed by
[28], the 100(1 — v)% HPD credible interval can be constructed by

(9% 05+ +a-n)) (5.5)
where j* is chosen such that
O +ia—a — 0 = min (Cita—may = 0p) 7 =12... M (5.6)

In this equation, [y] denotes the largest integer less than or equal to . Then the
HPD credible interval of 0 is the interval which has the shortest length.

Then, the approximate posterior mean of # under the squared error (éBO) can be derived
as

1 )
S oot (5.7)
M- B t=B+1

650 —

where B is the burn-in period.

5.2. Informative Prior

In this section, we assume that the unknown parameters «, A, $; and (B2 follow inde-
pendent gamma priors such that 6; ~ GA(a;,b;) for i = 1,2,3,4 with density functions
are given as in the following

(i) o d)fi_le_biwi, a;, b; >0, for 1=1,23,4.

where a; and b; are called the hyper-parameters. In the case of non-informative priors, very
small and non-negative values of the hyper-parameters can be used, i.e. a1 = a2 = ag =
b1 = ba = bs = 0.0001, as suggested by [13] which are almost like Jeffrey’s priors, but they
are proper. This value of the hyper-parameters is used in many studies as non-informative
priors. However, we prefer to use the vague priors given in the previous Section 5.1. In this
section, as informative hyper-parameters, we suggest using hyper-parameters to provide
the actual values of the parameters. Since E(v);) = Z—Z’ provides an average value for the
gamma variables, available a; and b; values can be chosen to obtain actual parameter
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values of the parameters. Since the actual values of the parameters are unknown in real
data studies, a; and b; can be chosen as providing MLEs of the parameters.

Under these assumptions, the joint posterior density function of a, A,, 81 and (B9 is
obtained as

L(Q‘W, ) D1+a1 1/\D2+a2 16D1+a3 16D2+a4 1 fBl(Zi z; In(w;)— b3)
P2 (00 (1=2) In(wi) ~ba) ;—a(&(B1)+b1) ,~A((B2)+b2)

Then, the conditional posterior density functions of the parameters can be obtained easily
as in the following

m(alfr) ox GA(D1 Fan£(B) + bl),

T(NBa) ox G (Da + ax, (52) + ba).
U
m(Bi]a) oc pPrTas—! exp{ﬁl Zz, In(w;) — bg)}
=1

n
(B2l ) ox BQDZJ””_I exp{,Bg Z (1—z)In(w;) — b4)}
=1

Similarly to the posterior distributions given in Section 5.1 the samples for o and A can
be easily obtained by using gamma densities. However, the densities from m(/1]|a) and
7(B2|\) can not be reduced analytically to well-known distributions and therefore it is not
possible to generate samples directly by standard methods. Their density curves are also
observed like the Gaussian distribution as seen in Figure 3. Therefore, the M-H algorithm
with normal proposal distribution as suggested by [19] can also be used for the Bayesian
estimation of 6, in this case. The previous algorithm given Section 5.1 for Gibbs sampling
with the M-H method can be also used in this case. In this case, we denote the estimations
in the form of (#51).

6. Optimal Censoring Scheme

In practical applications based on censoring schemes, there are two options to construct

available censoring plans. Firstly, experimenters determine the censoring plan before con-
ducting experiments or collecting data. Alternatively, pre-tested censoring plans in a
similar data environment can be used. For example, an experiment can be performed in
multiple lines with similar components. The censoring plan of one production line can
be a reference for other lines and help experimenters save time and cost. Consequently,
experimental restrictions such as time and cost force researchers to seek to develop an op-
timal experiment plan. Therefore, determining the "optimum" censoring scheme is quite
important, since it helps the experimenters to provide lower variance, minimum cost, etc.
In reliability and life-testing studies, an optimal censoring plan is desired to get a sufficient
amount of information about the unknown model parameters.
Optimal censoring schemes are handled by various authors. Recently, Lin et al. [27]
studied optimum life-testing plans with joint progressively type-II censored Weibull pop-
ulations. Abo-Kasem and Elshahhat [2] also obtained an optimal censoring plan for two
Weibull populations under progressively hybrid progressively joint censoring. In this study,
we consider three commonly used criteria based on the variance-covariance matrix (VCM)
of the observed Fisher information matrix given in (4.1) corresponding to the MLEs of
unknown parameters as given in the following.

e A-optimality goals minimum trace of F~1(f)

~

e D-optimality goals minimum determinant of F~1(#)
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~

e F-optimality goals maximum trace of F(6)

The A-optimality criterion is based on the trace of the first-order approximation of the
variance-covariance matrix (VCM) of the MLEs. This criterion provides an overall mea-
sure of the average variability of the estimates under MLE. The trace of the VCM equals
the sum of the diagonal elements of F~1(f). The A- optimality criterion is defined as min-
imizing trace F' _1(5). The second criterion is D-optimality and is based on maximizing
the determinant of the observed Fisher information matrix which is equivalent to mini-
mizing the determinant of VCM. This criterion provides an overall measure of variability
by taking into account the correlations between the estimates. It is known that the joint

~11/2
confidence region of 6 is proportional to ’F *1(9)‘ / under some fixed level of confidence.
Thus, the smaller value of ‘F *1(9\)‘ provides a higher precision of the parameter estima-

tors. It is defined as minimizing |F~'(6)|. The third and last criterion is the F-optimality
and is based on the trace of the first-order approximation of the Fisher information matrix

o~ ~

of the MLEs. The trace of F'(0) is equal to the sum of the diagonal elements of F'(6). The

~

F- optimality criterion is defined as maximizing the trace of F'(6).

7. Data Analysis

In this section, the theoretical findings are evaluated based on their performances via
simulation studies and numerical data example.

7.1. Simulation Studies

In this section, we consider two different sets of the actual values of the parameters.
In the first scenario, we take (a, A, 81, f2) as (1.25,0.75,2.00,2.25) and (o, A, 51, B2) as
(1.50,1.50,0.75,0.75) in the second scenario. Based on these two sets of parameters,
simulation studies are performed under different sample sizes as (m,n) = (20,24), (35, 35)
and (75,65). Then we determine the guaranteed failure number &k and the eventual failure
number r based on the provided at least 50% failures and the observed sample 70%,
respectively. That is & = (0.50) x N where (N = m + n) and r = (0.70) x N. We also
consider two different predetermined times 7" in each scenario. In the first scenario, we
take predetermined times 7" as 1.25 and 1.75. In the other scenario, we take T as 3.50 and
5.00. We consider three types of progressive censoring schemes (Ry, Ra,- -, R;). First,
we take (0¢._1), N —r) as CS-1, (0(%_1), N —r, O(%)) if r is even or (O(%fl), N —r, 0(%))
otherwise as CS-II and (1(y_), O(QT_N)) as CS-III. Here, O(;) means repeated values 0, k
times.

In the informative Bayesian inference, we determine the values of hyperparameters
from gamma distributions by providing the actual values of the parameters as a; = 1.25,
as = 0.75, ag = 2.00, aqg = 2.25 and b; = 1.00 for ¢ = 1,2, 3, 4. for the first scenario and we
determine a; = 3.00, as = 3.00, ag = 2.00, a4 = 2.00, by = by = 2.00 and b3 = by = 1.50
for the second scenario.

Thus, we repeat the iterations 1000 times and use 500 bootstrap samples for each
replication. We used 3500 samples of the Markov chain and discarded the first 500 values
as burn-in periods and took every third variate in the thinning procedure in the MCMC
samples. Then, the algorithm is performed for 1000 replications. The significant level was
taken as v = 0.05.

After performing the simulations, we evaluated the estimations with their mean squared
error (MSE) and we also compared the performances of the approximate confidence in-
tervals with their average length (AL) and the coverage probabilities (CP). The point
estimates with the corresponding MSEs are given in Tables 5 and 6. Then, the ALs with
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Figure 4. MSE plots of the estimates under CS-11I, a = 1.25, A = 0.75, 31 =
2.00, B = 2.25 and T' = 1.75.
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Figure 5. Average lengths for the approximate confidence intervals of the esti-
mates under CS-III, « = 1.25, A = 0.75, 51 = 2.00, Sz = 2.25 and T = 1.75.

their corresponding CPs are given in Tables 7 and 8. Additionally, we provide a visual pre-
sentation of the performances of the MSEs of the estimations and ALs of the approximate
confidence intervals. As an illustration, we provide these plots under CS-III in Figures 4
and 5. The R [14] software is used for all computations. A step by step flow chart of the
procedure of the analysis of this work is presented in Figure 6. The observations about
the simulation studies are listed as in the following.
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e The MSE values decrease in parallel to the increasing sample sizes regardless of
any censoring scheme used.

e The point estimations are getting closer to their actual values with the increasing
sample sizes. That is, bias has been decreasing in parallel to the increasing sample
sizes.

e Consistency of the estimation methods do not be affected from the censoring
scheme. One can use the proposed methods in all cases of the J-GPHCS.

e The informative Bayesian method provide smallest MSE and non-informative Bayes
follow it. Especially in small samples, MLE has the largest MSE values. However,
performance differences between the methods are decreasing in parallel to increas-
ing sample sizes.

e Approximate confidence intervals show good performances. ACI, boot-p, boot-t
and HPD provided very close CPs to the their actual values 0.95.

e Similar to performances of the point estimations, informative Bayes method pro-
vide shortest ALs in all cases. The HPD based on the non-informative Bayesian
method also give close results. Among the intervals based on the MLEs, the boot-
t method gives smallest ALs and these ALs are obtained very close to the HPD
intervals.

We can obtain consistent and acceptable results for different censoring plans at different
values of the parameters. We also illustrate these findings in the next section using a real-
data example.

7.2. Numerical Example

In this subsection, we consider progressively censored samples generated from the break-
ing strengths of jute fiber at different gauge lengths 5mm and 10mm for Sam-1 and Sam-2,
respectively which is given by [41]. This data set has recently been used in some relia-
bility problems by various authors such as [36], [24] and [10]. The sample size of each
data set is equal and m = n = 30 (/N = 60) in this example. We scale both samples by
dividing by 1000 for better fitting to the reparameterized Weibull model. Then, we fit
this dataset with the Weibull distributions by using the MLE method. We obtain the pa-
rameter estimations as & = 6.358, Bl = 2.228, A= 4.279, Bg = 1.625, respectively. Then,
the KolmogorovSimirnov test statistic and associated p-value for Sam-I are obtained as
0.1333 and 0.9578, respectively. The same quantities for the data set Sam-II are 0.1667
and 0.8080, respectively. Thus, one cannot reject the null hypotheses that the data sets
come from the Weibull distributions. The plots of the emprical and theoretical cdfs also
support this observation (see Figure 7).

We first consider the following three schemes of removals, (R1, Ra, -+, R;). We take
R = (0-1), N — r) and denoted it as Rmvl-I, then we take R = (0O(z_1),N —7,0(z))
if r is even or R = (0(%71),]\7 -, 0(%)) if r is odd as Rmvl-II and we take R =
(1(n—=r), 0(2r—n)) as RmvI-IIL

Further, we consider various values of k, r, and T" and we created alternative censoring
schemes as given in Table 1. Then, we determine the optimal plan among them for this
data set according to the criteria given in Section 6. We obtained the optimality values and
reported them in Table 2. The optimal scheme is determined as k = 42, r = 52, T = 0.7
with (R, Ra, -+, Ry) = (8,0(51)) according to the A-optimality and D-optimality. On the
other hand, the optimal censoring scheme is determined as k = 42, »r = 52, T' = 0.7 with
(R1, R, , R;) = (0(51), 8) according to the F-optimality. Then, we use the first of these
optimal plans to obtain the estimates based on these jute fiber data. In this numerical
example, we get k = 42, r = 52, T'= 0.7 with (R, Ra, -+, R;) = (8,0(51))-

In the MCMC method, we use 100 000 iterations and take MLEs as initial values of
the parameters so that we do not need to consider the burn-in period. However, since
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Figure 6. Flow chart of the analysis procesure for two Weibull populations under
J-GPHCS.

the algorithm naturally generates an autocorrelated Markov chain, we use thinning and
choose 10 for the thinning number to avoid losing much information from the data. Thus,
the number of iterations becomes 10 000 after this thinning without not much lack of
information. Further, we use 10 000 replications for the bootstrap confidence intervals.
Thus, we obtain the estimations and their corresponding confidence intervals and report
them in Table 3. We observe that point estimations are obtained very close to each other
for all four parameters. We can conclude that the parameter values of these J-GPHCS
data are observed as a =~ 6, 81 =~ 2, A & 4, 5 ~ 1.5. The values of the shape parameters
(> 1) show that these data cannot be modeled with exponential distribution very well. In
addition, the presence of the scale parameters makes the censoring model more flexible.
On the other hand, the hazard of the Weibull model shows an increasing failure rate due
to fB1,P2 > 1. Since the exponential model has a constant hazard, these data cannot
be evaluated with the exponential distribution. We can observe the data better in the
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Figure 7. Emprical cdf plot for the fiber data fitted by the Weibull distribution

Table 1. Various censoring schemes based on the GPHCS for the fiber data by

[41].

S &k r T R cS k r T R

T 36 42 05 Rmvil  XII 42 48 0.5 Rmvll
II 36 42 05 Rmvl-II  XIV 42 48 0.5 Rmvl-II
III 36 42 0.5 Rmvl-III XV 42 48 0.5 Rmvl-III
IV 36 42 0.7 Rmvl-l  XVI 42 48 0.7 Rmvl-I
V36 42 0.7 Rmvl-II  XVII 42 48 0.7 Rmvl-II
VI 36 42 0.7 Rmvl-III  XVIII 42 48 0.7 Rmvl-III
VII 36 48 0.5 Rmvl-l  XIX 42 52 0.5 Rmvl-I
VIII 36 48 0.5 Rmvl-II XX 42 52 0.5 Rmvl-II
IX 36 48 0.5 Rmvl-III XXI 42 52 0.5 Rmvl-III
X 36 48 0.7 Rmvl-l  XXII 42 52 0.7 Rmvl-I
XI 36 48 0.7 Rmvl-II  XXIII 42 52 0.7 Rmvl-II
XII 36 48 0.7 Rmvl-III  XIV 42 52 0.7 Rmvl-III

Table 2. Optimality values based on the J-GPHCS for the fiber data by [41].

CS A-—optimality D—optimality F—optimality CS A—optimality D—optimality F—optimality

I 6.9860 0.0190 41.893 XIIT 5.1228 0.0058 49.7097
I 22.7487 0.0584 53.0491 XIvV 10.3821 0.0226 54.7394
111 6.6500 0.0083 56.0939 XV 6.1973 0.0085 55.7345
v 4.5585 0.0106 42.1091 XVI 4.2579 0.0067 46.9194
A% 8.3509 0.0177 53.3666 XVII 5.0984 0.0088 54.0527
VI 6.1973 0.0085 55.7345 XVIII 7.2614 0.0077 56.4508
VII 15.6698 0.0458 47.2828 XIX 7.2614 0.0077 56.4508
VIII 16.9914 0.0698 54.1354 XX 10.3821 0.0226 54.7394
IX 6.6500 0.0083 56.0939 XXI 6.1973 0.0085 55.7345
X 4.2579 0.0067 46.9194 XXII 4.2221 0.0052 52.3428
XII 5.0984 0.0088 54.0527 XXIII 15.5187 0.0257 53.5388
XII 7.2614 0.0077 56.4508 XIvV 6.3601 0.0058 56.5618

scope of the lifetime data analysis with the Weibull model. We also present a comparison
of the exponential model given by [11] with the Weibull model to see the superiority
of the Weibull model under J-GPHCS. The Akaike information criterion (AIC), Bayesian
information criterion (BIC) and the log-likelihood values are given in Table 4 and it is seen
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Figure 8. Contour plot for the profile log-likelihood function of 5; and S based
on the fiber data

Table 3. Point estimations and lengths of approximate confidence intervals for
the J-GPHCS jute fiber data.

MLE Bayesy Bayesy ACI Boot—p Boot—t HPDy HPD;
a 6.1385 5.9037 5.9976 6.8297 10.3206 6.1483 6.5532 5.5899
B1 2.1179 2.0408 2.0711 1.2353 1.4164 1.2137 1.1566 1.1395
A 4.1207 3.9985 3.9771 3.9823 5.6709  3.6076 3.8525 3.5277
B2 1.5420 1.4928 1.4931 0.9198 1.0197  0.8921 0.9298 0.8755

that the Weibull model has the smallest AIC and BIC values as well as maximum log-
likelihood value. Thus, we can conclude that our model is a good fitting with the Weibull
model under J-GPHCS. We also provide the contour plot of the profile log-likelihood plot
of B; and (2 in Figure 8 and it is observed that the log-likelihood plot has a unique
solution at Bl and Bg. The performances of the approximate confidence intervals are
obtained the same as the simulation studies. In this numerical example, HPD credible
intervals based on the informative Bayesian model have better performance since they
have the smallest lengths. Among the approximate confidence intervals, Boot-t intervals
show better performance than ACI and Boot-p. We observe these outcomes for all four
parameters. Thus, the performances of the inference methods based on the numerical
examples support the findings of the simulation studies in Section 7.1.

We further evaluate the convergence of the Markov chains by graphical and numerical
methods effectively. For this purpose, the trace plot which is a plot of the iteration
number, ¢, against the value of the parameters at each iteration, and the density plots of
the posterior distribution of the parameters are used. Also, the running mean (ergodic
average) plot which draws the mean of sampled values up to iteration ¢ is used. We
draw all graphics and present them in Figures 9,10, and 12. Further, we report Brooks-
Gelman-Rubin (BGR) diagnostic in Figure 11 and it is seen that there is no substantial
difference between the variance-within and variance-between the generated Markov chains.
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Table 4. Comparisons of Weibull and exponential models for the fiber data under
the J-GPHCS.

Measurements
AIC BIC Log-likelihood
Weibull  -138.3613 -132.7565 73.18066
Exponential -59.19467 -56.39228 31.59734

Models

The acceptable limit of multivariate potential scale reduction factor and potential scale
reduction factor is obtained around 1 as recommended by [19].
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Figure 9. Trace plots of the posterior distributions of the parameters.

We observe that convergences of the Markov chains are completely satisfactory, and
findings are obtained as expected. We draw all plots for the convergence by using the
"mcmeplots” package defined by [15] in R [14] software and we draw BGR plots by using
the "coda" package defined by [32]. We also assess the convergence by using the method
introduced by [20]. Geweke’s convergence diagnostic proposes a convergence diagnostic
for Markov chains based on a test for equality of the means of the first and last part of
a Markov chain. If the samples are drawn from the stationary distribution of the chain,
the two means are equal and Geweke’s statistic has an asymptotically standard normal
distribution. We calculate the Geweke’s statistic with the "geweke.diag" function in R
[14] and we obtain the scores (Z-score) as (—0.3665), (—1.2530), (—0.2486), (—1.5710),
(0.5732), (—1.5550), (0.5925) and (—1.4320) for aPo, aBr, pPo gBr ABo 3\Bi gBo anq
BQB 1. respectively. None of these Z-scores exceed the critical value,1.96, with the 0.05
significance level. Therefore, we can conclude that the convergences of the Markov chains
are provided for all parameters.
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Figure 10. Density plots of the posterior distributions of the parameters.
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Figure 11. The BGR plots for 10 000 MCMUC iterations in Monte Carlo simula-

tions.
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Figure 12. Running mean plots of the posterior distributions of the parameters.
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8. Conclusions

In this paper, we studied inference procedures for two Weibull populations under J-
GPHCS defined by [11]. Unlike this reference paper, we handle the Weibull distribution
as a more flexible model. The outcomes of this study let the experimenters making life
test studies under a generalized censoring scheme for the data sets with increasing, con-
stant and decreasing hazard rates. Further, researches can use the findings of these work
for the exponential and Rayleigh populations since they can be obtained as a special
case of the Weibull distribution. The MLE and Bayesian estimations of the shape and
scale parameters of two Weibull populations are obtained. In addition to point estima-
tions, approximate confidence intervals by using the asymptotic properties of the MLEs
and bootstrap confidence intervals are given for MLEs. Then, HPD credible intervals for
Bayesian estimations are given. All theoretical findings are illustrated with simulation
studies and a numerical example. It is observed that theoretical findings show good per-
formances in all cases of the censoring scheme. Both Bayesian methods have superiority
over MLEs in the small sample sizes, as expected. However, informative priors even more
increase the performances of the Bayesian estimations, especially in small sizes. Then, we
handle the problem of which censoring scheme is better than the others. For this purpose,
the A-optimality, D-optimality, and F-optimality criteria are considered. Then, we ap-
plied these optimality criteria for numerical data and observed that the A-optimality and
D-optimality criteria mark the same censoring scheme as optimal, and the F-optimality
criterion suggests another scheme. However, the difference between optimality criteria
differs only for the removal positioning. In contrast, all optimality criteria suggest the
same predetermined minimum number of failures, k, a number of failures, r, and the end
time of the experiment, T'. Then, we used the optimal censoring plan for the numerical
example. Consequently, this study proposes an extensive model of the J-GPHCS model
based on the one-parameter exponential distribution using a more flexible two-parameter
Weibull distribution. In the literature, there are still open problems in this regard. For
example, various probability distributions can be handled in J-GPHCS. This study pro-
poses two populations in its scheme, but the case of k-samples can be considered as an
extensive study. The R codes for reproducing the results of the computations are avail-
able in the repository: https://github.com/cgtycetinkaya/JGPHCS-Weibull-Paper-Codes
for reproducibility.
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Table 5. Point estimates (first rows) and their MSEs (second rows) for the case
of a = 1.25, A = 0.75, B1 = 2.00, B2 = 2.25 and T = 1.25.
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Table 6. Point estimates (first rows) and their MSEs (second rows) for the case
of @ = 1.50, A\ = 1.50, 1 = 0.75, B2 = 0.75.

(m,n)

cS

&

abo

ab

A

ABo

AP B

2Bo
1

AB1
1

2

»Bo
2

AB1
2

T =3.50
20,24

35,35

75,65

T =5.00

20,24

75,65

I

II

111

II

11

II

II1

II

111

II

11

II

II1

1.6203
0.2486
1.6711
0.3219
1.6173
0.2333
1.5666
0.1200
1.6097
0.1541
1.5843
0.1306
1.5274
0.0433
1.5358
0.0450
1.5281
0.0436

1.6203
0.2486
1.6711
0.3219
1.6173
0.2333
1.5666
0.1200
1.6097
0.1541
1.5843
0.1306
1.5274
0.0433
1.5358
0.0450
1.5281
0.0436

1.5920
0.2165
1.6268
0.2737
1.5753
0.2043
1.5530
0.1109
1.5864
0.1395
1.5606
0.1211
1.5222
0.0419
1.5267
0.0433
1.5186
0.0423

1.5920
0.2165
1.6268
0.2737
1.5753
0.2043
1.5530
0.1109
1.5864
0.1395
1.5606
0.1211
1.5222
0.0419
1.5267
0.0433
1.5186
0.0423

1.6314
0.1694
1.6590
0.1883
1.6249
0.1526
1.5840
0.1014
1.6160
0.1247
1.5972
0.1074
1.5390
0.0408
1.5447
0.0423
1.5392
0.0412

1.6314
0.1694
1.6590
0.1883
1.6249
0.1526
1.5840
0.1014
1.6160
0.1247
1.5972
0.1074
1.5390
0.0408
1.5447
0.0423
1.5392
0.0412

1.6367
0.2200
1.6734
0.2342
1.6088
0.2231
1.5836
0.1160
1.5796
0.1120
1.5902
0.1180
1.5303
0.0536
1.5358
0.0532
1.5366
0.0571

1.6367
0.2200
1.6734
0.2342
1.6088
0.2231
1.5836
0.1160
1.5796
0.1120
1.5902
0.1180
1.5303
0.0536
1.5358
0.0532
1.5366
0.0571

1.6126
0.1954
1.6369
0.2015
1.5743
0.2008
1.5694
0.1068
1.5573
0.1016
1.5666
0.1085
1.5241
0.0516
1.5249
0.0505
1.5246
0.0545

1.6126
0.1954
1.6369
0.2015
1.5743
0.2008
1.5694
0.1068
1.5573
0.1016
1.5666
0.1085
1.5241
0.0516
1.5249
0.0505
1.5246
0.0545

1.6459 0.8181
0.1576 0.0335
1.6699 0.8182
0.1650 0.0364
1.6167 0.8013
0.1603 0.0355
1.5998 0.7868
0.0991 0.0155
1.5911 0.7901
0.0942 0.0178
1.6040 0.7839
0.1009 0.0185
1.5432 0.7717
0.0496 0.0068
1.5462 0.7666
0.0490 0.0065
1.5492 0.7707
0.0532 0.0086

1.6459 0.8181
0.1576 0.0335
1.6699 0.8182
0.1650 0.0364
1.6167 0.8013
0.1603 0.0355
1.5998 0.7868
0.0991 0.0155
1.5911 0.7901
0.0942 0.0178
1.6040 0.7839
0.1009 0.0185
1.5432 0.7717
0.0496 0.0068
1.5462 0.7666
0.0490 0.0065
1.5492 0.7707
0.0532 0.0086

0.7793
0.0269
0.7762
0.0292
0.7572
0.0300
0.7657
0.0137
0.7675
0.0156
0.7594
0.0167
0.7622
0.0063
0.7568
0.0061
0.7599
0.0081

0.7793
0.0269
0.7762
0.0292
0.7572
0.0300
0.7657
0.0137
0.7675
0.0156
0.7594
0.0167
0.7622
0.0063
0.7568
0.0061
0.7599
0.0081

0.7868
0.0241
0.7860
0.0259
0.7739
0.0257
0.7718
0.0130
0.7749
0.0149
0.7715
0.0158
0.7656
0.0063
0.7608
0.0060
0.7663
0.0081

0.7868
0.0241
0.7860
0.0259
0.7739
0.0257
0.7718
0.0130
0.7749
0.0149
0.7715
0.0158
0.7656
0.0063
0.7608
0.0060
0.7663
0.0081

0.8092
0.0287
0.8066
0.0258
0.8053
0.0273
0.7895
0.0158
0.7920
0.0155
0.7917
0.0209
0.7689
0.0073
0.7675
0.0069
0.7717
0.0100

0.8092
0.0287
0.8066
0.0258
0.8053
0.0273
0.7895
0.0158
0.7920
0.0155
0.7917
0.0209
0.7689
0.0073
0.7675
0.0069
0.7717
0.0100

0.7782
0.0241
0.7730
0.0213
0.7685
0.0227
0.7686
0.0138
0.7694
0.0134
0.7670
0.0185
0.7580
0.0069
0.7560
0.0064
0.7591
0.0094

0.7782
0.0241
0.7730
0.0213
0.7685
0.0227
0.7686
0.0138
0.7694
0.0134
0.7670
0.0185
0.7580
0.0069
0.7560
0.0064
0.7591
0.0094

0.7849
0.0221
0.7822
0.0196
0.7832
0.0208
0.7747
0.0134
0.7775
0.0130
0.7791
0.0176
0.7615
0.0067
0.7607
0.0063
0.7664
0.0092

0.7849
0.0221
0.7822
0.0196
0.7832
0.0208
0.7747
0.0134
0.7775
0.0130
0.7791
0.0176
0.7615
0.0067
0.7607
0.0063
0.7664
0.0092




285

Analysis of two Weibull populations under J-GPHCS

08860 08F6°0 0SF6'0 06860 0IS6°0 06560 06560 08S6°0  OFE6'0 01960 02S6°0 00S6°0 OLF6'0  0866°0 00S6°0 0SE6°0 09260 09860  0FE6'0  OVE60

8CTT'T 98FT'T  €oPI'T  GLOTT 69ST'T GE68'0 F0E8°0 6280  68S8°0 TLESO TSEV'0 0670 89VPF0  FLSFO  9IFF0 ©909°0 O0FI90 FLI90  6IF9°0 &819°0 III

0FF6°0 0860 0686°0 09160 08€6°0 0¥S6°0 0SF6'0 0£F6'0  0LE60 00S6°0 0L£6°0 0GF6'0 0SP6'0 09660  0686°0 0£96°0 01960 06¥6°0 00660  09¥6°0

65660 TIS6'0  90¥6°0  TTO0T LPS6'0 6TLL°0 @8LL°0 T€LL0  €EI80 GE8L0 OFFF0 ¥8PF'0 06570  6L9%°0 L0OSF'0 #8290 T9€9°0 98€9°0  L9.9°0 80F9°0 II

08760 0LF6'0 OIF6'0 09160 0SF6'0 09¥6°0 0SF6'0 09¥6'0  OLI6'0 0060 06760 00S6°0 01960  OIF60 09¥6°0 09S6°0 06960 01S6°0  0LE60  0£56°0

0PS6°0 LL96°0 €T96°0  ¥TC0'T SFL6'0 G68L°0 8L6L°0 F06L°0  07E80 G080 L09F'0 LGOF'0 OLLFO  €8LF°0 89970 66£9°0 6.F9°0 GFS90 83890 12890 I  G9'GL

06860 0956°0 0IS6'0  0Tg6'0 0656°0 07960 0GS6°0 0TS6'0  OFPI6'0 0LS6°0 0SG6°0 0SS6°0 0L56°0  OPF6'0  09¥6°0 06F6°0 03860 00S6°0 08360 03560

€OFST 6L09°T TE€8GT  G99L'T 9CT9T TL0GT 96831 LLee'T  SLEET GIFCT LE6S°0 ©S09°0 GL290  ©099°0 6090 TL68°0 6LI6'0 €T1€6'0  ¥9I0T €0£6°0 III

0FP6°0 08¥6°0 OTF6'0 0680 OFF6'0 0LS6°0 0S6'0 0SF6'0 08060  0SS6°0 00860 OFF6'0  0FPS6°0  OLI6'0  0LE6°0 0SS6°0 0SF6°0  0LF6'0 06160 03560

TE6C’ T GOEST  9TIET  60LF'T  €FEET LGST'T 688T°'T  689T°T  GZOE'T  F6ST°'T 8509°0 68190 €5¥9°0 08490 S029°0 60£6°0 0SS6°0 29960  LLIT'T  ¥696°0 II

00560 08F6°0 0£¥6'0 08680 0SF6'0 0,560 0LS6°0 0TS6°0  0T060 0FS6°0 09960 00960 08960  0L¥60 0L¥6°0 01960 06960 00960  OT¥60  0L¥6°0

L8TET LT9ET  6IFET  T90S'T €698'T SPOT'T LS6T'T  €6LT'T  0SIET I0ZT 68¢9°0 ¥eh9'0 G8L9°0  LG89°0 ¥gh9'0 8LE6°0 ¥S96'0 0986°0  F90T'T 0SL6'0 I  ¢g'ce

0260 0296°0 06760  0988°0 0¥S6'0 0TS6'0 OFF6'0 0SP6'0 00060 06F6°0 09960 06760 00960  09%6°0 00€6°0 03960 O0FF6'0 09%6°0 06160 0SH60

P98 T €EL6'T 0026’1  8GPCC  COL6'T LSSS'T GE99'T  ¥8E9T  €ISST 20991 9GTL0 FPEL0 89LL°0  €FE80  9L8L°0 68ST'T €90%'T ¥SPe1  SELFT  16¢¢T III

06960 02S6°0  09¥6'0  09.8°0 OLF6'0 0TS6'0 0SF6'0 00F6'0  08G8°0 OFF6'0 00¥6°0 OFE6'0 02F6'0 08680 OFI60 0£96°0 02860 0FE6'0 09060 09560

GILGT €LE9T ©E6ST  GISS'T  F0E9T 899G T 0SFOT 8665 T  6IF6'T 98€9°T T¥CL0 €SFL0 TI6L°0  €LF8°0 CLVL0 €95¢1 LP6ET SLIET  TGGLT  ¢Feel 1I

02960 0856°0 0TS6'0  0088°0 0SS6°0 0LS6°0 0SF6'0 06860  02L8°0 0TIS60 02860 06860 0£S6°0 06160 00260 00L6°0 06860 06¥V6°0  0LI6°0 06860

PPO9T 09291 6GF9T  LPE6'T 08891 T9SS'T LPEOT 068ST  0LG6'T 90891 GSPL'0 €0LL°0 06380  69%8°0 699L°0 66£CT ¥LOST LSFPET  PLELT G6GET 1 ¥3'0
SLT=1

06760 08F6°0 09860  0SZ6'0 OLF6'0 09S6°0 0SS6°0 0SP6'0  0T€6°0  08S6°0 0LF6'0 0TS6°0  08F6°0  OFE6'0  09¥6°0 0SF6'0 0960 0LF6'0 09860 00560

CIST'T PPAT'T  PEET'T 6086 T 668T'T GEE8'0 0CFP8'0 GIP80  SIL80 L8P0 T6EF0 SEFF0  96SH0  GLIF0  L9FF0 GOT9'0 T6T9°0 8FE90  88V9°0 €890 III

0¢T6°0 06060 O0LI6°0  OF0S0 0S06°0 06560 01960 OTF6'0  08S8°0 OFF6'0 08960 0F96°0 0686°0  0LF60 0IL6°0 0,560 0SS6°0 0LE6°0 09260 09560

PLZ0T SOFO'T  L920°T  OF60'T  L0SO'T 9808°0 TLIS0 T96L°0  TIG8°0 ¥Ie80 GLSF0 91970 T1ScH0  TISHO  9€9F°0 LLE9'0 9SF9°0 98190 L9990 11690 II

05060 0868°0 0ZI60  0SLL°0 06680 0LF6'0 0LF60 06860 02880 09¥6°0 01960 00960 00860  OIF60 08S6°0 O01L6°0 08960 0£56°0  09¥6°0  00L6°0

€190'T LISO'T  90L0°T  €6VPT'T  T060°T T9TS0 ¢he8'0 GE080  £€598°0 GOES0 SILF0 F9LF'0 LSEH0  9LGF°0  GLLVO S8FO0 ¥9599°0 68290  €€29°0 80990 I  G9'GL

0S¥6°0 06¥6°0 0IE6'0  00I6°0 09%6°0 09¥6'0 08F6'0 OFF6'0 06360 OFF6'0 02860 OFF6'0  0FS6'0  OPE6'0 06860 00S6°0 0GF6'0  06¥6°0  0L6°0  O0EF60

CE8ST 9GFOT  8L9GT  0€08'T G8P9'T €61 T LGSC'T 90S6'T  6SFET 01921 G665°0 96090 S9¥9°0 90290 6FI90 €468°0 9616°0 €6860  8ST0T 0T€6°0 III

0LS6°0 0PS6°0  09¥60  0T6L°0 0SF6°0 09960 06360 0zS6'0  00L8°0 06S6°0 07960 00960 09¥6°0  00F6°0 0T96°0 0F96°0 07960 09¥6°0  OFI60 09960

6ISP'T GLOGT L8SP'T  0T€9T  T90ST 00T FIEGT €o6T'T  PESET  6E€GT GS39°0 99690 6S09°0  9£99°0 80¥9'0 06¥6°0 08460 TSF6'0  T6IT'T L6860 II

0CF6°0 08860 0T€6'0  09L2°0 0S26°0 0L56°0 09¥6°0 OFF6'0  0.L88°0 09¥6°0 09960 0S56°0 0£€6°0  0T€60 0SF6'0 07960 06960 O0LF6°0  08¢60 09560

00671 F0SST @80S'T  69TLT F¥6SST LSTGT 86¥¢T 180T  T6LE'T TGSET G6£9°0 CoS9'0  SLI90  9859°0 €¢S9°0 €1S6°0 TLL6'0 6856°0  GhOT'T 16860 I  ¢g'ce

0£96'0 0LF6'0 00F6'0  0688°0 02S6°0 0F96°0 08S60 0TS6'0 09160 0860 0£G6°0 0£S6°0 0996°0  0LE6°0  0LE6'0 09¥6°0 0LE6°0 06¥6°0 09260  OFE60

8IT6'T 0980°¢ 6806'T  ¢80£C €980 6S€9'T 80TLT TI80L°T  SIF6T  09TLT TITL0 €68L0 16840  60¥8°0 GGEL0 OLLT'T GLgZ'T GOSG'T  ©90S'T &hSe'T III

02,60 0196°0 08S6'0  0S8L°0 0IS6°0 0TL6'0 0S960 08S6°0  0SG8°0 0F960 09960 0£96°0 O0LF6'0  0916°0 0LS6°0 0S86°0 06460 00960 0260 01L6°0

T8e8'T 06£6'T 06681  FILT'C ¥8G6T &SPOT OTELT SPSOT  GLE0'C  9€CLT €6SL°0 O0OI8L0 9%94°0  TG98°0 9.8L°0 0LFET €60€T 9985 T  G8FL'T  9ebe T 1I

0,960 0956°0 0FS6'0  066L°0 08S6°0 08,60 0LG6'0 0TF6'0 0PGS0 08860 0£L6°0 0T96°0 07960 0260 06960 06S6°0 08¥6°0 0ZF6'0  OFI60 08560

CI08'T LVO6'T TEIST  GS6TC  LGI6T €9P9'T LSGEL'T 81991  GLG0'C  6TELT F08L'0 OFP0S8'0 S8ISL0  GLS8°0 GS08°0 8ELTT 6LFPET 08€S'T  6ILLT ThLET I ¥3'0%
SC1=.1

'ddH °ddH 1—1wog d—10g [0V YddH °ddH *—1wog d—300g [0V YddH °ddH %—10g d—i00g [0V 'ddH °ddH %—10g d—j00g [Dy SO uww

¢

'g

X

0

GCT=7% ‘00c=" ‘scT =Y
‘Gg'T = 0 JO 9seD BY[} I0] S[RAISIUI 2OULPYUOD ojewxordde o) Jo (smol puodes) senIiqeqold 98eIer0d pue (SMoI 1s1y) syIsue] °J 9[qeL,



F. Sultana, C. Cetinkaya, D. Kundu

286

0F€6'0 0086°0 0€6'0  0ST6°0  08€6°0 00F6'0 06860 0S€6°0  0LZ6°0 0SE6'0 0L86°0 OFS6'0 02860  0986°0  0TS6°0 09S6°0 0L86°0 09S6°0  08€6°0  0£96°0

0GG€°0 G8SE'0  TLGE'0  SELE0  CI9E0 TIEE0 FEEE0 6IEE0  GIPE0  6GES0 6998°0 €0L8°0 06980  €G86'0 CISS0 GE6L'0 FL08°0 92080  9298°0 €FI80 III

06960 01960 0T96°0  08€60 0S96°0 00960 0SF6'0 0TS6°0  0£C60 08F6'0 00960 0LS6°0 0S¥6'0 09860 02G6°0 0660 0LF6'0 08€6°0  0£E60  0SF6°0

00T€'0 68T€0 GITE0  SG0EE'0  GSSTE0 86830 61650 00650  TS0E'0 €£65°0 9638°0 6FP80 €TF80  Tle6'0 0FS80 €PLL'0 OFP8L0 GPSL'O G880 GT6L0 II

09860 01S$6°0 00S6'0 06160 0LS6°0 OFF6'0 09%6°0 09760  OFI6'0 0SF6'0 OTF6'0 0LF6'0 0260 0860 06¥6°0 0GF6'0 0SP6'0 0GF6'0  0.260  0LF60

T8TE0 TITe0  L6I€0  T6EE0  6£CE0 TL6E0 90080 G860  9PIE0  $T0L0 SSTS0 T0880 TLE8°0  0S06°0 08€8°0 GT9L°0 LILL0 G92L°0 88280 €8LL°0 I  G9'GL

08760 00%6°0 06€6'0 0060 06£6°0 0T96°0 09360 0TS6'0  0L36°0 0860 00960 09560 0IS6°0  0ST6°0 00960 0VS6'0 0LF6'0  00F6°0  0L26°0  0LG6°0

0C67°0 080S°0 G967°0  SEPS0  GPOS0 @88F'0 9L6%'0 FE6V0  TOPS0  L00S°0 COGT'T 9¢8a'T ¥See'lT  00FF T  8GGE'T 9L8T'T 6682’1 €Se6’'T  098F' T  &hSe'T III

06860 0PS6'0 08860 0L68°0 O0FS6'0 09660 08660 0S€6°0  0988°0 00F6°0 09960 0£96°0 0L56°0  OTT6°0 0F96°0 OIF6'0 0LE6°0 00360  0SL8°0 06860

IPEF°0 €FPF0  S9EP'0 66870 SPFF'0 GEEF0 SEFF0  TLEV0  €68V°0 SPPF0 GSPT'T GL8T'T  TLS8T'T  68SH'T 96007 669T°T 6SI6T 01T  686F'T  68¢¢'T II

0856°0 0¥S6°0 0TS6'0  OF060 0IS6°0 0LF6'0 08F6°0 0S¥6'0  OFI60 03S6°0 0LF6'0 0GF6'0 0ch6'0 08060 0F¥S6°0 0SF6°0 OIF6°0 OTF6'0  0S060  0F60

POVPP'0 00SP°0  TPPP'0  8L6F'0 TESH0 16870 88FF°0  LEPF'O0  0L6F'0 OISHO PEST'T CILT'T TL8T'T  S66€T TT6T'T ©Sol'T GSOT'T  OGLT'T  @6LET ¢QOST'T I ¢g'ee

02L6°0 01L6°0 0€96'0  0EI60 O0IL6°0 0T96°0 0IS6°0 0£S6°0 09060 0LS6°0 0SF6°0 00660 0£G6°0  0S06°0 0TF6'0 0L96°0 02860 08F6°0 09260  0S56°0

€065°0 T0T9'0 89650  &F890  G609°0 96£9°0 €599°0 F0S90  F09L°0 €£99°0 69681 LVSF'T 169%'T 88881 C6ICT 09TST 80£9T 61291  AIPTC  LPLOT III

08G6'0 02S6°0 0IS6'0 05,80 0FS6'0 08S6°0 0LF6°0 09P6°0  0SL8°0 09¥6°0 06560 09560 09¢6°0  0068°0 08960 0096°0 0960 09260 0680 0LG6°0

6,850 0LFS'0 TPES0  ©689°0  PSFS0 098G°0 GEI90 09650  6G2L°0 86090 GLIF'T TPIST €96F'T  G080C 8GGS'T GGES'T 8629'T 6IS9T  1609C¢ 0LLT 1I

06760 08F6°0 0LF6'0  0L98°0 09%6°0 00960 0FS6'0 OLF6'0  0S88°0 09¥6°0 OFF6'0 00F6'0 05660 02060 0FS6'0 0FS6'0 O0LF6'0  0£86°0 08680 0VS6°0

8PEG'0 61SC0  €OPS0  €L69°0 TESS0 GT6S0 S8T90  Lg09'0  ¥SEL0  0LT90 6SLE'T 9SSH'T  GI9F'T  €0T6'T  6FSF'T 908F'1 998G°'T G66ST  LG€GC ¥ee9T 1 #2303
008 =1

0F€6'0 0086°0 0€6'0  0ST6°0  08€6°0 00F6'0 06860 0S€6'0  0LZ6°0 0SE6'0 0L86°0 OFS6'0 02960  0986°0  0TS6°0 0956°0 0L86°0 09S6°0  08€6°0  0£96°0

0GGe°0 G8GE'0  TLGE'0  SELE0  TI9E0 TIEE0 FEEE'0 6IEE0  GIPE0  6GEE0 6998°0 €0L8°0 06980  €G86°0 CISS0 GE6L0 FL08°0 92080  9298°0 €FI80 III

06960 01960 0T96°0  08€60 0S96°0 00960 0SF6'0 0TS6°0  0£C60 08F6'0 00960 0LS6°0 0S¥6'0 09860 02G6°0 0660 0LF6'0 08€6°0  0£€60  08F6°0

00T€'0 68T€0 GITE0  SG0EE'0  SSTE0 86830 61650 00650  TS0E'0 €865°0 9638°0 6FF80 €TF80  ©le6'0 0FS80 €PLL'0 OFP8L0 GPSL'O G880 GT6L0 II

09860 01S6°0 00860 06160 0LS6°0 OFF6'0 09%6°0 09¥6'0  OFI6'0 0SF6'0 OTF6'0 0LF6'0 0260 08360 06¥6°0 0GF6'0 0S76'0 0360  0.260  0LF60

T8TE0 CITe0  L6I€0  T6EE0  6£CE0 TL6E0 90080 G860  9PIE0  $T0L0 SSIS0 T0880 TLE8°0  0S06°0 08€8°0 GT9L°0 LILL0 G92L°0  88¢8°0 €8LL0 I  G9'GL

08760 00F6°0 06€6'0 0060 06£6°0 0T96°0 09360 0TS6'0  0L36°0 08560 00960 09560 0IS6°0  0S86°0 00960 0VS6'0 0LF6'0  00F6°0  0L260  0LG6°0

0C67'0 080S°0 G960  SEPS0  GPOS'0 @88F'0 9L6%'0 FE6V0  TOPS0  L00S°0 CO6T'T 9¢8a'T ¥See’T  00FF' T  8GSE'T 9L8T'T 6682’1 €Se¢’'T 0989’1 &hSe'T III

06S6'0 0PS6'0 08560 0L68°0 0FS6'0 09660 08660 0S€6°0  0988°0 00F6°0 09960 0£96°0 0,560  OTT6°0 0F96°0 OIF6'0 0LE6°0 0060  0SL8°0 06860

PEP0 €FPF0  C98F0 66870 SFPF'0 TEEV0 SEFF0  TLEF0  €68F°0 SPRPO SSPI'T GA8T'T  ILST'T  6TSF'T  960GT 669T'T 6SI5T 0zIcT  8E6V'T 68€¢T II

08560 0¥S6°0 0TS6'0  OF060 0IS6°0 0LF6'0 08F6°0 0S¥6°0  OFI60 03S6°0 0LF6'0 0GF6'0 0ch6'0 08060 0F¥S6°0 0SF6°0 OIF6°0 OIF6'0  0S060  0F60

POPP'0 00SP°0  TPPP'0  8L6F'0 T2SH0 T168F°0 88FF°0 LEPF'O0  0L6F'0 OISHO PEET'T CILT'T TL8TT  S66€T TT6T'T ©Sol'T GSOT'T OGLT'T  @6L8'T ¢QOST'T I ¢g'ee

02L6°0 01L6°0 0€96'0  0EI60 0IL6°0 0T96°0 0IS6°0 0£S6°0 09060 0LS6°0 0SF6°0 00660 0¥g6'0  0S06°0 0TF6'0 0L96°0 02860 08F6'0 09260  0S56°0

€065°0 TOT90 29650  &F890  G609°0 96£9°0 €599°0 F0S90  F09L°0 €£99°0 69681 LVSF'T ¥69%'T 06881 C6ICT 09TST 80£9'T 61291  ATPT'C  LPLOT III

08G6'0 0CS6'0 0IS6'0  0TL8'0 0FS6'0 08S6°0 0LF6°0 09P6'0  0SL8°0 09¥6°0 06560 09S6°0 0S€6°0 00680 08960 0096°0 0960 09260 03680 0LG6°0

6,850 0LFS'0 TPES0  ©689°0 PSFS0 098G°0 GEI90 09650  6G2L°0 86090 GLIF'T TPIST €96F'1T  G080¢ 8GSST GGES'T 86297 6IS9T  1609°C¢ 0LLT 1I

06760 08F6°0 0LF6'0  0998°0 09%76°0 00960 0FS6'0 OLF6'0  0S88°0 09¥6°0 OFF6'0 00F6'0 0S66°0  0206'0 0FS6'0 0FS6'0 O0LF6'0  0£6'0 08680  0FS6°0

8VEG'0 61SC0 0PGS0 €L69°0 TESS0 GT6S0 S8T90  LT09'0  $SEL0  0LT9°0 6SLE'T 9SSH'T  T99F'T  €0T6'T 6FSF'T 908F'1T 998G°'T G66ST  LG€GC  ¥ee9T 1 ¥2'0%
0S¢=1

'ddH °ddH 1—1wog d—10g [0V YddH °ddH *—1wog d—300g [0V YddH °ddH %—10g d—i00g [0V 'ddH °ddH %—10g d—j00g [Dy SO uww

¢

'g

X

0

GL0=7%‘'eL0o="90¢T=YX
‘0G'T = 0 JO 9s®D 9T} I0] S[RAIIUT 9ouepPuod ojeurxordde o1y Jo (smol puodas) seryriqeqold o3eIdA0d pue (SMOI 4sI1Y) sYISUT *g S[qeT,



Analysis of two Weibull populations under J-GPHCS 287

Acknowledgments

The authors would like to thank the anonymous referees and the editor for their valuable
comments that have greatly improved the article.

Author contributions. All the co-authors have contributed equally in all aspects of the
preparation of this submission.

Conflict of interest statement. The authors declare that they have no known compet-
ing financial interests or personal relationships that could have appeared to influence the
work reported in this paper.

Funding. The authors declare that no funds or grants were received during the prepara-
tion of this manuscript.

Data availability. No data was used for the research described in the article.

References

[1] O. Abo-Kasem and A. Elshahhat, A new two sample generalized type-1I hybrid cen-
soring scheme, Am. J. Math. Manag. Sci. 41 (2), 170184, 2022.

[2] O. E. Abo-Kasem and A. Elshahhat, Analysis of two Weibull populations under joint
progressively hybrid censoring, Commun. Stat. Simul. Comput. 52 (9), 4469-4490,
2021.

[3] I. Alam, M. Kamal, A. Rahman, T. Agarwal and A. Mishra, Statistical analysis using
multiple censoring scheme under partially accelerated life tests for the power Lindley
distribution, Int. J. Syst. Assur. Eng. Manag. 15, 34243436, 2024.

[4] F. E. Almuhayfith, Statistical inference of comparative generalized inverted exponen-
tial populations under joint adaptive progressive type-I1I censored samples, Alex. Eng.
J. 95, 262271, 2024.

[5] R. Alotaibi, A. Elshahhat and M. Nassar, Analysis of muth parameters using general-
ized progressive hybrid censoring with application to sodium sulfur battery, J. Radiat.
Res. Appl. Sci. 16 (3), 100624, 2023.

[6] S. K. Ashour and O. E. Abo-Kasem, Statistical inference for two exponential popula-
tions under joint progressive type-1 censored scheme, Commun. Stat. Theory Methods
46 (7), 34793488, 2017.

[7] N. Balakrishnan and E. Cramer, The art of progressive censoring, Springer,
Birkhduser, New York, 2014.

[8] N. Balakrishnan and A. Rasouli, Ezact likelihood inference for two exponential pop-
ulations under joint type-II censoring, Comput. Stat. Data Anal. 52 (5), 27252738,
2008.

[9] N. Balakrishnan and F. Su, Ezact likelihood inference for k exponential populations
under joint type-II censoring, Commun. Stat. Simul. Comput. 44 (3), 591613, 2015.

[10] C. Cetinkaya, Reliability estimation of a stress-strength model with non-identical com-
ponent strengths under generalized progressive hybrid censoring scheme, Stat. 55 (2),
250275, 2021.

[11] C. Cetinkaya, F. Sultana and D. Kundu, Ezact likelihood inference for two exponential
populations under jointly generalized progressive hybrid censoring, J. Stat. Comput.
Simul. 92 (17), 36053629, 2022.

[12] Y. Cho, H. Sun and K. Lee, Ezact likelihood inference for an exponential parameter
under generalized progressive hybrid censoring scheme, Stat. Methodol. 23, 1834,
2015.

[13] P. Congdon, Bayesian statistical modelling, John Wiley & Sons, 2007.

[14] R Core Team et al., R: A language and environment for statistical computing, R
Found. Stat. Comput., Vienna, 2013.



288

[15]

[16]

[34]

[35]

F. Sultana, C. Cetinkaya, D. Kundu

S. M. Curtis, I. Goldin and E. Evangelou, Package mcmcplots: Create Plots from
MCMC Output, CRAN Repository, 2018.

M. Doostparast, M. V. Ahmadi and J. Ahmadi, Bayes estimation based on joint
progressive type-1I censored data under Linex loss function, Commun. Stat. Simul.
Comput. 42 (8), 18651886, 2013.

A. Elshahhat, Parameters estimation for the exponentiated Weibull distribution based
on generalized progressive hybrid censoring schemes, Am. J. Appl. Math. Stat. 5 (2),
3348, 2017.

A. Elshahhat, H. H. Ahmad, A. Rabaiah and O. E. Abo-Kasem, Analysis of a new
jointly hybrid censored Rayleigh populations, AIMS Math. 9 (2), 37403762, 2024.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari and D. B. Rubin,
Bayesian data analysis, 3rd ed., Chapman & Hall/CRC, 2004.

J. Geweke, Fvaluating the accuracy of sampling-based approaches to the calculations
of posterior moments, Bayesian Stat. 4, 641649, 1992.

A. S. Hassan, R. M. Mousa, and M. H. Abu-Moussa, Bayesian analysis of generalized
inverted exponential distribution based on generalized progressive hybrid censoring
competing risks data, Ann. Data Sci. 11 (4), 12251264, 2024.

H. Jeffreys, Theory of probability (3rd ed.), Oxford: Clarendon Press, 1961.

A. Koley and D. Kundu, On generalized progressive hybrid censoring in presence of
competing risks, Metrika 80, 401426, 2017.

H. Krishna, M. Dube and R. Garg, Estimation of stress-strength reliability of inverse
Weibull distribution under progressive first failure censoring, Aust. J. Stat. 48 (1),
1437, 2019.

H. Krishna and R. Goel, Jointly type-1I censored Lindley distributions, Commun.
Stat. Theory Methods 51 (1), 135149, 2022.

D. Kundu and A. Joarder, Analysis of type-II progressively hybrid censored data,
Comput. Stat. Data Anal. 50 (10), 25092528, 2006.

C. T. Lin, Y. C. Chen, T. C. Yeh and H. K. T. Ng, Statistical inference and optimum
life-testing plans with joint progressively type-II censoring scheme, Qual. Technol.
Quant. Manag. 20 (3), 279306, 2023.

S. M. Lynch, Introduction to applied Bayesian statistics and estimation for social
scientists, Springer, New York, 2007.

M. Maswadah, Improved maximum likelihood estimation of the shape-scale family
based on the generalized progressive hybrid censoring scheme, J. Appl. Stat. 49 (11),
28252844, 2022.

S. Mondal and D. Kundu, Point and interval estimation of Weibull parameters based
on joint progressively censored data, Sankhya B 81 (1), 125, 2019.

S. Mondal and D. Kundu, Bayesian inference for Weibull distribution under the bal-
anced joint type-I1I progressive censoring scheme, Am. J. Math. Manag. Sci. 39 (1),
5674, 2020.

M. Plummer, N. Best, K. Cowles and K. Vines, CODA: Convergence Diagnosis and
Output Analysis for MCMC, R News 6, 711, 2006.

A. Rahman, M. Kamal, S. Khan, M. F. Khan, M. S. Mustafa, E. Hussam, M. N.
Atchadé and A. Al Mutairi, Statistical inferences under step stress partially acceler-
ated life testing based on multiple censoring approaches using simulated and real-life
engineering data, Sci. Rep. 13, 12452, 2023.

A. Rasouli and N. Balakrishnan, Exact likelihood inference for two exponential popu-
lations under joint progressive type-1I censoring, Commun. Stat. Theory Methods 39
(12), 21722191, 2010.

S. Salem, O. E. Abo-Kasem and A. Hussien, On joint type-II generalized progressive
hybrid censoring scheme, Comput. J. Math. Stat. Sci. 2 (1), 123158, 2023.



Analysis of two Weibull populations under J-GPHCS 289

[36] B. Saragolu, . Kinaci and D. Kundu, On estimation of R = P(Y < X) for exponen-
tial distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5),
729744, 2012.

[37] W. Shi and W. Gui, Estimation for two Gompertz populations under a balanced joint
progressive type-II censoring scheme, J. Appl. Stat. 51 (8), 14701496, 2024.

[38] F. Su and X. Zhu, Ezact likelihood inference for two exponential populations based
on a joint generalized type-I hybrid censored sample, J. Stat. Comput. Simul. 86 (7),
13421362, 2016.

[39] F. Sultana, A. Koley, A. Pal and D. Kundu, On two exponential populations under a
joint adaptive type-II progressive censoring, Stat. 55 (6), 13281355, 2021.

[40] R. J. Tibshirani and B. Efron, An introduction to the bootstrap, Monogr. Stat. Appl.
Probab., London: CRC Press, 57, 1436, 1993.

[41] Z. Xia, J. Yu, L. Cheng, L. Liu and W. Wang, Study on the breaking strength of jute
fibres using modified Weibull distribution, Compos. Part A Appl. Sci. Manuf. 40 (1),
5459, 2009.

[42] T. Zhu, Reliability inference for multicomponent stressstrength model under general-
ized progressive hybrid censoring, J. Comput. Appl. Math. 451, 116015, 2024.

APPENDIX

It can be shown that the MLEs of o« and A maximize the log-likelihood function
lw, z,a, N\, By, B2) for given 51 and (5. For this purpose, let ®(f#) = ®(a, \) be the
Hessian matrix of ¢(w, z, o, A\, 1, B2) at (&, ). Thus,

0% D; 0%l
i(0) = =5 =——, 1=1,2 d ) = =0
Guld) =g = gz ¢ and - ¢1200) = 555
then, the determinant of the Hessian matrix is obtained as
R N o L DD
det[(0)] = $11(d, \)gaa(d, A) — [¢12(a, V)] = A;S\; > 0.
&

It is clearly seen that (&, ) is the local maximum of £(w,z, o, A, B1, B2) for given B, and
B2. Since there is no singular point of /(w,z, a, A, 51, 82) and it has a single critical point,
& and A are the absolute maximum of the log-likelihood function. We can further express
the equations (3.4) as

Dl A~ ! D2 W 7

— =a¢ (B1) — Zzi In(w;) and —= =X (B2) — Z(l — z;) In(wy;) (8.1)
Let denote the left and the right-hand sides of the equations in (8.1) by 1, (51, w,z),
Y, (B1, W,z), P2, (B2, W,z), 1o, (B2, W,z) respectively as given in the following

M=

zi In(wy;)

U, (Briwz) = 21 and (81, wz) = ag (51) -

@
S
—

v (G wi) = 2 and (B wi) = A€ (B2) = (1~ =) Inw)

2 1

-
Il

For a given sample of w, it can be shown that 1, (51, w,z) and g, (52, W,z) are the
increasing monotonic functions of 51 and B2 with finite and positive limits such as 51 — oo,
fa — oo. The plots of ¥1,(51,w,z) and 1, (51, w,z) would intersect exactly once at B
since % is strictly decreasing with the right limit co at 0. A similar intersection would

also be observed for B5. The proof of the 81 case can be shown that %ﬁt,w,z) >0. Itis

seen that
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n
PRI g (1) = | 3o+ )l 1) + 077 WX(T)RS | 2 0
i=1
The same case can be easily seen for (2, also. It is seen that 1, (51, w,z) is a monotone in-
creasing function of 3;. Furthermore, limg, o1, (51, w,2z) > 0 and limg, 091, (81, W,2) —
oo indicates that the curves of vy, (51, w,z) and 91, (51, w,z) have a unique intersection
point. Therefore, 317 as the root of equation 1, (81, w,z) = ¥1,(f1, W,z) exist and unique.
Similarly, 5, as the root of equation o, (B2, W,z) = 1, (B2, W,2z) exist and unique.
Following the obtaining unique MLEs of 81 and 5, the MLESs of o and A can be obtained
uniquely as & = d(ﬁl) and \ = 5\(32), respectively. Thus, the existence and uniqueness of
MLESs are proved.



