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Abstract
The generalized progressive censoring scheme has been considered one of the most general
cases of censoring schemes. In this study, we consider two Weibull populations under a
jointly generalized progressive hybrid censoring scheme as a more flexible extension of the
exponential distribution. The methods presented in this paper let experimenters evaluate
life testing studies in the case of the most generalized censoring scheme based on a flexible
distribution that has increasing, constant, and decreasing failure rates. The maximum
likelihood method is used to obtain point estimates of the unknown parameters and the
corresponding approximate confidence intervals by using asymptotic theory and bootstrap
sampling. The Bayesian inferences are handled under informative and non-informative
priors. The highest posterior density credible intervals are also obtained for the Bayesian
estimations. We further obtained results with a challenging task an optimal censoring
scheme using the A-optimality, D-optimality, and F-optimality criterion to let researchers
determine the optimal censoring plan before conducting experiments or collecting data.
Following the numerical results within this paper, A-optimality and D-optimality proposed
the same scheme, while F-optimality proposed a scheme similar to them. In the last part
of the study, we provide simulation studies under different censoring plans and use a
numerical example to exemplify the theoretical outcomes. It is observed that the best
estimation performances are obtained by informative Bayesian methods.
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1. Introduction
Due to advanced technological improvements and customer expectations on product

quality, it is very rare to get a significant number of failures in a short period of time. This
results in a challenging task to efficiently collect sufficient failure time data, within a limited
time, from a life testing experiment. Therefore, censoring is widely used in reliability
engineering. Different censoring schemes are available in the literature for various life
testing experiments. Time censoring (Type-I) and failure censoring (Type-II) are the
most basic censoring schemes. Whereas, in time censoring, we pre-fixed the experimental
time and in the failure censoring scheme, we pre-determined the number of failures, say,
m, before starting the experiment.

In particular, if the experimenters want to remove the experimental units during the
test, then a progressive censoring scheme is a good choice for such cases. The progressive
Type-II censoring scheme can be briefly described as follows. Suppose, n number of items
are put in a life-testing experiment. Also, before the experiment, we prefixed an integer
m < n. Further, the progressive censoring plans R = (R1, R2, · · · , Rm) with Ri ≥ 0 are
pre-specified in such a way that it satisfies the linear equation n = m+

∑m
i=1Ri. Now, R1

surviving units are removed from the experiment at the time of the first failure. Again, at
the time of the second failure, R2 number of surviving units is removed from the remaining
(n−R1 −1) units and the experiment continues till the mth failure occurs. Finally, the test
terminates at the time of the mth failure, when all remaining surviving units are excluded
from the test. For more details on the progressive censoring scheme, one can see [7] and
the citations therein. The major drawback of this censoring scheme is to get m failure at
a reasonable time, for highly reliable products.

Kundu and Joarder [26] introduced progressive hybrid censoring schemes which is ben-
eficial over the progressive Type-II censoring scheme. Although, there may be some cases
where very few failures may occurred before the pre-fixed time point T . To overcome such
a scenario, Cho et al. [12] proposed a generalized progressive hybrid censoring scheme
(GPHCS) which always ensures a fixed number of failures at the end of the experiment as
in progressive Type-II censoring. We now describe this scheme as follows.

Suppose n identical units are put in a lifetime experiment in which the associated
lifetimes are described by independent and identically distributed (i.i.d.) random variables
(X1, X2, · · · , Xn). Further, suppose pre-fixed a time point T and pre-determined integers
k, r such that 1 ≤ k < r ≤ n. Also, a predetermined censoring plan, (R1, R2, · · · , Rr),
as described in the above for progressive Type-II censoring scheme. Now, at the time
of the first failure, say X1:r:n, remove R1 surviving units randomly from the experiment.
Similarly, at second failure, X2:r:n, remove R2 units from remaining (n−R1 −2) surviving
units and continues until the termination time

T ∗ = max{Xk:r:n,min{T,Xr:r:n}},

occurred and removed all the remaining units from the experiment (see Figure 1). There-
fore, the possible types of failure times are observed in the following pattern

X1:r:n, X2:r:n, · · · , Xk:r:n, if T < Xk:r:n < Xr:r:n (Case-I)
X1:r:n, X2:r:n, · · · , XD:r:n, if Xk:r:n < T < Xr:r:n (Case-II)

X1:r:n, · · · , Xk:r:n, · · · , Xr:r:n, if Xk:r:n < Xr:r:n < T, (Case-III)

where D denotes the number of observed failures until pre-determined time point T such
that XD:r:n < T < XD+1:r:n. Notice that in this censoring scheme, we can always get k
failures at termination time T ∗, which was the main drawback of the progressive hybrid
censoring scheme. Some recent contributions on GPHCS can be found in the papers by
[23], [17], [29], [5], [21] and [42].
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Figure 1. Schematic representation of generalized progressive hybrid censoring
scheme.

Instead of a single sample progressive censoring scheme, Balakrishnan and Rasouli [8]
proposed a joint Type-II censoring scheme for two exponential populations, they have
shown that the usefulness of the joint censoring schemes compared to single sample cen-
soring schemes. Recently, in the literature, many authors considered different kinds of
joint censoring schemes like [9] proposed joint Type-II censoring for k-exponential pop-
ulations. Ashour and Abo-Kasem [6] handled joint progressive Type-I censored scheme
for two exponential populations. Doostparast et al. [16] studied Bayesian estimations for
joint progressive Type-II censored data. Krishna and Goel [25] studied jointly Type-II
censored Lindley distributions. Rasouli et al. [34] proposed the joint progressive Type-II
censoring scheme, Mondal and Kundu [30] studied the Weibull distribution based on the
balanced joint progressive censoring scheme. The balanced adaptive progressive censor-
ing scheme proposed by [39], has the advantage of having lower experimental time over
the balanced joint progressive censoring scheme proposed by [31]. Abo-Kasem et al. [1]
studied a new two sample generalized Type-II hybrid censoring scheme and Elshahhat
et al. [18] handled a new jointly hybrid censored Rayleigh populations. Almuhayfith [4]
studied joint adaptive progressive type-II censored under comparative generalized inverted
exponential distributions, Shi and Gui [37] handled two Gompertz populations under a
balanced joint progressive Type-II censoring scheme, Rahman et al. [33] and Alam et
al. [3] studied multiple censoring approaches under partially accelerated life test plans.
Recently, Çetinkaya et al. [11] proposed a jointly generalized progressive hybrid censoring
scheme (J-GPHCS) under two exponential distributions and made some inferential results
based on maximum likelihood and the Bayesian inference methods. Following this paper,
joint Type-II generalized progressive hybrid censoring scheme is studied by [35].

It is known that exponential distribution is important for the analysis of lifetime which
has constant hazard. However, decreasing and increasing failure rates have a great deal in
reliability analysis. The flexibility of the Weibull distribution let the experimenters apply
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life tests under increasing and decreasing hazards with also constant hazard. On the other
hand, the Weibull distribution is an expansion of the exponential distribution and it can be
reduced the exponential model when its shape parameter equal to 1. Therefore, the idea
of J-GPHCS for two exponential distributions can be extended for Weibull distributions
to put forward to provide more flexible censoring plan.

In this paper, we consider two independent Weibull populations with different shape and
scale parameters when the data is coming from joint generalized progressive Type-I hybrid
censoring scheme (J-GPHCS). In Section 2, we have described the model and obtained
the maximum likelihood estimators (MLEs) of the unknown model parameters in Section
3. In Section 4, we also obtain the asymptotic confidence intervals as well as bootstrap
confidence intervals (ACI) for the unknown model parameters. We further consider the
Bayes estimators, using the squared error loss function (SELF), of the unknown parameters
under the assumptions of independent gamma priors in Section 5. Furthermore, in section
6, the optimal censoring plan has been calculated by using different optimality criteria.
To assess the efficiency of the estimates, simulation studies are performed in Section 7.
Also, we illustrate the proposed methods through one real-life data analysis in the same
section, while Section 8 ends with some concluding remarks.

2. Model Description
In the framework of the proposed study, we assume that X = (X1, X2, · · · , Xm) are

independently and identically distributed (i.i.d.) lifetimes of the test units of Sample-I of
size m, similarly, Y = (Y1, Y2, · · · , Yn), test units from Sample-II of size n, are also i.i.d.
and Xi’s and Yj ’s are independently distributed. We assume that X and Y have Weibull
distributions such as WE(α, β1) and WE(λ, β2). Then, the probability density function
(pdf) and cumulative distribution function (cdf) based on Sample-I and Sample-II are
given by

f(x;α, β1) = αβ1x
β1−1e−αxβ1

, F (x;α, β1) = 1 − e−αxβ1

g(y;λ, β2) = λβ2y
β2−1e−λyβ2

, G(y;λ, β2) = 1 − e−λyβ2

where x > 0, y > 0 and α, λ, β1, β2 > 0.
Then, it is assumed that W(1:η:N),W(2:η:N), · · · ,W(η:η:N) denotes the combined ordered

samples form of test samples (Xi, Yj) where N = m+ n and η is the number of observed
failures. Thus, J-GPHCS can be described as follows. We assume T to be the prefixed
time point and also to have fixed two integers r, k such that 1 ≤ k < r ≤ N in advance.
Firstly, at the time of the first failure (which may be from sample I or sample II), the
R1 surviving units are randomly withdrawn from the remaining (N − 1) surviving units.
Similarly, at the time of the second failure (either from Sample-I or Sample-II), R2 units
are randomly removed from the remaining (N −R1 − 2) surviving units, and this scheme

continues until the termination point T ∗ = max
{
Wk:r:N ,min{T,Wr:r:N}

}
has arrived.

Under the J-GPHCS the possible values of T ∗ would be

T ∗ =


Wk:r:N , if T < Wk:r:N < Wr:r:N ,

T , if Wk:r:N < T < Wr:r:N ,

Wr:r:N , if Wk:r:N < Wr:r:N < T,

and the corresponding number of observed failures are η = k for Case-I, η = D for
Case-II and η = r for Case-III where D denote the number of observed failures until pre-
determined time point T for Case-II such that WD:r:N < T < WD+1:r:N . The schematic
representation of the J-GPHCS model can be seen in Figure 2.



Analysis of two Weibull populations under J-GPHCS 267

Figure 2. Schematic representation of the J-GPHCS.

In this jointly censoring scheme, the total number of failures η for different cases and
the progressive censoring scheme R1, R2, · · · , Rη are pre-specified. Furthermore, suppose
Ri = si + qi i = 1, 2, · · · , η, where si and qi denote the number of units withdrawn at
the time of i−th failure that belongs to Sample-I and Sample-II, respectively. Note that
si and qi are random variables. Therefore, R = (R1, R2, · · · , Rη) can be decomposed as
R = S + Q, where S = (s1, s2, · · · , sη) and Q = (q1, q2, · · · , qη). In particular, if η = r
then the J-GPHCS reduces to a joint Type II progressive censoring scheme established by
[34]. Let Z = (Z1, Z2, · · · , Zη) for which Zi, (∀i = 1, 2, · · · , η) takes two values either 1 or
0 depending on Wi from Sample-I or Sample-II, respectively. Then, under J-GPHCS the
likelihood function of (W,Z,R) based on the parameters θ = (α, λ, β1, β2) where can be
written as

LW (θ) = C


∏k
i=1 f(wi)zig(wi)1−zi

[
F̄ (wi)

]si
[
Ḡ(wi)

]qi
,Case-I∏D

i=1 f(wi)zig(wi)1−zi

[
F̄ (wi)

]si
[
Ḡ(wi)

]qi
[
F̄ (T )

]R∗
S
[
Ḡ(T )

]R∗
Q

,Case-II∏r
i=1 f(wi)zig(wi)1−zi

[
F̄ (wi)

]si
[
Ḡ(wi)

]qi
,Case-III,

where F̄ = 1 − F , Ḡ = 1 − G, D1 =
∑D
i=1 zi, D2 =

∑D
i=1(1 − zi),

∑η
i=1 si +

∑η
i=1 qi =∑η

i=1Ri, R
∗
S = m−D1 −

∑D
i=1 si, R∗

Q = n−D2 −
∑D
i=1(Ri − si) and constant

C =


∏k
j=1

[∑r
i=j(si + zi)

][∑r
i=j((Ri − si) + (1 − zi))

]
,Case-I∏D

j=1
[∑r

i=j(si + zi)
][∑r

i=j((Ri − si) + (1 − zi))
]

,Case-II∏r
j=1

[∑r
i=j(si + zi)

][∑r
i=j((Ri − si) + (1 − zi))

]
,Case-III.

On the other hand, if we take si = 0, qi = 0 for i = 1, 2, · · · ,m− 1 and sη = m−
∑η
i=1 zi,

qη = n−
∑η
i=1(1 − zi) i.e., if we will not remove any surviving items in between the test,

only the removals can occur at the stopping time of the test, then we obtain the model
proposed by [38].
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3. Maximum Likelihood Estimation
This section deals with the classical maximum likelihood estimations of unknown model

parameters of the jointly censored Weibull distributions under J-GPHCS. From the ex-
pression of LW (θ) the likelihood function of θ = (α, λ, β1, β2) is obtained as

L(θ|w, z) ∝ αD1λD2βD1
1 βD2

2 eβ1
∑η

i=1 zi ln(wi)eβ2
∑η

i=1(1−zi) ln(wi)e−αξ(β1)−λξ(β2) (3.1)
where D1 =

∑η
i=1 zi, D2 = η −

∑η
i=1 zi,

ξ(β1) =
η∑
i=1

(zi + si)wβ1
i + δT β1R∗

S and ξ(β2) =
η∑
i=1

(1 − zi + qi)wβ2
i + δT β2R∗

Q

where δ = 1 for Case-II or δ = 0, otherwise. Thus, the log-likelihood function may then
be written as

`(θ|w, z) ∝ D1
(

log(α) + log(β1)
)

+D2
(

log(λ) + log(β2)
)

+ β1

η∑
i=1

zi ln(wi)

+ β2

η∑
i=1

(1 − zi) ln(wi) − αξ(β1) − λξ(β2).
(3.2)

We take derivatives of `(θ|w, z) with respect to θi for i = 1, 2, 3, 4 and we obtain
∂`(θ|w, z)

∂α
= D1

α
− ξ(β1),

∂`(θ|w, z)
∂β1

= D1
β1

+
η∑
i=1

zi ln(wi) − αξ
′(β1),

∂`(θ|w, z)
∂λ

= D2
λ

− ξ(β2) = 0,

∂`(θ|w, z)
∂β2

= D2
β2

+
η∑
i=1

(1 − zi) ln(wi) − αξ
′(β2),

(3.3)

where

ξ
′(β1) =

η∑
i=1

(si + zi)wβ1
i ln(wi) + δT β1 ln(T )R∗

S ,

ξ
′(β2) =

η∑
i=1

(qi + 1 − zi)wβ2
i ln(wi) + δT β2 ln(T )R∗

Q.

Remark 3.1. If it is assumed that X = (X1, X2, · · · , Xm) are i.i.d. by the Weibull(α, β1)
and Y = (Y1, Y2, · · · , Yn) are i.i.d. by Weibull(λ, β2), then under the J-GPHCS, the MLEs
of α and λ for fixed β1 and β2, denoted by α̂ and λ̂, are exist and given by

α̂ = D1
ξ(β1) and λ̂ = D2

ξ(β2) .

Remark 3.2. If it is assumed that X = (X1, X2, · · · , Xm) are i.i.d. by the Weibull(α, β1)
and Y = (Y1, Y2, · · · , Yn) are i.i.d. by the Weibull(λ, β2), then under the J-GPHCS, the
MLEs of β1 and β1, denoted by β̂1 and β̂2 are exists and can be obtained with the solutions
of the two following non-linear equations separately

H(β1) = D1
β1

+
η∑
i=1

zi ln(wi) −D1
ξ

′(β1)
ξ(β1) = 0,

H(β2) = D2
β2

+
η∑
i=1

(1 − zi) ln(wi) −D2
ξ

′(β2)
ξ(β2) = 0.

(3.4)
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These non-linear equations H(β1) and H(β2) cannot be solved analytically and an iterative
method is needed to solve such equations, such as the Newton-Raphson method.

The proofs of the existence and uniqueness of θi for i = 1, 2, 3, 4 are presented in the
Appendix.

4. Approximate Confidence Intervals for MLEs
In this section, we discuss the asymptotic confidence interval and bootstrap confidence

intervals for the unknown model parameter θ.

4.1. Asymptotic Confidence Interval
In this section, based on the asymptotic normality results of the MLEs, we provide

asymptotic confidence intervals for the MLEs of the unknown parameters by using the
observed Fisher information matrix. We assume the parameter vector θ = (α, λ, β1, β2).
Then, the observed Fisher information matrix is given by

F = (fij) = −
(

∂2l

∂θi∂θj

)
= −


∂`2

∂α2
∂`2

∂α∂λ
∂`2

∂α∂β1
∂`2

∂α∂β2
∂`2

∂λ2
∂`2

∂λ∂β1
∂`2

∂λ∂β2
∂`2

∂β2
1

∂`2

∂β1β2
∂`2

∂β2
2


(α̂,λ̂,β̂1,β̂2)

=


f11 f12 f13 f14

f22 f23 f24
I33 f34

f44


(4.1)

The elements of the Fisher information matrix are obtained as in the following

f11 = D1
α2 , f22 = D2

λ2 , f13 = f31 = ξ
′(β1), f24 = f42 = ξ

′(β2)

f33 = D1
β2

1
− αξ

′′(β1), f44 = D2
β2

1
− λξ

′′(β2)

where

ξ
′′(β1) =

η∑
i=1

(si + zi)wβ1
i ln2(wi) + δT β1 ln2(T )R∗

S

ξ
′′(β2) =

η∑
i=1

(qi + 1 − zi)wβ2
i ln2(wi) + δT β2 ln2(T )R∗

Q

or fij = 0, otherwise. Then, the asymptotic distribution of θ̂ = (α̂, λ̂, β̂1, β̂2)T is given by
θ̂ − θ ∼ N4(0, F−1). Therefore, the 100(1 − γ)% ACI of θi is given by

θi ± Z1− γ
2

√
vii,

where vii is the (i, i)th element of the inverse of the observed Fisher information matrix
and zγ denotes the 100γth percentile of the standard normal distribution N(0, 1).

4.2. Bootstrap Confidence Intervals
This section deals with bootstrap confidence intervals as alternatives to ACIs. For

this purpose, we obtain the parametric percentile bootstrap method (boot-p) and the
studentized bootstrap method (boot-t) to obtain approximate confidence intervals for the
MLEs of the unknown parameters. The corresponding algorithms defined by [40] can be
described as follows. For boot-p confidence intervals
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Step 1: Generate a sample X of size m from Weibull(α, β1) and sample Y of size n from
Weibull(λ, β2) respectively.

Step 2: Evaluate the censored sample
{
w1, w2, · · · , wη; z1, z2, · · · , zη

}
where η is the num-

ber of failures for different cases of J-GPHCS. Then, calculate the MLEs of
θ̂ = (α̂, λ̂, β̂1, β̂2) using the remarks 3.1-3.2.

Step 3: Generate bootstrap samples X∗
i and Y ∗

j for i = 1, 2, . . . ,m, j = 1, 2, . . . , n based
on Weibull(α̂, β̂1) and Weibull(λ̂, β̂2), respectively. Then compute the bootstrap
estimates of θ which is denoted by θ̂∗.

Step 4: Repeat steps 2-3 for B times and obtain bootstrap estimates θ̂∗
j for j = 1, 2, · · · , B.

For boot-p intervals;
Step 5: Let G1(∆) = P (θ̂∗

i ≤ ∆), for i = 1, 2, be the cumulative distribution function
(CDF) of θ̂∗

i . Define θ̂iBoot−p = G−1
1 (∆) for a given ∆. Then, the approximate

100(1 − γ)% confidence interval of θi, for i = 1, 2, is given by(
θ̂

∗(γ/2)
iBoot−p

, θ̂
∗(1−γ/2)
iBoot−p

)
.

where θ̂∗(γ)
iBoot−p

is the γ percentile of θ̂∗
i , i = 1, 2, · · · , B. For boot-t intervals;

Step 5: Compute V ar(θ̂∗
i ) from the inverse of the observed Fisher information matrix.

Step 6: Calculate Ψ∗ = θ̂∗
i −θ̂i√
V ar(θ̂∗

i )
, i = 1, 2, 3, 4.

Step 7: Let G2(∆) = P (Ψ∗ ≤ ∆) be the CDF of Ψ∗. From the values obtained Ψ∗, the
approximate 100(1−γ)% confidence interval of θi, for i = 1, 2, 3, 4 can be obtained
as follows. For a given ∆, define

θ̂iBoot−t = θ̂i +G−1
2 (∆)

√
V ar(θ̂i).

Then, the approximate 100(1 − γ)% confidence interval of θi, for i = 1, 2, is given by(
θ̂

∗(γ/2)
iBoot−t

, θ̂
∗(1−γ/2)
iBoot−t

)
.

where θ̂∗(γ)
iBoot−t

is the γ percentile of θ̂∗
iBoot−t

, i = 1, 2, · · · , B.

5. Bayesian Inference
In this section, the Bayesian inference of the unknown parameters is given as an al-

ternative method to the likelihood inference. In this purpose, we assume that the pa-
rameters θ = (α, λ, β1, β2) are random variables and we can assume vague priors such as
π(θi) ∝ 1/θi, i = 1, · · · , 4 as non-informative prior distributions. On the other hand,
the gamma distribution is versatile for adjusting different shapes of the density function.
It has a log-concave density function in the interval (0,∞). Due to the importance of
the gamma distributions, we have chosen gamma priors to obtain Bayes estimates in the
informative case. Further, Jeffery’s prior can be obtained as a special case of the gamma
prior.

5.1. Non-Informative Prior
In this case, we prefer to use the following vague priors for the unknown parameters

π(α, λ, β1, β2) ∝ 1
αλβ1β2

which are appropriate [22]. Then, the joint posterior distribution for α, λ,, β1 and β2 is
given by

L(θ,w, z) = L(w, z|α, λ, β1, β2)π(α)π(λ)π(β1)π(β2),
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and the joint posterior density of α, λ, β1 and β2 given data is obtained by

L(θ|w, z) = L(w, z|α, λ, β1, β2)π(α)π(λ)π(β1)π(β2)∫∞
0
∫∞

0
∫∞

0
∫∞

0 L(w, z|α, λ, β1, β2)π(α)π(λ)π(β1)π(β2)dα dλ dβ1 dβ2
(5.1)

Then, the Bayes estimate of θ in the case of the vague prior, denoted by θB0 , under the
squared error loss function, can be obtained as the mean of the posterior function in
equation (5.1) as given in the following

E(θ|w, z) =
∫ ∞

0
· · ·
∫ ∞

0
θi L(θi|w, z)dθi (5.2)

Thus, the joint posterior density function of α, λ,, β1 and β2 is obtained as

L(θ|w, z) ∝ αD1−1λD2−1βD1−1
1 βD2−1

2 e−αξ(β1)−λξ(β2)

× eβ1
∑η

i=1 zi ln(wi)eβ2
∑η

i=1(1−zi) ln(wi).
(5.3)

Then, the conditional posterior density functions of the parameters can be obtained easily
as in the following

π(α|β1) ∝ GA

(
D1, ξ(β1)

)
,

π(λ|β2) ∝ GA

(
D2, ξ(β2)

)
,

π(β1|α) ∝ βD1−1
1 exp

{
β1

η∑
i=1

zi ln(wi) − αξ(β1)
}
,

π(β2|λ) ∝ βD2−1
2 exp

{
β2

η∑
i=1

(1 − zi) ln(wi) − λξ(β2)
}
,

(5.4)

where GA denoted the gamma distribution with rate parameter. It is seen from (5.4)
that the samples for α and λ can be easily obtained by using gamma densities. However,
the densities from π(β1|α) and π(β2|λ) can not be reduced analytically to well-known
distributions and therefore it is not possible to generate samples directly by standard
methods. We observed that the density plots of the conditional posterior densities of β1
and β2 are like to the Gaussian distribution as seen in Figure 3.

Figure 3. Plots for the conditional posterior probability density function of β1
and β2 in the case of m = n = 35 and CS-II.
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Hence, the Metropolis-Hasting (M-H) algorithm with normal proposal distribution as
suggested by [19] can be used for the Bayesian estimation of θ. The algorithm for Gibbs
sampling with the M-H method can be described as follows:
Step 1: Start by using the initial values of (α(0), λ(0), β

(0)
1 , β

(0)
2 )

Step 2: Set t = 1

Step 3: Generate α(t) from GA

(
D1, ξ(β(t)

1 )
)

.

Step 4: Generate λ(t) from GA

(
D2, ξ(β(t)

2 )
)

.

Step 5: Generate β(t)
1 from π(β1|α) by using the M-H algorithm with normal proposal as

• Let v = β
(t−1)
1 and generate w from the proposal as w = N(β(t−1)

1 , σβ̂1
).

• Let p(v, w) = min
{

1,
π(w|α(t))N(v,σβ̂1

)
π(v|α(t))N(w,σβ̂1

)

}
• Generate U from U(0, 1), then accept proposal if U ≤ p(v, w) and set β(t)

1 = w

or otherwise β(t)
1 = v

Step 6: Calculate β(t)
2 by using the same method given in Step 5.

Step 7: Set t = t+ 1.
Step 8: Repeat Step 3 to Step 7, for M times.
Step 9: To compute the HPD credible intervals of θ, order the MCMC sample of θ(t),

t = 1, 2, . . . ,M as θ(1), θ(2), . . . , θ(M). Then, following the algorithm proposed by
[28], the 100(1 − γ)% HPD credible interval can be constructed by(

θ(j∗), θ(j∗+(1−γ)M)
)

(5.5)

where j∗ is chosen such that

θ(j∗+[(1−γ)M ]) − θ(j∗) = min
16j6γ

(
θ(j+[(1−γ)M ]) − θ(j)

)
, j∗ = 1, 2, . . . ,M (5.6)

In this equation, [γ] denotes the largest integer less than or equal to γ. Then the
HPD credible interval of θ is the interval which has the shortest length.

Then, the approximate posterior mean of θ under the squared error (θ̂B0) can be derived
as

θ̂B0 = 1
M −B

M∑
t=B+1

θ(t) (5.7)

where B is the burn-in period.

5.2. Informative Prior
In this section, we assume that the unknown parameters α, λ, β1 and β2 follow inde-

pendent gamma priors such that θi ∼ GA(ai, bi) for i = 1, 2, 3, 4 with density functions
are given as in the following

π(ψi) ∝ ψai−1
i e−biψi , ai, bi > 0, for i = 1, 2, 3, 4.

where ai and bi are called the hyper-parameters. In the case of non-informative priors, very
small and non-negative values of the hyper-parameters can be used, i.e. a1 = a2 = a3 =
b1 = b2 = b3 = 0.0001, as suggested by [13] which are almost like Jeffrey’s priors, but they
are proper. This value of the hyper-parameters is used in many studies as non-informative
priors. However, we prefer to use the vague priors given in the previous Section 5.1. In this
section, as informative hyper-parameters, we suggest using hyper-parameters to provide
the actual values of the parameters. Since E(ψi) = ai

bi
provides an average value for the

gamma variables, available ai and bi values can be chosen to obtain actual parameter
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values of the parameters. Since the actual values of the parameters are unknown in real
data studies, ai and bi can be chosen as providing MLEs of the parameters.

Under these assumptions, the joint posterior density function of α, λ,, β1 and β2 is
obtained as

L(θ|w, z) ∝αD1+a1−1λD2+a2−1βD1+a3−1
1 βD2+a4−1

2 eβ1
(∑η

i=1 zi ln(wi)−b3
)
,

× eβ2
(∑η

i=1(1−zi) ln(wi)−b4
)
e−α

(
ξ(β1)+b1

)
e−λ

(
ξ(β2)+b2

)
.

Then, the conditional posterior density functions of the parameters can be obtained easily
as in the following

π(α|β1) ∝ GA

(
D1 + a1, ξ(β1) + b1

)
,

π(λ|β2) ∝ GA

(
D2 + a2, ξ(β2) + b2

)
,

π(β1|α) ∝ βD1+a3−1
1 exp

{
β1
( η∑
i=1

zi ln(wi) − b3
)}
,

π(β2|λ) ∝ βD2+a4−1
2 exp

{
β2
( η∑
i=1

(1 − zi) ln(wi) − b4
)}
.

Similarly to the posterior distributions given in Section 5.1 the samples for α and λ can
be easily obtained by using gamma densities. However, the densities from π(β1|α) and
π(β2|λ) can not be reduced analytically to well-known distributions and therefore it is not
possible to generate samples directly by standard methods. Their density curves are also
observed like the Gaussian distribution as seen in Figure 3. Therefore, the M-H algorithm
with normal proposal distribution as suggested by [19] can also be used for the Bayesian
estimation of θ, in this case. The previous algorithm given Section 5.1 for Gibbs sampling
with the M-H method can be also used in this case. In this case, we denote the estimations
in the form of (θ̂B1).

6. Optimal Censoring Scheme
In practical applications based on censoring schemes, there are two options to construct

available censoring plans. Firstly, experimenters determine the censoring plan before con-
ducting experiments or collecting data. Alternatively, pre-tested censoring plans in a
similar data environment can be used. For example, an experiment can be performed in
multiple lines with similar components. The censoring plan of one production line can
be a reference for other lines and help experimenters save time and cost. Consequently,
experimental restrictions such as time and cost force researchers to seek to develop an op-
timal experiment plan. Therefore, determining the "optimum" censoring scheme is quite
important, since it helps the experimenters to provide lower variance, minimum cost, etc.
In reliability and life-testing studies, an optimal censoring plan is desired to get a sufficient
amount of information about the unknown model parameters.
Optimal censoring schemes are handled by various authors. Recently, Lin et al. [27]
studied optimum life-testing plans with joint progressively type-II censored Weibull pop-
ulations. Abo-Kasem and Elshahhat [2] also obtained an optimal censoring plan for two
Weibull populations under progressively hybrid progressively joint censoring. In this study,
we consider three commonly used criteria based on the variance-covariance matrix (VCM)
of the observed Fisher information matrix given in (4.1) corresponding to the MLEs of
unknown parameters as given in the following.

• A-optimality goals minimum trace of F−1(θ̂)
• D-optimality goals minimum determinant of F−1(θ̂)
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• F-optimality goals maximum trace of F (θ̂)
The A-optimality criterion is based on the trace of the first-order approximation of the

variance-covariance matrix (VCM) of the MLEs. This criterion provides an overall mea-
sure of the average variability of the estimates under MLE. The trace of the VCM equals
the sum of the diagonal elements of F−1(θ̂). The A- optimality criterion is defined as min-
imizing trace F−1(θ̂). The second criterion is D-optimality and is based on maximizing
the determinant of the observed Fisher information matrix which is equivalent to mini-
mizing the determinant of VCM. This criterion provides an overall measure of variability
by taking into account the correlations between the estimates. It is known that the joint
confidence region of θ is proportional to

∣∣∣F−1(θ̂)
∣∣∣1/2

under some fixed level of confidence.

Thus, the smaller value of
∣∣∣F−1(θ̂)

∣∣∣ provides a higher precision of the parameter estima-
tors. It is defined as minimizing |F−1(θ̂)|. The third and last criterion is the F-optimality
and is based on the trace of the first-order approximation of the Fisher information matrix
of the MLEs. The trace of F (θ̂) is equal to the sum of the diagonal elements of F (θ̂). The
F- optimality criterion is defined as maximizing the trace of F (θ̂).

7. Data Analysis
In this section, the theoretical findings are evaluated based on their performances via

simulation studies and numerical data example.

7.1. Simulation Studies
In this section, we consider two different sets of the actual values of the parameters.

In the first scenario, we take (α, λ, β1, β2) as (1.25, 0.75, 2.00, 2.25) and (α, λ, β1, β2) as
(1.50, 1.50, 0.75, 0.75) in the second scenario. Based on these two sets of parameters,
simulation studies are performed under different sample sizes as (m,n) = (20, 24), (35, 35)
and (75, 65). Then we determine the guaranteed failure number k and the eventual failure
number r based on the provided at least 50% failures and the observed sample 70%,
respectively. That is k = (0.50) × N where (N = m + n) and r = (0.70) × N . We also
consider two different predetermined times T in each scenario. In the first scenario, we
take predetermined times T as 1.25 and 1.75. In the other scenario, we take T as 3.50 and
5.00. We consider three types of progressive censoring schemes (R1, R2, · · · , Rr). First,
we take (0(r−1), N − r) as CS-I, (0( r

2 −1), N − r, 0( r
2 )) if r is even or (0( r+1

2 −1), N − r, 0( r+1
2 ))

otherwise as CS-II and (1(N−r), 0(2r−N)) as CS-III. Here, 0(k) means repeated values 0, k
times.

In the informative Bayesian inference, we determine the values of hyperparameters
from gamma distributions by providing the actual values of the parameters as a1 = 1.25,
a2 = 0.75, a3 = 2.00, a4 = 2.25 and bi = 1.00 for i = 1, 2, 3, 4. for the first scenario and we
determine a1 = 3.00, a2 = 3.00, a3 = 2.00, a4 = 2.00, b1 = b2 = 2.00 and b3 = b4 = 1.50
for the second scenario.

Thus, we repeat the iterations 1000 times and use 500 bootstrap samples for each
replication. We used 3500 samples of the Markov chain and discarded the first 500 values
as burn-in periods and took every third variate in the thinning procedure in the MCMC
samples. Then, the algorithm is performed for 1000 replications. The significant level was
taken as γ = 0.05.

After performing the simulations, we evaluated the estimations with their mean squared
error (MSE) and we also compared the performances of the approximate confidence in-
tervals with their average length (AL) and the coverage probabilities (CP). The point
estimates with the corresponding MSEs are given in Tables 5 and 6. Then, the ALs with
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Figure 4. MSE plots of the estimates under CS-III, α = 1.25, λ = 0.75, β1 =
2.00, β2 = 2.25 and T = 1.75.

Figure 5. Average lengths for the approximate confidence intervals of the esti-
mates under CS-III, α = 1.25, λ = 0.75, β1 = 2.00, β2 = 2.25 and T = 1.75.

their corresponding CPs are given in Tables 7 and 8. Additionally, we provide a visual pre-
sentation of the performances of the MSEs of the estimations and ALs of the approximate
confidence intervals. As an illustration, we provide these plots under CS-III in Figures 4
and 5. The R [14] software is used for all computations. A step by step flow chart of the
procedure of the analysis of this work is presented in Figure 6. The observations about
the simulation studies are listed as in the following.
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• The MSE values decrease in parallel to the increasing sample sizes regardless of
any censoring scheme used.

• The point estimations are getting closer to their actual values with the increasing
sample sizes. That is, bias has been decreasing in parallel to the increasing sample
sizes.

• Consistency of the estimation methods do not be affected from the censoring
scheme. One can use the proposed methods in all cases of the J-GPHCS.

• The informative Bayesian method provide smallest MSE and non-informative Bayes
follow it. Especially in small samples, MLE has the largest MSE values. However,
performance differences between the methods are decreasing in parallel to increas-
ing sample sizes.

• Approximate confidence intervals show good performances. ACI, boot-p, boot-t
and HPD provided very close CPs to the their actual values 0.95.

• Similar to performances of the point estimations, informative Bayes method pro-
vide shortest ALs in all cases. The HPD based on the non-informative Bayesian
method also give close results. Among the intervals based on the MLEs, the boot-
t method gives smallest ALs and these ALs are obtained very close to the HPD
intervals.

We can obtain consistent and acceptable results for different censoring plans at different
values of the parameters. We also illustrate these findings in the next section using a real-
data example.

7.2. Numerical Example
In this subsection, we consider progressively censored samples generated from the break-

ing strengths of jute fiber at different gauge lengths 5mm and 10mm for Sam-1 and Sam-2,
respectively which is given by [41]. This data set has recently been used in some relia-
bility problems by various authors such as [36], [24] and [10]. The sample size of each
data set is equal and m = n = 30 (N = 60) in this example. We scale both samples by
dividing by 1000 for better fitting to the reparameterized Weibull model. Then, we fit
this dataset with the Weibull distributions by using the MLE method. We obtain the pa-
rameter estimations as α̂ = 6.358, β̂1 = 2.228, λ̂ = 4.279, β̂2 = 1.625, respectively. Then,
the KolmogorovSimirnov test statistic and associated p-value for Sam-I are obtained as
0.1333 and 0.9578, respectively. The same quantities for the data set Sam-II are 0.1667
and 0.8080, respectively. Thus, one cannot reject the null hypotheses that the data sets
come from the Weibull distributions. The plots of the emprical and theoretical cdfs also
support this observation (see Figure 7).

We first consider the following three schemes of removals, (R1, R2, · · · , Rr). We take
R = (0(r−1), N − r) and denoted it as Rmvl-I, then we take R = (0( r

2 −1), N − r, 0( r
2 ))

if r is even or R = (0( r+1
2 −1), N − r, 0( r+1

2 )) if r is odd as Rmvl-II and we take R =
(1(N−r), 0(2r−N)) as Rmvl-III.

Further, we consider various values of k, r, and T and we created alternative censoring
schemes as given in Table 1. Then, we determine the optimal plan among them for this
data set according to the criteria given in Section 6. We obtained the optimality values and
reported them in Table 2. The optimal scheme is determined as k = 42, r = 52, T = 0.7
with (R1, R2, · · · , Rr) = (8, 0(51)) according to the A-optimality and D-optimality. On the
other hand, the optimal censoring scheme is determined as k = 42, r = 52, T = 0.7 with
(R1, R2, · · · , Rr) = (0(51), 8) according to the F-optimality. Then, we use the first of these
optimal plans to obtain the estimates based on these jute fiber data. In this numerical
example, we get k = 42, r = 52, T = 0.7 with (R1, R2, · · · , Rr) = (8, 0(51)).

In the MCMC method, we use 100 000 iterations and take MLEs as initial values of
the parameters so that we do not need to consider the burn-in period. However, since
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Input/Generate Samp-I as X
Input/Generate Samp-II as Y

Define k, r, T and R1, R2, . . . , Rr

Order X and Y and denote as W1:η:N , . . . ,Wη:η:N
Calculate η and T ∗

Calculate
θ̂ and ACI of θ̂

1 : B

Generate
X∗ ∼ Weibull(α̂, β̂1)
Y ∗ ∼ Weibull(λ̂, β̂2)

Order X∗ and Y ∗

and obtain
W ∗

1:η:N , . . . ,W
∗
η:η:N

Calculate η∗, T ∗, θ̂∗

Calculate boot-p
and boot-t con-
fidence intervals

Assign initial
θ(0) values

1 : M

Generate
α ∼ π(α|β1)
λ ∼ π(α|β2)
β1 ∼ π(β1|α)
β2 ∼ π(β2|α)

Calculate
θ̂B0 , θ̂B1

and HPD intervals.

Figure 6. Flow chart of the analysis procesure for two Weibull populations under
J-GPHCS.

the algorithm naturally generates an autocorrelated Markov chain, we use thinning and
choose 10 for the thinning number to avoid losing much information from the data. Thus,
the number of iterations becomes 10 000 after this thinning without not much lack of
information. Further, we use 10 000 replications for the bootstrap confidence intervals.
Thus, we obtain the estimations and their corresponding confidence intervals and report
them in Table 3. We observe that point estimations are obtained very close to each other
for all four parameters. We can conclude that the parameter values of these J-GPHCS
data are observed as α ≈ 6, β1 ≈ 2, λ ≈ 4, β2 ≈ 1.5. The values of the shape parameters
(> 1) show that these data cannot be modeled with exponential distribution very well. In
addition, the presence of the scale parameters makes the censoring model more flexible.
On the other hand, the hazard of the Weibull model shows an increasing failure rate due
to β1, β2 > 1. Since the exponential model has a constant hazard, these data cannot
be evaluated with the exponential distribution. We can observe the data better in the
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Figure 7. Emprical cdf plot for the fiber data fitted by the Weibull distribution

Table 1. Various censoring schemes based on the GPHCS for the fiber data by
[41].

CS k r T R CS k r T R
I 36 42 0.5 Rmvl-I XIII 42 48 0.5 Rmvl-I
II 36 42 0.5 Rmvl-II XIV 42 48 0.5 Rmvl-II
III 36 42 0.5 Rmvl-III XV 42 48 0.5 Rmvl-III
IV 36 42 0.7 Rmvl-I XVI 42 48 0.7 Rmvl-I
V 36 42 0.7 Rmvl-II XVII 42 48 0.7 Rmvl-II
VI 36 42 0.7 Rmvl-III XVIII 42 48 0.7 Rmvl-III
VII 36 48 0.5 Rmvl-I XIX 42 52 0.5 Rmvl-I
VIII 36 48 0.5 Rmvl-II XX 42 52 0.5 Rmvl-II
IX 36 48 0.5 Rmvl-III XXI 42 52 0.5 Rmvl-III
X 36 48 0.7 Rmvl-I XXII 42 52 0.7 Rmvl-I
XI 36 48 0.7 Rmvl-II XXIII 42 52 0.7 Rmvl-II
XII 36 48 0.7 Rmvl-III XIV 42 52 0.7 Rmvl-III

Table 2. Optimality values based on the J-GPHCS for the fiber data by [41].

CS A−optimality D−optimality F−optimality CS A−optimality D−optimality F−optimality
I 6.9860 0.0190 41.893 XIII 5.1228 0.0058 49.7097
II 22.7487 0.0584 53.0491 XIV 10.3821 0.0226 54.7394
III 6.6500 0.0083 56.0939 XV 6.1973 0.0085 55.7345
IV 4.5585 0.0106 42.1091 XVI 4.2579 0.0067 46.9194
V 8.3509 0.0177 53.3666 XVII 5.0984 0.0088 54.0527
VI 6.1973 0.0085 55.7345 XVIII 7.2614 0.0077 56.4508
VII 15.6698 0.0458 47.2828 XIX 7.2614 0.0077 56.4508
VIII 16.9914 0.0698 54.1354 XX 10.3821 0.0226 54.7394
IX 6.6500 0.0083 56.0939 XXI 6.1973 0.0085 55.7345
X 4.2579 0.0067 46.9194 XXII 4.2221 0.0052 52.3428
XII 5.0984 0.0088 54.0527 XXIII 15.5187 0.0257 53.5388
XII 7.2614 0.0077 56.4508 XIV 6.3601 0.0058 56.5618

scope of the lifetime data analysis with the Weibull model. We also present a comparison
of the exponential model given by [11] with the Weibull model to see the superiority
of the Weibull model under J-GPHCS. The Akaike information criterion (AIC), Bayesian
information criterion (BIC) and the log-likelihood values are given in Table 4 and it is seen
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Figure 8. Contour plot for the profile log-likelihood function of β1 and β2 based
on the fiber data

Table 3. Point estimations and lengths of approximate confidence intervals for
the J-GPHCS jute fiber data.

MLE Bayes0 Bayes1 ACI Boot− p Boot− t HPD0 HPD1
α 6.1385 5.9037 5.9976 6.8297 10.3206 6.1483 6.5532 5.5899
β1 2.1179 2.0408 2.0711 1.2353 1.4164 1.2137 1.1566 1.1395
λ 4.1207 3.9985 3.9771 3.9823 5.6709 3.6076 3.8525 3.5277
β2 1.5420 1.4928 1.4931 0.9198 1.0197 0.8921 0.9298 0.8755

that the Weibull model has the smallest AIC and BIC values as well as maximum log-
likelihood value. Thus, we can conclude that our model is a good fitting with the Weibull
model under J-GPHCS. We also provide the contour plot of the profile log-likelihood plot
of β1 and β2 in Figure 8 and it is observed that the log-likelihood plot has a unique
solution at β̂1 and β̂2. The performances of the approximate confidence intervals are
obtained the same as the simulation studies. In this numerical example, HPD credible
intervals based on the informative Bayesian model have better performance since they
have the smallest lengths. Among the approximate confidence intervals, Boot-t intervals
show better performance than ACI and Boot-p. We observe these outcomes for all four
parameters. Thus, the performances of the inference methods based on the numerical
examples support the findings of the simulation studies in Section 7.1.

We further evaluate the convergence of the Markov chains by graphical and numerical
methods effectively. For this purpose, the trace plot which is a plot of the iteration
number, t, against the value of the parameters at each iteration, and the density plots of
the posterior distribution of the parameters are used. Also, the running mean (ergodic
average) plot which draws the mean of sampled values up to iteration t is used. We
draw all graphics and present them in Figures 9,10, and 12. Further, we report Brooks-
Gelman-Rubin (BGR) diagnostic in Figure 11 and it is seen that there is no substantial
difference between the variance-within and variance-between the generated Markov chains.
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Table 4. Comparisons of Weibull and exponential models for the fiber data under
the J-GPHCS.

Models Measurements
AIC BIC Log-likelihood

Weibull -138.3613 -132.7565 73.18066
Exponential -59.19467 -56.39228 31.59734

The acceptable limit of multivariate potential scale reduction factor and potential scale
reduction factor is obtained around 1 as recommended by [19].

Figure 9. Trace plots of the posterior distributions of the parameters.

We observe that convergences of the Markov chains are completely satisfactory, and
findings are obtained as expected. We draw all plots for the convergence by using the
"mcmcplots" package defined by [15] in R [14] software and we draw BGR plots by using
the "coda" package defined by [32]. We also assess the convergence by using the method
introduced by [20]. Geweke’s convergence diagnostic proposes a convergence diagnostic
for Markov chains based on a test for equality of the means of the first and last part of
a Markov chain. If the samples are drawn from the stationary distribution of the chain,
the two means are equal and Geweke’s statistic has an asymptotically standard normal
distribution. We calculate the Geweke’s statistic with the "geweke.diag" function in R
[14] and we obtain the scores (Z-score) as (−0.3665), (−1.2530), (−0.2486), (−1.5710),
(0.5732), (−1.5550), (0.5925) and (−1.4320) for α̂B0 , α̂B1 , β̂B0

1 , β̂B1
1 , λ̂B0 , λ̂B1 , β̂B0

2 and
β̂B1

2 , respectively. None of these Z-scores exceed the critical value,1.96, with the 0.05
significance level. Therefore, we can conclude that the convergences of the Markov chains
are provided for all parameters.
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Figure 10. Density plots of the posterior distributions of the parameters.

Figure 11. The BGR plots for 10 000 MCMC iterations in Monte Carlo simula-
tions.

Figure 12. Running mean plots of the posterior distributions of the parameters.
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8. Conclusions
In this paper, we studied inference procedures for two Weibull populations under J-

GPHCS defined by [11]. Unlike this reference paper, we handle the Weibull distribution
as a more flexible model. The outcomes of this study let the experimenters making life
test studies under a generalized censoring scheme for the data sets with increasing, con-
stant and decreasing hazard rates. Further, researches can use the findings of these work
for the exponential and Rayleigh populations since they can be obtained as a special
case of the Weibull distribution. The MLE and Bayesian estimations of the shape and
scale parameters of two Weibull populations are obtained. In addition to point estima-
tions, approximate confidence intervals by using the asymptotic properties of the MLEs
and bootstrap confidence intervals are given for MLEs. Then, HPD credible intervals for
Bayesian estimations are given. All theoretical findings are illustrated with simulation
studies and a numerical example. It is observed that theoretical findings show good per-
formances in all cases of the censoring scheme. Both Bayesian methods have superiority
over MLEs in the small sample sizes, as expected. However, informative priors even more
increase the performances of the Bayesian estimations, especially in small sizes. Then, we
handle the problem of which censoring scheme is better than the others. For this purpose,
the A-optimality, D-optimality, and F-optimality criteria are considered. Then, we ap-
plied these optimality criteria for numerical data and observed that the A-optimality and
D-optimality criteria mark the same censoring scheme as optimal, and the F-optimality
criterion suggests another scheme. However, the difference between optimality criteria
differs only for the removal positioning. In contrast, all optimality criteria suggest the
same predetermined minimum number of failures, k, a number of failures, r, and the end
time of the experiment, T . Then, we used the optimal censoring plan for the numerical
example. Consequently, this study proposes an extensive model of the J-GPHCS model
based on the one-parameter exponential distribution using a more flexible two-parameter
Weibull distribution. In the literature, there are still open problems in this regard. For
example, various probability distributions can be handled in J-GPHCS. This study pro-
poses two populations in its scheme, but the case of k-samples can be considered as an
extensive study. The R codes for reproducing the results of the computations are avail-
able in the repository: https://github.com/cgtycetinkaya/JGPHCS-Weibull-Paper-Codes
for reproducibility.
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Table 5. Point estimates (first rows) and their MSEs (second rows) for the case
of α = 1.25, λ = 0.75, β1 = 2.00, β2 = 2.25 and T = 1.25.

(m,n) CS α̂ α̂B0 α̂B1 λ̂ λ̂B0 λ̂B1 β̂1 β̂B0
1 β̂B1

1 β̂2 β̂B0
2 β̂B1

2
T = 1.25

20,24 I 1.3614 1.3445 1.3289 0.8100 0.8211 0.8200 2.2196 2.1091 2.0872 2.5458 2.4285 2.4018
0.1954 0.1731 0.1213 0.0450 0.0432 0.0378 0.2665 0.2100 0.1644 0.3761 0.2880 0.2196

II 1.3612 1.3357 1.3236 0.8121 0.8141 0.8125 2.2328 2.1134 2.0955 2.5740 2.4459 2.4168
0.1350 0.1170 0.0912 0.0471 0.0443 0.0390 0.2462 0.1865 0.1508 0.3896 0.2952 0.2226

III 1.3083 1.2894 1.2823 0.7591 0.7603 0.7598 2.1402 2.0277 2.0162 2.3901 2.2515 2.2406
0.1376 0.1252 0.1003 0.0420 0.0392 0.0350 0.2280 0.1926 0.1544 0.3302 0.2810 0.2161

35,35 I 1.3058 1.2994 1.2960 0.7764 0.7864 0.7873 2.1422 2.0842 2.0761 2.5334 2.4576 2.4365
0.0709 0.0660 0.0583 0.0301 0.0291 0.0263 0.1293 0.1103 0.0970 0.2915 0.2395 0.1968

II 1.3302 1.3171 1.3120 0.7925 0.7953 0.7947 2.1382 2.0758 2.0690 2.4978 2.4179 2.4032
0.0733 0.0670 0.0590 0.0284 0.0272 0.0250 0.1194 0.0998 0.0906 0.2386 0.1937 0.1637

III 1.2847 1.2744 1.2720 0.7676 0.7680 0.7672 2.0719 2.0118 2.0075 2.3396 2.2507 2.2440
0.0711 0.0675 0.0603 0.0305 0.0291 0.0268 0.1116 0.1025 0.0911 0.2088 0.1901 0.1594

75,65 I 1.2865 1.2844 1.2837 0.7741 0.7798 0.7803 2.0830 2.0568 2.0556 2.4432 2.4053 2.3983
0.0264 0.0255 0.0244 0.0147 0.0146 0.0138 0.0516 0.0465 0.0449 0.1460 0.1287 0.1173

II 1.2928 1.2879 1.2862 0.7842 0.7861 0.7864 2.1043 2.0772 2.0745 2.4264 2.3873 2.3815
0.0293 0.0281 0.0266 0.0131 0.0129 0.0124 0.0554 0.0495 0.0468 0.1292 0.1131 0.1052

III 1.2658 1.2617 1.2610 0.7623 0.7624 0.7626 2.0445 2.0184 2.0168 2.3009 2.2566 2.2546
0.0268 0.0262 0.0251 0.0142 0.0138 0.0134 0.0492 0.0469 0.0444 0.0948 0.0897 0.0823

T = 1.75
20,24 I 1.3347 1.3227 1.3094 0.7633 0.7797 0.7782 2.1736 2.0712 2.0539 2.4307 2.3345 2.3187

0.1729 0.1524 0.1100 0.0485 0.0454 0.0396 0.2320 0.1871 0.1508 0.2442 0.2011 0.1637
II 1.3522 1.3312 1.3150 0.7718 0.7799 0.7783 2.2067 2.0953 2.0749 2.4122 2.3112 2.2983

0.1613 0.1398 0.1038 0.0486 0.0450 0.0395 0.2864 0.2273 0.1778 0.2481 0.2064 0.1703
III 1.3054 1.2896 1.2827 0.7786 0.7828 0.7812 2.1411 2.0343 2.0220 2.4620 2.3374 2.3158

0.1184 0.1065 0.0877 0.0443 0.0408 0.0358 0.2227 0.1861 0.1548 0.3354 0.2700 0.2093
35,35 I 1.2938 1.2889 1.2853 0.7641 0.7755 0.7750 2.1029 2.0470 2.0416 2.3739 2.3093 2.3017

0.0733 0.0689 0.0590 0.0286 0.0275 0.0250 0.1166 0.1026 0.0912 0.1560 0.1361 0.1187
II 1.3126 1.3009 1.2961 0.7695 0.7748 0.7740 2.1085 2.0488 2.0429 2.3677 2.2992 2.2943

0.0766 0.0708 0.0619 0.0290 0.0275 0.0255 0.1138 0.0984 0.0883 0.1499 0.1302 0.1169
III 1.3008 1.2914 1.2886 0.7688 0.7704 0.7698 2.0955 2.0371 2.0316 2.3618 2.2775 2.2696

0.0640 0.0599 0.0544 0.0250 0.0237 0.0219 0.1141 0.1016 0.0915 0.1897 0.1668 0.1413
75,65 I 1.2720 1.2707 1.2698 0.7536 0.7603 0.7602 2.0581 2.0330 2.0317 2.3061 2.2724 2.2706

0.0288 0.0280 0.0266 0.0148 0.0145 0.0138 0.0505 0.0471 0.0450 0.0707 0.0665 0.0619
II 1.2796 1.2751 1.2738 0.7610 0.7639 0.7640 2.0449 2.0192 2.0174 2.3261 2.2918 2.2893

0.0295 0.0284 0.0271 0.0156 0.0152 0.0146 0.0428 0.0403 0.0385 0.0723 0.0667 0.0622
III 1.2663 1.2628 1.2619 0.7592 0.7602 0.7600 2.0483 2.0224 2.0210 2.2964 2.2537 2.2520

0.0292 0.0285 0.0272 0.0133 0.0129 0.0124 0.0472 0.0446 0.0424 0.0937 0.0888 0.0816
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Table 6. Point estimates (first rows) and their MSEs (second rows) for the case
of α = 1.50, λ = 1.50, β1 = 0.75, β2 = 0.75.

(m,n) CS α̂ α̂B0 α̂B1 λ̂ λ̂B0 λ̂B1 β̂1 β̂B0
1 β̂B1

1 β̂2 β̂B0
2 β̂B1

2
T = 3.50

20,24 I 1.6203 1.5920 1.6314 1.6367 1.6126 1.6459 0.8181 0.7793 0.7868 0.8092 0.7782 0.7849
0.2486 0.2165 0.1694 0.2200 0.1954 0.1576 0.0335 0.0269 0.0241 0.0287 0.0241 0.0221

II 1.6711 1.6268 1.6590 1.6734 1.6369 1.6699 0.8182 0.7762 0.7860 0.8066 0.7730 0.7822
0.3219 0.2737 0.1883 0.2342 0.2015 0.1650 0.0364 0.0292 0.0259 0.0258 0.0213 0.0196

III 1.6173 1.5753 1.6249 1.6088 1.5743 1.6167 0.8013 0.7572 0.7739 0.8053 0.7685 0.7832
0.2333 0.2043 0.1526 0.2231 0.2008 0.1603 0.0355 0.0300 0.0257 0.0273 0.0227 0.0208

35,35 I 1.5666 1.5530 1.5840 1.5836 1.5694 1.5998 0.7868 0.7657 0.7718 0.7895 0.7686 0.7747
0.1200 0.1109 0.1014 0.1160 0.1068 0.0991 0.0155 0.0137 0.0130 0.0158 0.0138 0.0134

II 1.6097 1.5864 1.6160 1.5796 1.5573 1.5911 0.7901 0.7675 0.7749 0.7920 0.7694 0.7775
0.1541 0.1395 0.1247 0.1120 0.1016 0.0942 0.0178 0.0156 0.0149 0.0155 0.0134 0.0130

III 1.5843 1.5606 1.5972 1.5902 1.5666 1.6040 0.7839 0.7594 0.7715 0.7917 0.7670 0.7791
0.1306 0.1211 0.1074 0.1180 0.1085 0.1009 0.0185 0.0167 0.0158 0.0209 0.0185 0.0176

75,65 I 1.5274 1.5222 1.5390 1.5303 1.5241 1.5432 0.7717 0.7622 0.7656 0.7689 0.7580 0.7615
0.0433 0.0419 0.0408 0.0536 0.0516 0.0496 0.0068 0.0063 0.0063 0.0073 0.0069 0.0067

II 1.5358 1.5267 1.5447 1.5358 1.5249 1.5462 0.7666 0.7568 0.7608 0.7675 0.7560 0.7607
0.0450 0.0433 0.0423 0.0532 0.0505 0.0490 0.0065 0.0061 0.0060 0.0069 0.0064 0.0063

III 1.5281 1.5186 1.5392 1.5366 1.5246 1.5492 0.7707 0.7599 0.7663 0.7717 0.7591 0.7664
0.0436 0.0423 0.0412 0.0571 0.0545 0.0532 0.0086 0.0081 0.0081 0.0100 0.0094 0.0092

T = 5.00

20,24 I 1.6203 1.5920 1.6314 1.6367 1.6126 1.6459 0.8181 0.7793 0.7868 0.8092 0.7782 0.7849
0.2486 0.2165 0.1694 0.2200 0.1954 0.1576 0.0335 0.0269 0.0241 0.0287 0.0241 0.0221

II 1.6711 1.6268 1.6590 1.6734 1.6369 1.6699 0.8182 0.7762 0.7860 0.8066 0.7730 0.7822
0.3219 0.2737 0.1883 0.2342 0.2015 0.1650 0.0364 0.0292 0.0259 0.0258 0.0213 0.0196

III 1.6173 1.5753 1.6249 1.6088 1.5743 1.6167 0.8013 0.7572 0.7739 0.8053 0.7685 0.7832
0.2333 0.2043 0.1526 0.2231 0.2008 0.1603 0.0355 0.0300 0.0257 0.0273 0.0227 0.0208

35,35 I 1.5666 1.5530 1.5840 1.5836 1.5694 1.5998 0.7868 0.7657 0.7718 0.7895 0.7686 0.7747
0.1200 0.1109 0.1014 0.1160 0.1068 0.0991 0.0155 0.0137 0.0130 0.0158 0.0138 0.0134

II 1.6097 1.5864 1.6160 1.5796 1.5573 1.5911 0.7901 0.7675 0.7749 0.7920 0.7694 0.7775
0.1541 0.1395 0.1247 0.1120 0.1016 0.0942 0.0178 0.0156 0.0149 0.0155 0.0134 0.0130

III 1.5843 1.5606 1.5972 1.5902 1.5666 1.6040 0.7839 0.7594 0.7715 0.7917 0.7670 0.7791
0.1306 0.1211 0.1074 0.1180 0.1085 0.1009 0.0185 0.0167 0.0158 0.0209 0.0185 0.0176

75,65 I 1.5274 1.5222 1.5390 1.5303 1.5241 1.5432 0.7717 0.7622 0.7656 0.7689 0.7580 0.7615
0.0433 0.0419 0.0408 0.0536 0.0516 0.0496 0.0068 0.0063 0.0063 0.0073 0.0069 0.0067

II 1.5358 1.5267 1.5447 1.5358 1.5249 1.5462 0.7666 0.7568 0.7608 0.7675 0.7560 0.7607
0.0450 0.0433 0.0423 0.0532 0.0505 0.0490 0.0065 0.0061 0.0060 0.0069 0.0064 0.0063

III 1.5281 1.5186 1.5392 1.5366 1.5246 1.5492 0.7707 0.7599 0.7663 0.7717 0.7591 0.7664
0.0436 0.0423 0.0412 0.0571 0.0545 0.0532 0.0086 0.0081 0.0081 0.0100 0.0094 0.0092
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APPENDIX
It can be shown that the MLEs of α and λ maximize the log-likelihood function

`(w, z, α, λ, β1, β2) for given β1 and β2. For this purpose, let Φ(θ) = Φ(α, λ) be the
Hessian matrix of `(w, z, α, λ, β1, β2) at (α̂, λ̂). Thus,

φii(θ) = ∂2`

∂θ2
i

= −Di

θ2
i

, i = 1, 2 and φ12(θ) = ∂2`

∂α∂λ
= 0

then, the determinant of the Hessian matrix is obtained as

det[φ(θ̂)] = φ11(α̂, λ̂)φ22(α̂, λ̂) −
[
φ12(α̂, λ̂)

]2 = D1D2

α̂2λ̂2
> 0.

It is clearly seen that (α̂, λ̂) is the local maximum of `(w,z, α, λ, β1, β2) for given β1 and
β2. Since there is no singular point of `(w,z, α, λ, β1, β2) and it has a single critical point,
α̂ and λ̂ are the absolute maximum of the log-likelihood function. We can further express
the equations (3.4) as

D1
β1

= α̂ξ
′(β1) −

η∑
i=1

zi ln(wi) and D2
β2

= λ̂ξ
′(β2) −

η∑
i=1

(1 − zi) ln(wi) (8.1)

Let denote the left and the right-hand sides of the equations in (8.1) by ψ1a(β1,w,z),
ψ1b

(β1,w,z), ψ2a(β2,w,z), ψ2b
(β2,w,z) respectively as given in the following

ψ1a(β1,w,z) = D1
β1

and ψ1b
(β1,w,z) = α̂ξ

′(β1) −
η∑
i=1

zi ln(wi)

ψ2a(β2,w,z) = D2
β2

and ψ2b
(β2,w,z) = λ̂ξ

′(β2) −
η∑
i=1

(1 − zi) ln(wi)

For a given sample of w, it can be shown that ψ1a(β1,w,z) and ψ2a(β2,w,z) are the
increasing monotonic functions of β1 and β2 with finite and positive limits such as β1 → ∞,
β2 → ∞. The plots of ψ1a(β1,w,z) and ψ1b

(β1,w,z) would intersect exactly once at β̂1
since D1

β1
is strictly decreasing with the right limit ∞ at 0. A similar intersection would

also be observed for β2. The proof of the β1 case can be shown that ∂ψ1b
(β1,w,z)
∂β1

≥ 0. It is
seen that
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∂ψ1b
(β1,w,z)
∂β1

= α̂ξ
′′(β1) = α̂

[ η∑
i=1

(si + zi)wβ1
i ln2(wi) + δT β1 ln2(T )R∗

S

]
≥ 0

The same case can be easily seen for β2, also. It is seen that ψ1b
(β1,w,z) is a monotone in-

creasing function of β1. Furthermore, limβ!→0ψ1b
(β1,w,z) > 0 and limβ1→∞ψ1b

(β1,w,z) →
∞ indicates that the curves of ψ1a(β1,w,z) and ψ1b

(β1,w,z) have a unique intersection
point. Therefore, β̂1, as the root of equation ψ1a(β1,w,z) = ψ1b

(β1,w,z) exist and unique.
Similarly, β̂2, as the root of equation ψ2a(β2,w,z) = ψ2b

(β2,w,z) exist and unique.
Following the obtaining unique MLEs of β1 and β2, the MLEs of α and λ can be obtained

uniquely as α̂ = α̂(β̂1) and λ̂ = λ̂(β̂2), respectively. Thus, the existence and uniqueness of
MLEs are proved.


