
  Isı Bilimi ve Tekniği Dergisi, 35, 1, 97-105, 2015 

J. of Thermal Science and Technology 

©2015 TIBTD Printed in Turkey 
ISSN 1300-3615 

PRESSURE-DRIVEN LAMINAR PULSATING FLOW IN A PIPE: 

EFFECT OF THE AMPLITUDE 

 

Cemalettin AYGÜN
*
 and Orhan AYDIN

** 

*
Department of Energy Systems Engineering Gümüşhane University 

29100 Gümüşhane, TURKEY, caygun@gumushane.edu.tr 
**

Department of Mechanical Engineering Karadeniz Technical University 

61080 Trabzon, TURKEY, oaydin@ktu.edu.tr 

 

(Geliş Tarihi: 30.01.2014, Kabul Tarihi: 04.07.2014) 

 

Abstract: In this study, pressure-driven laminar pulsating flow in a pipe is examined numerically. Both the 

hydrodynamically developing flow and fully developed conditions are considered. A commercially available CFD 

package, FLUENT, is used in the simulations. A constant value of the time-averaged Reynolds number is considered, 

Re=1000. Six different values of the dimensionless frequency (F=0.01, 0.1, 1, 10, 100, 1000) and three different 

values of the dimensionless amplitude (A=0.1, 0.5 and 0.95) are considered. Both the hydrodynamically developing 

and fully developed flows are analyzed. Effects of the amplitude and frequency of the pulsating inlet velocity on the 

friction coefficient as well as velocity field are predicted. 
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BİR BORU İÇERİSİNDE BASINÇ-KAYNAKLI LAMİNER ATIMLI AKIŞ İÇİN 

GENLİK ETKİSİ 
 

Özet: Bu çalışmada, bir boru içerisindeki basınç kaynaklı laminer atımlı akış sayısal olarak incelenmiştir. 

Hidrodinamik olarak gelişmekte olan akış ve tam gelişmiş akış koşullarının her ikisi de göz önüne alınmıştır. 

Simülasyonlarda bir ticari CFD paket programı olan FLUENT kullanılmaktadır. Zaman-ortalamalı Reynolds sayısı 

için sabit bir değer dikkate alınmıştır (Re=1000). Boyutsuz frekansın altı farklı değeri(F=0.01, 0.1, 1, 10, 100, 1000) 

ve boyutsuz genliğin üç farklı değeri (A=0.1, 0.5 and 0.95) incelenmiştir. Hem hidrodinamik olarak gelişmekte olan 

akış hem de tam gelişmiş akış analiz edilmiştir. Atımlı giriş hızı genlik ve frekansının, hız alanının yanı sıra sürtünme 

katsayısına etkisi belirlenmiştir. 

Anahtar kelimeler: Hidrodinamik, Atımlı akış, İç akış, Frekans, Genlik, Sürtünme katsayısı 

 

NOMENCLATURE 

 

A dimensionless amplitude, uA/um 

Cf friction coefficient 

D pipe diameter[m] 

f, F dimensional [Hz] and dimensionless frequency, 

R
2
f/ν 

Fτ dimensionless phase 

L length of the pipe [m] 

Lp length of the piston joint [m] 

P pressure [Pa] 

r, r
*
 dimensional [m] and dimensionless radial 

coordinate, r/ R 

R radius of the pipe [m] 

Re Reynolds number, 
,

/
av ta

Du   

x axial coordinate [m] 

t, τ dimensional [s] and dimensionless time 

(period), νt/ R
2
 

u, u
*
 dimensional [m/s] and dimensionless axial 

velocity component, u/um 

uA dimensional velocity fluctuation amplitude 

[m/s] 

v radial velocity component [m/s] 

wt dimensional phase  

Greek letters  

ρ density 

μ dynamic viscosity 

ν kinematic viscosity 

ω angular frequency, 2πf 

 

Subscripts 

A amplitude 

av average 

m mean 

0 base or initial 

ta time-averaged 

w wall 
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INTRODUCTION 

 

Pulsating flow is specific type of unsteady flow, in 

which an periodic oscillating flow component is 

superimposed on a steady flow. Pulsating flows 

received a great deal of research interest because of 

their large application areas spanning from biological 

systems (e.g. blood flow in arteries and veins) to 

engineering systems (e.g. intake and exhaust flows of 

internal combustion engines, nuclear reactors, etc.). 

Some other applications areas can be listed as follows: 

heat transfer augmentation, enhancement of cleaning, 

fluid mixing, mass transport in porous media, 

thermoacoustic devices, reciprocating pumps and 

turbines and biofluids engineering (Nabayi et. al., 2010) 

 

According to the nature of the pulse, pulsating flows can 

be categorized into two groups: pressure-driven and 

boundary-driven. As it is inferred from its name, a 

pressure driven flow can be produced creating a 

pulsating pressure in the entrance. Such a flow can be 

generated using piston-cylinder mechanism, Scotch- 

Yoke mechanism, servo valves, mass flow rate 

controller (Carpinlioglu et. al.,2013) etc. In boundary-

driven pulsating flows, additional momentum is 

supplied to the main flow with the pulsation of the 

walls. 

 

The interest of this study is limited to the pulsating 

flows in pipes. On this topic, a large number of studies 

have existed in the literature, most of which are on the 

hydrodynamics aspects. For an extensive review of the 

literature, readers are referred to see review articles by 

Gundogdu and Carpinlioglu (1999,1999) and 

Carpinlioglu and Gundogdu (2001). Uchida (1956) and 

Atabek and Chang (1961) are the pioneering studies on 

the topic. Uchida (1956) analytically studied pulsating 

flow in a pipe for an arbitrary, time-varying, axial 

pressure gradient. Atabek and Chang (1961) obtained an 

analytical solution for unsteady laminar incompressible 

oscillatory flow near the entry of a circular tube. Krijger 

et al. (1991) numerically investigated sinusoidally 

pulsating channel flow. Zhao and Cheng (1996) studied 

fully developed laminar reciprocating pipe flow 

analytically and experimentally. They showed that the 

oscillation amplitude affected the friction coefficient 

considerably.  

 

Haslam and Zamir (1998) analytically treated fully 

developed laminar pulsatile flow in tubes of elliptic 

cross sections. Yakhot et al. (1999) numerically 

investigated fully developed, laminar pulsating flow in a 

rectangular duct. They analyzed influence of the aspect 

ratio of the rectangular duct and the pulsating pressure 

gradient frequency on the phase lag, the amplitude of 

the induced oscillating velocity, and the wall shear. Yu 

and Zhao (1999) experimentally investigated flow 

characteristics in straight tubes with and without a 

lateral circular protrusion. Recently, a group from 

LSTM-Erlangen (Institute of Fluid Mechanics, 

Friedrich-Alexander University, Erlangen, Nurnberg, 

Germany) contributed a lot into the existing knowledge 

on pulsating flows in pipes. Their articles present a good 

summary of the efforts made in the open literature. Ray 

and Durst (2004) studied laminar, fully developed 

pressure-driven flow through any arbitrary-shaped duct 

by using a semi-analytical method. Similar to the 

circular pipes or parallel plate channels, they defined 

three different flow regimes: quasi-steady, intermediate 

and inertia-dominated. Unsal et al. (2005) and Ray et al. 

(2005) investigated sinusoidal mass-flow controlled, 

pulsating, laminar and fully developed pipe flow 

analytically and experimentally. They showed the 

dependence of the ratio dimensionless amplitudes of the 

mass flow rate and the phase lag as a function of the 

dimensionless pulsation frequency. Haddad et al. (2010) 

analytically investigated pulsating laminar 

incompressible pipe and channel flows. Ray et al. 

(2012) carried out extensive numerical calculations to 

determine development length of sinusoidally pulsating 

laminar pipe flow in moderate and high Reynolds 

number regimes.  

 

Chan et al. (2002) numerically studied the effects of 

pulsating frequency and amplitude of oscillations on the 

flow behavior for a pressure-driven developing 

pulsating flow in a pipe. McGinty et al. (2009) obtained 

general analytical solutions of flows in cylindrical and 

annular pipes subject to an arbitrary time-dependent 

pressure gradient and arbitrary steady initial flow of 

both Newtonian and non-Newtonian fluids. Trip et al. 

(2012) investigated the transitional regime of a 

sinusoidal pulsatile flow in a pipe using the particle 

image velocimeter. Chang (2012) studied pressure-

driven laminar pulsating flow both in circular pipes and 

parallel-plate channels and analyzed the existence of the 

phase-lag between pressure gradient and flow rate. 

Recently, Çarpınlıoğlu and her co-workers 

(2012,2013,2003) studied transition onset of pulsatile 

pipe flows.  

 

Aygun and Aydin studied pulsating flow in a pipe 

experimentally and numerically both for the cases 

hydrodynamically developing and fully developed flow, 

focusing on the effect of the frequency. Aydin and 

Aygun (2014) numerically studied the hydrodynamical 

entrance length for pulsating flow in a pipe through a 

scale analysis. 

 

The effect of the frequency has been well documented 

in the literature. The aim of the present study is to 

numerically investigate the effect of the amplitude for 

pulsating flows in pipes for a range of the corresponding 

parameters, mainly the frequency of the pulsating flow.  

 

NUMERICAL STUDY 

 

Governing Equations 

 

Figure 1 shows the schematic of the problem. For this 

simple geometry, the axially symmetric, unsteady, 2-D, 

incompressible and hydrodynamically developing 
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laminar flow with constant thermo-physical properties is 

considered. With the regarding simplifications, the 

corresponding governing equations in the cylindrical 

coordinate system are reduced as: 

 
 

Figure 1. Schematic of the problem geometry. 

 

Continuity equation: 

 

0
u v v

x r r

 
  

 
     (1) 

 

x- Momentum equation: 

 
2 2

2 2

1 1u u u P u u u
u v

t x r x x r r r



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 
 
 

(2) 

 

r- Momentum equation: 

 

2 2

2 2 2

1

1

v v v P
u v

t x r r

v v v v

x r r r r





   
   

   

  
  

  

 
  

 

 (3) 

 

The regarding boundary conditions of the problem are 

as follows: 

 

(0, )
0

u t

r





 at  r=0    (4) 

 

( , ) 0u R t   at  r=R     (5) 

 

At the pipe inlet, 

 

 
0

( , ) ,u r t u r t , 0v   at  x=0   (6) 

 

where  
0

,u r t  is constant for a uniform inlet flow, i.e. 

 

 
0 mu t u      (7) 

For a pressure-driven flow, the axial pressure gradient is 

given as 

 

 
0 A

dP dP dP
sin t

dx dx dx
 

   
   
   

   (8) 

 

The corresponding inlet velocity profile for a pressure-

driven flow is defined as 

 

   
0

,
A

u r t u u sin t      (9) 

 

At the solid pipe walls, the usual no-slip conditions are 

applied: 

 

0u v                 (10) 

 

At the exit, the second derivative of the regarding 

velocities are set to be zero: 

 
2

2
0

u

x





               (11) 

 

The Reynolds number is defined to be based on the 

cross-sectional-time averaged velocity, which is 

,
Re

av ta
u D


                (12) 

 

where uav,ta is the cross-sectional-time averaged 

velocity. 

 

The dimensionless frequency and the dimensionless 

time are defined as: 
2

R f
F


                (13) 

 

2

t

R


                  (14) 

 

The friction coefficient is defined as 

21

2

w

f

av

C

u





                (15) 

where τw is the wall shear stress defined as 

 

w

r R

u

r
 




 


              (16) 

 

Numerical Study 

 

A commercial CFD software, FLUENT 6.1.22, is used 

in the numerical analysis. This package employs a finite 

volume method for the discretization of the continuity, 

momentum and energy equations. The SIMPLE 

algorithm is used to couple the pressure and velocity 

terms. Discretization of the momentum equations is 

performed by a second order upwind scheme and 

pressure interpolation is provided by PISO scheme (x). 

Convergence criterion considered as residuals is 

admitted 10-6 for momentum and continuity equations. 

In order to define the pulsating (sinusoidal profile) inlet 

velocities, UDF (User-Defined Function) file is 

introduced to the FLUENT case file. 
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A non-uniform mesh of 320 x 64 rectangular elements 

was used, for which solutions were ensured to be grid-

independent. 

  

(a) (d) 

  

(b) (e) 

  

(c) (f) 

Figure 2. The fully developed radial velocity profile for various phase angles. 
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Figure 3. The effect of the dimensionless frequency, F on the radial velocity profile. 
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Figure 4. The effect of the dimensionless amplitude, A on the radial velocity profile. 
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good agreements against the results in the literature for 

some specific cases have been observed. 

 

Figure 2 illustrates the effect of the dimensionless 

frequency on the dimensionless radial velocity profiles 

at various axial locations downstream for constant 

values of the Reynolds number and the dimensionless 

amplitude (Re=1000 and A=0.5). As it can be seen, 

velocity increases or decreases depending on the phase 

angle. As expected, the velocity increases as a result of 

positive acceleration in the accelerating phase, while the 

opposite is true for the decelerating phase. For F≤0.1, 

the dimensionless radial velocity profile at Fτ=0 

presents higher values than those at Fτ=1 while an 

opposite behavior is observed for F≥1. This can be 

explained in view of the flow physics in the accelerating 

and decelerating phases. For F≤0.1, the inertia forces in 

the accelerating phase (Fτ=0-0.5) dominate over those 

in the decelerating phase (Fτ=0.5-1). Thus, the radial 

velocity profile obtained at Fτ=0 presents higher 

velocity values than those at Fτ=0.5. Similarly, for 

values of the dimensionless frequency of F≥1, the 

inertia forces becomes more dominated in the 

decelerating phase and, in follows, the radial velocity 

profile obtained at Fτ=0.5 presents higher velocity 

values than at Fτ=0. This physical evidence is the main 

reason of the annular effect occurring comparatively at 

higher dimensionless frequencies. 

 

The effect of the frequency on the fully developed 

dimensionless radial velocity profile for various values 

of the dimensionless amplitude is shown in Fig. 3. As 

seen from the figure, velocity profiles are nearly 

identical for low values of the dimensionless frequency 

(F≤0.1). With an increase in F beyond this range, the 

variations in the dimensionless velocity increase. Figure 

4 illustrates the effect of the amplitude on the fully 

developed dimensionless radial velocity profile more 

clearly. As seen, the variations are much more 

discernible at the crest and trough points (Fτ=0.5 and 

1.5) of the accelerating and decelerating phases, 

respectively. For the values of the dimensionless 

amplitude of A=0.5 and 0.95, flow reversals exist in the 

decelerating period (Fτ=1 and 1.5) at higher values of 

the dimensionless frequency. These flow reversals 

become much clearer at the trough point (Fτ=1.5), 

which is the end of the decelerating phase and, at the 

same time, the start of the accelerating phase.  This 

effect is also called as the annular effect, which was 

detected by others (e.g. Zhao and Cheng, 1996, Yakhot 

et al., 1999, Pendyala et al., 2008). 

 

From the practical interest, the friction coefficient is an 

important parameter to determine, which leads to 

pressure drops, and, in follows, to pumping/fan power 

required. For a constant value of the Reynolds number 

(Re=1000) and for the hydrodynamically fully 

developed condition, the variation of the friction 

coefficient with the phase angle for a cycle at various 

values of the dimensional frequency and the 

dimensionless amplitude is depicted in Fig. 5. As seen 

and expected, the amplitude of the friction coefficient 

increases with an increase in the frequency. In follows, 

its maximum and minimum values at the crest and 

trough points increase. These increases become much 

more considerable for F≥10. 

 

 
       (a) 

 
       (b) 

 
       (c) 

Figure 5. The variation of the friction coefficient with 

the phase angle for various F. 

 

Figure 6 illustrates the variation of the maximum and 

minimum values of the friction coefficient with the 

dimensionless frequency at the peak points, i.e. the crest 

and trough points (Fτ=0.5 and 1.5). For F≤1, this effect 

is negligible but it increases with an in increase of F 

beyond this limit. As seen, the friction coefficient 

increases with an increase in the dimensionless 

amplitude, A, too. 
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A clearer view of the effect of the dimensionless 

amplitude on the friction coefficient can be seen from 

Fig. 7. As it can be seen from the figure, increasing the 

dimensionless amplitude results in increases in the 

maximum and minimum values of the friction 

coefficient at the crest and trough points. 

 

 
       (a) 

 
       (b) 

Figure 6. The variations of the max. and min. values of 

Cf with F. 

 

CONCLUSIONS 

 
In this study, we numerically analyzed both the 

hydrodynamically developing and fully developed 

pressure-driven laminar pulsating flow in a pipe via a 

commercial CFD package, FLUENT.  The followings 

disclosures can be withdrawn from this study: 

 The inertia forces in the accelerating phase (Fτ=0-

0.5) dominate over those in the decelerating phase 

(Fτ=0.5-1) for F≤0.1 while the opposite is true for 

F≥1.  

 As expected, the nature of the radial velocity 

profiles has been found to critically depend on both 

the frequency, the amplitude and the phase angle.  

 For higher values of the dimensionless frequency at 

the values of the dimensionless amplitude of A=0.5 

and 0.95, flow reversals have been observed to 

arise in the decelerating period (Fτ=1 and 1.5). 

 The friction coefficient, and, in follows, its 

maximum and minimum values at the crest and 

trough points are shown to increase with an 

increase in the frequency. These increases are 

found to become much more considerable for F≥10. 

 Finally, it is also disclosed that the friction 

coefficient increases with an increase in the 

dimensionless amplitude, A, too. 

 
       (a) 

 
       (b) 

Figure 7. The variations of the max. and min. values of 

Cf with A. 
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