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Abstract − We consider the Sturm-Liouville problem on the half line (0 ≤ x < ∞), where
the boundary conditions contain polynomials of the spectral parameter. We define the scat-
tering function and present the spectrum of the boundary value problem. The continuity of
the scattering function is discussed. In a special case, the Levinson-type formula is intro-
duced, demonstrating that the increment of the scattering function’s logarithm is related to
the number of eigenvalues.
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1. Introduction

Consider the boundary value problem

ℓv := −v′′ + φ(x)v = λ2v, 0 ≤ x < ∞ (1.1)

(β3v(0) − α3v
′(0))iλ3 + (β2v(0) − α2v

′(0))λ2 − (β1v(0) − α1v
′(0))iλ− β0v(0) + α0v

′(0) = 0 (1.2)

known as a Sturm Liouville problem, where λ is a spectral parameter, the potential function φ (x) is
real valued such that ∞∫

0

(1 + x) |φ (x)| dx < ∞ (1.3)

and for αi, βi ∈ R, i = 0, 3, α3 ̸= 0, and β3 ̸= 0,

(−1)kδik ≤ 0, k ∈ {1, 2}; δik = 0, k = 3 where δik = αi+kβi − αiβi+k (1.4)

An important part of scattering theory is the study of boundary value problems involving the spectral
parameter. Sturm-Liouville problems with spectral parameter-dependent boundary conditions arise
in studies of heat conduction problems and vibrating string problems. Cohen introduced a method
to solve an initial-boundary value problem arising in the diffusion and heat flow theory [1]. Various
examples of spectral problems that occur in mechanical engineering and contain an eigenparameter
in the boundary conditions were presented in [2]. Moreover, problems with boundary conditions
concerning spectral parameters were investigated in finite intervals [3–10] and on the half line in [11–14].
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Levinson’s theorem provides a relation between the number of bound states of a quantum mechanical
system and the phase shift of that system [15–17]. It is a fundamental tool in quantum mechanics and
scattering theory, as it is responsible for solving the inverse scattering problem [18]. In work [19], the
Levinson formula was obtained for Sturm Liouville operator, which is not only a necessary condition
but also sufficient for the given collection

{
S (λ) ; λj ; mj (j = 1, n)

}
to be scattering data of the

reconstructed equation. The Levinson-type formulas for boundary conditions containing a spectral
parameter were studied in [20–22].

The paper aims to analyze the spectral characteristics of the Sturm-Liouville problem with a nonlinear
spectral parameter in the boundary condition. In progress, we provide the scattering function and the
spectrum of the boundary value problem (1.1) and (1.2), and present the relation between the number
of eigenvalues and the argument’s variation of the scattering function. This relation is referred to as
the Levinson-type formula.

The remaining paper is structured as follows: Section 2 presents the scattering function and the
spectrum for (1.1) and (1.2). Section 3 investigates the scattering function’s continuity. Finally,
section 4 derives the Levinson-type formula.

2. The Scattering Function S(λ) and the Discrete Spectrum

Let (1.3) hold. Then, as known in [19], there exists a unique solution e(λ, x) of (1.1) which holds the
asymptotic behavior lim

x→+∞
e−iλxe (λ, x) = 1, for ℑ ≥ 0, and can be expressed as

e (λ, x) = eiλx +
∞∫
x

K (x, t) eiλtdt (2.1)

called Jost solution. The function e (λ, x) is analytic with respect to λ in the upper-half plane (ℑ > 0)
and continuous on the real line. Moreover, the kernel function K(x, t) is related as follows:

K(x, x) = 1
2

∞∫
x

φ (ζ) dζ

Let ψ(λ, x) represent the solution of (1.1) with the conditions:

ψ(λ, 0) = α0 + iα1λ− α2λ
2 − iα3λ

3 and ψ′(λ, 0) = β0 + iβ1λ− β2λ
2 − iβ3λ

3

It is obvious that the solution ψ(λ, x) holds (1.2).

Let W [y; z] := y′z − yz′ denote the Wronskian. For any solutions e (λ, x) and e (−λ, x) of (1.1), the
Wronskian W [e (λ, x) ; e (−λ, x)] is independent of x and is equal to 2iλ. Therefore, for all λ ∈ R\{0},
e (λ, x) and e (−λ, x) constitute a fundamental set of solutions of (1.1), and any solution ψ(λ, x) of
(1.1) can be expressed as

ψ (λ, x) = e (λ, x) γ1(λ) + e (−λ, x) γ2(λ) (2.2)

By evaluating the following Wronskians of e (λ, x) and ψ(λ, x),

W [e (λ, x) , ψ(λ, x)] = γ2(λ)2iλ = ψ(λ, 0)e′ (λ, 0) − ψ′(λ, 0)e (λ, 0)

and
W [e (−λ, x) , ψ(λ, x)] = −γ1(λ)2iλ = ψ(λ, 0)e′ (−λ, 0) − ψ′(λ, 0)e (−λ, 0)

we find γ1(λ) and γ2(λ) and substitute in (2.2). Let Θ(λ) and Θ1(λ) be functions such that

Θ(λ) = ψ(λ, 0)e′ (λ, 0) − ψ′(λ, 0)e (λ, 0) (2.3)
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and
Θ1(λ) = ψ(λ, 0)e′ (−λ, 0) − ψ′(λ, 0)e (−λ, 0) (2.4)

Therefore, we obtain the solution of (1.1) with (1.2) such that

ψ (λ, x) = (2iλ)−1 [−Θ1(λ)e (λ, x) + Θ(λ)e (−λ, x)] (2.5)

Define the function
S(λ) = Θ1(λ)[Θ(λ)]−1 (2.6)

called the scattering function of (1.1) and (1.2).

We state some properties of S(λ). Show that Θ(λ) ̸= 0, for all λ ∈ R\{0}. Assuming the contrary,
then there exists a λ0 ∈ R, λ0 ̸= 0, such that

(α0 + iα1λ0 − α2λ
2
0 − iα3λ

3
0)e′ (λ0, 0) = (β0 + iβ1λ0 − β2λ

2
0 − iβ3λ

3
0)e (λ0, 0)

Besides,
2iλ0 = W [e(λ0, 0), e(λ0, 0)]

= e′(λ0, 0)e(λ0, 0) − e(λ0, 0)e′(λ0, 0)

= |e (λ0, 0)|2 2iℑ
(
β0+iβ1λ0−β2λ2

0−iβ3λ3
0

α0+iα1λ0−α2λ2
0−iα3λ3

0

)
From the result,

|e (λ0, 0)|2
[
α1β0 − α0β1 + (α2β1 − α1β2) |λ0|2 + (α3β2 − α2β3) |λ0|4

]
∣∣α0 + iα1λ0 − α2λ2

0 − iα3λ3
0
∣∣2 = −1

This is a contradiction since the left hand is positive, which proves the claim.

Therefore, firstly, S(λ) is defined on (−∞, 0) and (0,∞), and secondly, it is continuous in these
intervals, which can be observed from the definition of Θ(λ). In section 3, the continuity of S(λ) at
λ = 0 is investigated. Next, Θ(λ) is analytic function of λ since e (λ, 0) and e′ (λ, 0) are analytic in
the upper half plane.

From the definition of S(λ), we derive that the function −1 − S(λ) belongs to the space L2 (−∞,∞).
Using (2.1) and substituting related expressions into the Θ(λ),

Θ(λ) = (α0 + iα1λ− α2λ
2 − iα3λ

3)
{
iλ−K(0, 0) +

∞∫
0
Kx (0, t) eiλtdt

}

−(β0 + iβ1λ− β2λ
2 − iβ3λ

3)
{

1 +
∞∫
0
K (0, t) eiλtdt

}

= (iλ)4
[
α3 + O

(
1
λ

)]
(2.7)

as |λ| → ∞. Similarly,

Θ1(λ) = (α0 + iα1λ− α2λ
2 − iα3λ

3)
{

−iλ−K(0, 0) +
∞∫
0
Kx (0, t) e−iλtdt

}

−(β0 + iβ1λ− β2λ
2 − iβ3λ

3)
{

1 +
∞∫
0
K (0, t) e−iλtdt

}

= (iλ)4
[
−α3 + O

(
1
λ

)]
(2.8)



Journal of New Theory 48 (2024) 1-10 / Spectral Characteristics of the Sturm-Liouville Problem with Spectral · · · 4

Then, the following result is obtained:

−1 − S(λ) = O
( 1
λ

)
, |λ| → ∞ (2.9)

Therefore, −1 − S(λ) ∈ L2 (−∞,∞).

Lemma 2.1. For all λ ∈ R\{0},

S(λ) = S(−λ), |S(λ)| < 1

Proof. Since q(x) is real, it follows that e (λ, 0) = e (−λ, 0). For λ ∈ R\{0}, ψ(λ, 0) = ψ(−λ, 0) and
ψ′(λ, 0) = ψ′(−λ, 0), it follows from (2.3) and (2.4) that Θ(λ) = Θ(−λ) and Θ1(λ) = Θ1(−λ), which
shows S(λ) = S(−λ), for all λ ∈ R\{0}.

To show |S(λ)| < 1, the following equality is obtained:

|S(λ)|2 = S(λ) · S(λ)

= |ψ(λ,0)|2·|e′(λ,0)|2+|ψ′(λ,0)|2·|e(λ,0)|2−2ℜ(ψ(λ,0)·ψ′(λ,0)·e(λ,0)·e′(λ,0))
|ψ(λ,0)|2·|e′(λ,0)|2+|ψ′(λ,0)|2·|e(λ,0)|2−2ℜ(ψ(λ,0)·ψ′(λ,0)·e′(λ,0)·e(λ,0))

for all λ ∈ R\{0}. Using (1.4),[
ψ(λ, 0) · ψ′(λ, 0) − ψ′(λ, 0) · ψ(λ, 0)

]
·
[
e′ (λ, 0) e (λ, 0) − e′ (λ, 0)e (λ, 0)

]
= 2iℑ

(
ψ(λ, 0) · ψ′(λ, 0)

)
·W [e (λ, 0) , e (λ, 0)]

= −4λ2 [α1β0 − α0β1 + (α2β1 − α1β2)λ2 + (α3β2 − α2β3)λ4]
< 0

which yields

−ψ(λ, 0) · ψ′(λ, 0) · e (λ, 0) · e′ (λ, 0) − ψ(λ, 0) · ψ′(λ, 0) · e′ (λ, 0) · e (λ, 0)

< −ψ(λ, 0) · ψ′(λ, 0) · e′ (λ, 0) · e (λ, 0) − ψ(λ, 0) · ψ′(λ, 0) · e′ (λ, 0) · e (λ, 0)

i.e.,

−2ℜ
(
ψ(λ, 0) · ψ′(λ, 0) · e (λ, 0) · e′ (λ, 0)

)
< −2ℜ

(
ψ(λ, 0) · ψ′(λ, 0) · e′ (λ, 0) · e (λ, 0)

)
and then

|ψ(λ, 0)|2 ·
∣∣e′ (λ, 0)

∣∣2 +
∣∣ψ′(λ, 0)

∣∣2 · |e (λ, 0)|2 − 2ℜ
(
ψ(λ, 0) · ψ′(λ, 0) · e (λ, 0) · e′ (λ, 0)

)
< |ψ(λ, 0)|2 ·

∣∣e′ (λ, 0)
∣∣2 +

∣∣ψ′(λ, 0)
∣∣2 · |e (λ, 0)|2 − 2ℜ

(
ψ(λ, 0) · ψ′(λ, 0) · e′ (λ, 0) · e (λ, 0)

)
which shows |S(λ)|2 < 1, that is, |S(λ)| < 1, for all λ ∈ R\{0}. Thus, the lemma is proved.

We proceed to research the spectrum of the boundary value problem (1.1) and (1.2). Therefore, we
investigate the scattering function in more detail. It is a meromorphic function in the upper half plane
ℑλ > 0, with poles at the zeros of the function Θ(λ).

Lemma 2.2. The function Θ(λ) has only finitely many zeros in the upper half plane ℑ > 0. The
zeros of Θ(λ) are simple and pure imaginary.

Proof. If we assume that ρ(x) ≡ 1 in [11], the proof of the lemma can be obtained similarly.

Let iλj such that λj > 0, for all j = 1, n, be the zeros of the function Θ(λ), called the singular values
of (1.1) and (1.2). Thus, the numbers mj , for all j = 1, n, are defined by
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m−2
j ≡

∞∫
0

|e (iλj , x) |2dx+
|e (iλj , 0) |2

[
1
2

2∑
k=0

(α1+kβk − αkβ1+k)λ2k−1
j +

1∑
k=0

(αkβ2+k − α2+kβk)λ2k
j

]
|α0 − α1λj + α2λ2

j − α3λ3
j |2

and called the normalized numbers for (1.1) and (1.2). As a result, we can give the following definition.

Definition 2.3. The collection of quantities
{
S (λ) ; iλj ; mj (j = 1, n)

}
is called the scattering data

of the boundary value problem (1.1) and (1.2).

Based on the scattering data, form an integral equation for the kernel K(x, y).

Theorem 2.4. For every fixed x ≥ 0, the kernel K(x, y) of the solution (2.1) satisfies the integral
equation, called the main equation

K(x, y) + F (x+ y) +
∞∫
x

K(x, t)F (t+ y)dt = 0, y > x (2.10)

where

F (x) =
n∑
j=1

m2
je

−λjx + 1
2π

∞∫
−∞

(−1 − S(λ))eiλxdλ

Proof. The proof is obtained similarly for the case ρ(x) ≡ 1 in [11].

3. The Scattering Function’s Continuity

This section presents the scattering function’s continuity.

Theorem 3.1. For all λ ∈ R, the function S(λ) is continuous.

Proof. From section 2, Θ(λ) ̸= 0, for all λ in the intervals (−∞, 0) and (0,∞), and S(λ) is defined
on (−∞, 0) and (0,∞) and continuous in these intervals. From the form (2.7) of Θ(λ), if Θ(0) ̸= 0,
then S(λ) is continuous at zero and S(0) = 1. It remains to investigate the case:

Θ(0) = α0

−K(0, 0) +
∞∫

0

Kx(0, t)dt

− β0

1 +
∞∫

0

K(0, t)dt

 = 0

Moreover, if we substitute x = 0 into (2.10), then

K(0, y) + F (y) +
∞∫

0

K(0, t)F (t+ y)dt = 0 (3.1)

Integrating (3.1) according to y from z to ∞, letting t+ y = ξ, and applying the integration by parts,1 +
∞∫

0

K(0, y)dy


∞∫
z

F (y)dy +
∞∫
z

K(0, y)dy −
∞∫

0

F (t+ z)


∞∫
t

K(0, ξ)dξ

 dt = 0 (3.2)

We now apply the same procedure to the derivation of the main equation concerning x for obtaining−K(0, 0) +
∞∫

0

Kx(0, y)dy


∞∫

z

F (y)dy − F (z) +
∞∫

z

Kx(0, y)dy −
∞∫

0

F (t+ z)


∞∫

t

Kx(0, ξ)dξ

 dt = 0 (3.3)

Multiplying (3.3) by (α0 +iα1λ−α2λ
2 −iα3λ

3) and (3.2) by (β0 +iβ1λ−β2λ
2 −iβ3λ

3) and subtracting
the latter from the former,
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0 =
[
(α0 + iα1λ− α2λ

2 − iα3λ
3)
{

−K(0, 0) +
∞∫
0
Kx(0, y)dy

}

− (β0 + iβ1λ− β2λ
2 − iβ3λ

3)
{

1 +
∞∫
0
K(0, y)dy

}]
∞∫
z
F (y)dy

+(α0 + iα1λ− α2λ
2 − iα3λ

3)
∞∫
z
Kx(0, y)dy

−(β0 + iβ1λ− β2λ
2 − iβ3λ

3)
∞∫
z
K(0, y)dy − (α0 + iα1λ− α2λ

2 − iα3λ
3)F (z)

−
∞∫
0

{∞∫
t

[
(α0 + iα1λ− α2λ

2 − iα3λ
3)Kx(0, ξ) − (β0 + iβ1λ− β2λ

2 − iβ3λ
3)K(0, ξ)

]
dξ

}
F (t+ z)dt

Letting λ → 0,

α0F (z) =
[
α0

{
−K(0, 0) +

∞∫
0
Kx(0, y)dy

}
− β0

{
1 +

∞∫
0
K(0, y)dy

}]
∞∫
z
F (y)dy

+
∞∫
z

[α0Kx(0, y)dy − β0K(0, y)] dy

−
∞∫
0

{∞∫
t

[α0Kx(0, ξ) − β0K(0, ξ)] dξ
}
F (t+ z)dt

Define the functions G(z) and H(z) as follows:

G(z) :=
∞∫
z

[α0Kx(0, y)dy − β0K(0, y)] dy

and
H(z) := α0F (z)

Hence, the integral equation is as follows:

G(z) −
∞∫

0

F (t+ z)G(t)dt = H(z)

G(z) is a bounded solution of the equation

G(z) −
∞∫

0

F (t+ z)G(t)dt = 0, 0 ≤ z < ∞

and every bounded solution of this equation is summable on the half line [0,∞). It means that
G(z) ∈ L1(0,∞) (see p. 211 [19]). Thus, for

K̂1(λ) =α0 + iα1λ− α2λ
2 − iα3λ

3 − β1 − iβ2λ+ β3λ
2

−(α1 + iα2λ− α3λ
2)K(0, 0) + (α1 + iα2λ− α3λ

2)
∞∫
0
Kx(0, t)eiλtdt

−(β1 + iβ2λ− β3λ
2)

∞∫
0
K(0, t)eiλtdt+

∞∫
0
G(t)eiλtdt
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Θ(λ) =α0

(
iλ−K(0, 0) +

∞∫
0
Kx(0, t)eiλtdt

)
− β0

(
1 +

∞∫
0
K(0, t)eiλtdt

)

+(iα1λ− α2λ
2 − iα3λ

3)
(
iλ−K(0, 0) +

∞∫
0
Kx(0, t)eiλtdt

)

−(iβ1λ− β2λ
2 − iβ3λ

3)
(

1 +
∞∫
0
K(0, t)eiλtdt

)

=α0

{
iλ−K(0, 0) +

∞∫
0
Kx(0, t)dt+ iλ

∞∫
0

(∞∫
t
Kx(0, y)dy

)
eiλtdt

}

−β0

{
1 +

∞∫
0
K(0, t)dt+ iλ

∞∫
0

(∞∫
t
K(0, y)dy

)
eiλtdt

}

+iλ
[
iα1λ− α2λ

2 − iα3λ
3 − β1 − iβ2λ+ β3λ

2 − (α1 + iα2λ− α3λ
2)K(0, 0)

]
+iλ

[
(α1 + iα2λ− α3λ

2)
∞∫
0
Kx(0, t)eiλtdt− (β1 + iβ2λ− β3λ

2)
∞∫
0
K(0, t)eiλtdt

]

=α0

{
−K(0, 0) +

∞∫
0
Kx(0, t)dt

}
− β0

{
1 +

∞∫
0
K(0, t)dt

}

+iλ
∞∫
0

{∞∫
t

[α0Kx(0, y) − β0K(0, y)] dy
}
eiλtdt

+iλ
[
iα1λ− α2λ

2 − iα3λ
3 − β1 − iβ2λ+ β3λ

2 − (α1 + iα2λ− α3λ
2)K(0, 0)

]
+iλ

[
(α1 + iα2λ− α3λ

2)
∞∫
0
Kx(0, t)eiλtdt− (β1 + iβ2λ− β3λ

2)
∞∫
0
K(0, t)eiλtdt

]

= iλK̂1(λ)

(3.4)

In a similar manner, from (2.8),
Θ1(λ) = −iλK̂2(λ) (3.5)

where
K̂2(λ) =α0 + iα1λ− α2λ

2 − iα3λ
3 + β1 + iβ2λ− β3λ

2

+(α1 + iα2λ− α3λ
2)K(0, 0) − (α1 + iα2λ− α3λ

2)
∞∫
0
Kx(0, t)e−iλtdt

+(β1 + iβ2λ− β3λ
2)

∞∫
0
K(0, t)e−iλtdt+

∞∫
0
G(t)e−iλtdt

According to (2.6), (3.4), and (3.5),

S(λ) = −K̂2(λ)
K̂1(λ)

Taking into account the identity (2.5),

2ψ(λ, x) = K̂1(λ) {e(−λ, x) − S(λ)e(λ, x)}

from which it follows that K̂1(0) ̸= 0, otherwise it would be ψ(0, x) = 0 and it contradicts ψ(0, 0) ̸= 0.
This shows that S(λ) is continuous at λ = 0 and completes the proof.

Consequently, from these results and section 2, S(λ) is defined over (−∞,∞) and continuous in this
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interval. Moreover, in the case α1 = β1 = 0,

S(0) =
{

1, Θ(λ) ̸= 0
−1, Θ(λ) = 0

(3.6)

4. The Levinson-Type Formula

This section describes the Levinson-type formula for the considered boundary value problem.

Theorem 4.1. The following formula holds:

n− t(Θ) = µ(+∞) − µ(+0)
π

(4.1)

where n is the number of the zeros of the function Θ(λ) in the upper half plane,

µ(λ) = arg Θ(λ), and t(Θ) =

 2, Θ(0) ̸= 0
3
2 , Θ(0) = 0

(4.2)

Proof. To achieve formula (4.1), the function Θ(λ) is analyzed using the argument principle. We
now assume that

ΓR,ϵ = C+
R ∪ C−

R ∪ [−R,−ϵ] ∪ [ϵ, R]

for sufficiently large R > 0 and sufficiently small ϵ, where C+
R is a circle oriented counterclockwise and

centered at the origin with radius R, and C−
ϵ is a circle oriented clockwise and centered at the origin

with radius ϵ.

Define the function arg Θ(λ) = µ(λ). Then, the function Θ(λ) is analytic in the upper half plane
and continuous along the real axis. Hence, the increment of µ(λ) equals the number of zeros of Θ(λ)
multiplied by 2π as λ runs over the real axis from −∞ to ∞, bypassing the point λ = 0 along semicircle
of sufficiently small radius ϵ in the upper half-plane.

As R → ∞,

{µ(−ϵ) − µ(−∞)} + {µ(+ϵ) − µ(−ϵ)} + {µ(+∞) − µ(+ϵ)} + 4π = 2πn

because

Θ(λ) = (iλ)4
[
α3 +O( 1

λ
)
]
, |λ| → ∞

for ℑ ≥ 0. If Θ(0) ̸= 0, then
lim
ϵ→0

{µ(+ϵ) − µ(−ϵ)} = 0

However, if Θ(0) = 0, then Θ(λ) = iλK̂1(λ), K̂1(0) ̸= 0 by (3.4). Hence,

lim
ϵ→0

{µ(+ϵ) − µ(−ϵ)} = −π

When ϵ → 0,

2 {µ(∞) − µ(0)} +

 0, Θ(0) ̸= 0
−π, Θ(0) = 0

+ 4π = 2πn

since lim
ϵ→0

{µ(−ϵ) − µ(−∞)} = lim
ϵ→0

{µ(∞) − µ(ϵ)}. Thus,

n− t(Θ) = µ(+∞) − µ(0)
π

where t(Θ) is defined by the formula (4.2), which proves the theorem.
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Proposition 4.2. For α1 = β1 = 0, the increase in the logarithm of the scattering function is
associated with the number of eigenvalues of the problem (1.1) and (1.2) by the following equality

n− 2 = lnS(+0) − lnS(∞)
2πi − 1 − S(0)

4 (4.3)

Proof. According to (2.9) and (3.6), |S(0)| = |S(∞)| = 1, and hence lnS(+0) = −2iµ(0) and
lnS(∞) = −2iµ(∞). Considering these results in (4.1), (4.3) holds.

Definition 4.3. (4.3) is called the Levinson-type formula for (1.1) and (1.2).

5. Conclusion

Levinson’s theorem is a valuable tool for understanding quantum scattering phenomena. In this
work, we have provided the scattering function and the spectrum for (1.1) and (1.2). The scattering
function’s continuity has been studied. The formula connecting the number of eigenvalues of (1.1) and
(1.2) to the argument’s variation of the function Θ(λ) over the interval (−∞,∞) has been introduced.
In a special case, we have derived the Levinson-type formula.

The study described in the text focuses on conducting spectral analysis of a second-order differential
operator with nonlinear dependence on spectral parameters in boundary conditions. In future research,
this methodology can be extended to various boundary value problems, and the boundary value
problem (1.1) and (1.2) can be generalized for boundary conditions involving higher order polynomials
of the spectral parameter.

Author Contributions

The author read and approved the final version of the paper.

Conflicts of Interest

The author declares no conflict of interest.

Ethical Review and Approval

No approval from the Board of Ethics is required.

References

[1] D. S. Cohen, An integral transform associated with boundary conditions containing an eigenvalue
parameter, SIAM Journal on Applied Mathematics 14 (5) (1966) 1164–1175.

[2] L. Collatz, Eigenwertaufgaben mit technischen anwendungen, Akademische Verlagsgesellschaft
Geest & Portig, Leipzig, 1949.

[3] P. A. Binding, P. J. Browne, B. A. Watson, Inverse spectral problems for Sturm-Liouville equations
with eigenparameter dependent boundary conditions, Journal of the London Mathematical Society
62 (1) (2000) 161–182.

[4] P. A. Binding, P. J. Browne, B. A. Watson, Sturm Liouville problems with boundary conditions
rationally dependent on the eigenparameter, II, Journal of Computational and Applied Mathe-
matics 148 (1) (2002) 147–168.

[5] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the
boundary conditions, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 77
(3-4) (1977) 293–308.



Journal of New Theory 48 (2024) 1-10 / Spectral Characteristics of the Sturm-Liouville Problem with Spectral · · · 10

[6] Ch. G. Ibadzadeh, L. I. Mammadova, I. M. Nabiev, Inverse problem of spectral analysis for
diffusion operator with nonseparated boundary conditions and spectral parameter in boundary
condition, Azerbaijan Journal of Mathematics 9 (1) (2019) 171–189.

[7] I. M. Nabiev, Reconstruction of the differential operator with spectral parameter in the boundary
condition, Mediterranean Journal of Mathematics 19 (3) (2022) 1–14.

[8] L. I. Mammadova, I. M. Nabiev, Spectral properties of the Sturm–Liouville operator with a spectral
parameter quadratically included in the boundary condition, Vestnik Udmurtskogo Universiteta
Matematika Mekhanika Komp’yuternye Nauki 30 (2) (2020) 237—248.

[9] A. A. Nabiev, On a boundary value problem for a polynomial pencil of the Sturm-Liouville equation
with spectral parameter in boundary conditions, Applied Mathematics 7 (18) (2016) 2418–2423.

[10] V. N. Pivovarchik, Direct and inverse problems for a damped string, Journal of Operator Theory
42 (1999) 189–220.
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