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 In the face of increasing complexity and uncertainty, new multi-criteria decision making 

(MCDM) methods facilitate making informed and rational decisions by enhancing problem-

solving skills. Therefore, the discovery of new MCDM methods is of great importance. In this 

context, this study introduces a new MCDM model (Proportional Superiority Approach-PSA) 

based on the fundamental logic of measuring the performance of decision alternatives, which 

relies on the proportional increase of decision alternatives to each other, aiming to expand 

the modeling logic of MCDM and enrich MCDM literature. Initially, a comparative analysis 

of the proposed method was conducted. According to the findings, although the relationship 

of PSA with other MCDM methods included in the study was high. Therefore, based on the 

results of the comparative analysis, it was observed that the proposed method is credible and 

reliable. In the scope of the simulation analysis, 10 scenarios were obtained, and it was found 

that as the number of scenarios increased, the relationship levels of the PSA method with 

other methods differed. Furthermore, the PSA method was found to be capable of 

discriminating between the performances of decision alternatives through variance 

measurement. Finally, in the analysis, the level of variance of the PSA method was measured 

within the scenarios, and it was found that the variances of the PSA method were 

homogeneous within the scenarios. Therefore, according to the results of the simulation 

analysis, it was evaluated that the PSA method is robust and stable. 
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I. INTRODUCTION 

Multi-criteria decision-making (MCDM) methods are a critical tool for making informed decisions in complex 

situations. They enable decision-makers to consider multiple, often conflicting, criteria simultaneously, leading to 

more comprehensive and effective choices (Puška, 2013). MCDM methods are powerful tools that can significantly 

enhance the decision-making process. By providing a structured framework for considering multiple criteria, 

integrating diverse perspectives, and enhancing transparency, MCDM methods enable decision-makers to navigate 

the complexities of real-world decisions and make more informed, effective, and defensible choices (Triantaphyllou, 

2010). 

When examining the MCDM literature, it is possible to encounter many methods that measure the performances or 

optimality of decision alternatives. The most significant feature of these methods is that each has its own unique 

calculation method (Behl, 2020). Developing original and new MCDM methods is important to provide more specific 

and accurate solutions to problems, offer new perspectives and solution approaches, expand the application areas of 

MCDM, and benefit from scientific and technological advancements (Amor et al., 2021).  

 

In this context, to contribute to, enrich, and provide a new perspective to the MCDM literature, the Proportional 

Superiority Approach (PSA) method, which is new and original in selection problems or measuring the performances 

of decision alternatives, is presented in the research. The motivation of the study is determined as the method's 

reliance on more realistic values for assessing the quantitative superiority of decision alternatives, compared to other 

MCDM methods that measure the performance of decision alternatives. This is because, except for the TODIM 

method, other MCDM methods are based on the idea that the decision-maker is always seeking a solution 

corresponding to the maximum value (Ecer, 2020). However, in the proposed method, as in the TODIM method, 

decision alternatives are compared with each other based on criteria, and those with quantitative superiority are 

ranked. Therefore, in this case, the true superiority value of the decision alternatives is determined by comparing the 

values corresponding to each criterion for each decision alternative. The basis of the proposed method lies in the 

increase rate of values of decision alternatives for each criterion. Accordingly, some commonly used MCDM 

methods in the literature and the proposed method are mentioned in the study. In the conclusion section, implications 

regarding the proposed method are provided based on the findings of the research.  

II.  MATERIAL AND METHOD 

A. Some MCDM Methods in the Literature and Their Characteristics 

When examining the MCDM literature, it is evident that numerous techniques are employed for the selection of 

decision alternatives or the measurement of their performances (Lopez et al., 2023; Van Thanh, 2020). Accordingly, 

when evaluating MCDM research, it is observed that many researchers utilize techniques such as SAW (Simple 

Additive Weighting), WPM (Weighted Product Method), WASPAS (Weighted Aggregated Sum Product 

Assessment), COPRAS (Complex Proportional Assessment), EDAS (Evaluation Based on Distance from Average 

Solution), ARAS (Additive Ratio Assessment), TOPSIS (Technique for Order Preference by Similarity to Ideal 

Solution), MAUT (Multiple Attribute Utility Theory), PSI (Preference Selection Index), and TODIM (Tornado de 

Decisao Interativa Multicriterio) for selection problems (Karende et al., 2016; Mousavi-Nasab and Sotoudeh-Anvari, 

2017; Biswas et al., 2019; Chourabi et al., 2019; ; Yadav et al., 2019; Goswami et al., 2021; Karakış, 2021; Tiwari 

and Kumar, 2021; Dhanalakshmi et al., 2022). SAW is also described as a weighted linear combination or scoring 

method. For the method to be correctly applied, data must be numerical and comparable (Al Khoiry and Amelia, 

2023; Taherdoost, 2023). In the method, the first step in calculating the performance of decision alternatives or 

solving selection problems is to create a decision matrix. Subsequently, the values in the decision matrix are 

normalized. In the third step, a weighted normalized decision matrix is obtained. In the final step, the normalized 

decision matrix values for each decision alternative are summed, and the summed values are sorted from highest to 

lowest (Sotoudeh-Anvari et al., 2018; Dinçer, 2019; Demirci, 2020). 
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WPM compares each decision alternative with others by multiplying several ratios for each criterion, one for each 

decision alternative. Due to the method's exponential nature, it is important for the sum of criterion weights to be 

equal to 1 (Chinnasamy et al., 2023). In this method, the first step involves creating a decision matrix. In the second 

step, the values in the decision matrix are normalized. In the third step, the exponential structure of the normalized 

values is assigned criterion weights. Finally, new values specific to decision alternatives are determined by 

multiplying criterion-wise values, and the resulting performance scores are ranked from highest to lowest (Demir et 

al., 2021; Onajite and Oke, 2021). WASPAS is a method provided by combining the SAW and WPM techniques. In 

this method, the combined optimality coefficient and total relative importance quantity are calculated. The total 

relative importance value explains the performance of decision alternatives or the preferred alternative in decision 

problems (Handayani et al., 2023). The first step of the WASPAS method involves preparing the decision matrix. In 

the second step, the normalization process of the decision matrix values is carried out. In the third step, the relative 

importance value of alternatives is determined according to the SAW and WPM methods. Finally, the combined 

optimal value of decision alternatives is calculated, and the calculated values are ranked from highest to lowest 

(Ayçin, 2019; Stanujkić and Karabašević, 2023). 

COPRAS method places importance on whether criteria are benefit-oriented or cost-oriented. In this method, the 

comparison of decision alternatives can be achieved with percentage values (Varatharajulu et al., 2022). The first 

step of the method involves creating a decision matrix. In the second step, the values in the decision matrix are 

normalized. In the third step, the normalized decision matrix values are weighted. The fourth step takes into account 

benefit-oriented and cost-oriented criteria by separately summing them in the weighted normalized decision matrix. 

In the fifth step, the relative importance value of each decision alternative is calculated based on the benefit-oriented 

and cost-oriented weighted normalized values. In the final step of the method, the performance index value of each 

decision alternative is measured, and the measured values are ranked from highest to lowest (Paksoy, 2017; Hezer et 

al., 2021). 

In the EDAS method, the best decision alternative is determined based on its distance from the average solution 

rather than positive (ideal) or negative (anti-ideal) solutions. In this context, calculating the positive and negative 

distances from the average solution is crucial. Accordingly, an increase in positive values and a decrease in negative 

distances from the average solution enhance the preference or performance of the decision alternative (Sudha, 2019). 

The first step of the method involves creating a decision matrix. In the second step, the average solution value is 

measured according to the criteria. In the third step, the positive (PDA) and negative distances (NDA) from the 

average solution are calculated for each criterion corresponding to each decision alternative. In the fourth step, PDA 

and NDA values are weighted, and the weighted values are summed for PDAs and NDAs separately on a decision 

alternative basis to calculate the weighted total of positive alternatives (SP) and negative alternatives (SN), 

respectively. In the fifth step, normalized SP values (NSP) are calculated by dividing SP values by the maximum SP 

value. Conversely, normalized SN values (NSN) are measured by subtracting SN values from 1 divided by the 

maximum SN values. Finally, the performance scores of decision alternatives are measured by averaging NSP and 

NSN values, and the ranked scores are sorted from highest to lowest (Özbek, 2019; Yıldırım et al., 2020; Trung, 

2021). 

In the ARAS method, the performance and selection of decision alternatives are determined based on the assessment 

of the benefit degrees of decision alternatives. For this purpose, the optimality value of each decision alternative 

needs to be compared with the optimality function value of the reference alternative (Vijayakumar, 2020). 

Accordingly, in the method, the first step involves obtaining a decision matrix. In the second step, the values in the 

decision matrix are standardized. In the third step, the standardized decision matrix values are weighted. In the fourth 

step, the optimality function value for each decision alternative is calculated based on the weighted standardized 

decision matrix values. In the final step of the method, the benefit degrees or performances of decision alternatives 

are measured by comparing the optimality function value of each decision alternative to the optimality function value 

of the best alternative, and the measured values are ranked from highest to lowest (Karabašević et al., 2015; Uludağ 

and Doğan, 2021). 
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In the TOPSIS method, the selection or performance of decision alternatives varies based on their proximity to the 

positive ideal and the distance from the negative ideal. In this context, the positive ideal solution comprises the best 

values obtained from the criteria, while the negative ideal solution consists of the worst values obtained from the 

criteria. Therefore, for a decision alternative to be selectable, it needs to be closest to the positive ideal or possess the 

maximum quantity derived from the criteria compared to other alternatives (Kabir and Hasin, 2012; Ciardiello and 

Genovese, 2023). In this method, the first step involves obtaining a decision matrix. In the second step, the values in 

the decision matrix are standardized. The third step of the method involves weighting the standardized decision 

matrix values. In the fourth step, the positive and negative ideal values for each decision alternative are determined. 

In the fifth step, the distance values from the positive and negative ideal solutions for each criterion are calculated. 

Finally, the relative closeness values for each decision alternative are measured, and the calculated values are ranked 

from highest to lowest (Aktaş et al., 2015; Çelikbilek, 2018; Kaya and Karaşan, 2018; Azad, 2019; Tepe, 2021). 

The MAUT method is a technique based on a real-valued function or utility that needs to be maximized in any 

decision problem. In other words, this method is used to find the solution that maximizes utility in decision problems 

with multiple conflicting criteria. In the method, decision maker preferences are formulated as utility functions 

defined over the criteria (Maharani et al., 2021). Accordingly, the first step of the method involves providing a 

decision matrix. In the second step, normalization of the decision matrix values is carried out. In the third step of the 

method, for each decision alternative, the normalized value corresponding to the criterion is multiplied by the 

criterion weights, and then the new criterion values corresponding to the decision alternatives are summed to calculate 

the weighted total utility values for each decision alternative, and the calculated values are ranked from highest to 

lowest (Atan and Altan, 2020; Taufik et al., 2020; Öztel and Alp, 2020). Additionally, Ecer (2020) has described the 

standardization process of the decision matrix and the utility values differently in the MAUT method. According to 

this, for the standardization process of cost-oriented criteria in particular, it has been stated that 1 is added to the 

standard value of cost-oriented criteria in the classical MAUT method. Furthermore, the utility functions of decision 

alternatives are calculated by comparing the value derived from the score standardized as the power of the natural 

logarithm base 'e' minus 1 to the score standardized as the square of the value, minus 1, compared to the value of 

1.71. 

The PSI method relies on basic statistical knowledge, and its greatest advantage, unlike other MCDM methods, lies 

in not requiring assigning relative importance degrees among criteria or weighting criteria during the comparison of 

criteria. In this sense, the method is quite useful in situations where there is disagreement about assigning weights to 

the problem criteria (Tuş and Adalı, 2018). The method fundamentally relies on calculating preference variance, 

overall preference, and preference index. In this regard, the first step of the method involves providing a decision 

matrix. In the second step, normalization of the decision matrix values is achieved. In the third step, the average value 

of each criterion is calculated. Then, the sum of the squares of the differences between the normalized value and the 

normalized average value is calculated for each criterion. This way, the preference variance values for each criterion 

are determined. In the fourth step of the method, initially, the deviation scores of preference values are calculated by 

subtracting 1 from the preference values for each criterion. Then, the deviation scores of preference values for each 

criterion are divided by the sum of deviation scores of preference values for the criteria to obtain overall preference 

values for the criteria. In the final stage of the method, the normalized decision matrix values are multiplied by the 

overall preference values for each criterion corresponding to the decision alternatives, and the multiplied values are 

summed to calculate the preference index values for the decision alternatives (Petković et al., 2017; Ulutaş and Topal, 

2020).  

TODIM utilizes a global preference value measure that can be calculated using the expectation theory paradigm. The 

method's core principle is based on the dominance of decision alternatives over each other. In the TODIM method, 

the first step is to construct the decision matrix. The second step involves normalizing the values of the decision 

matrix. The third step of the method involves identifying the reference criterion, while the fourth step involves 

calculating the dominance values of the decision alternatives. Finally, the overall dominance level of the decision 

alternatives relative to each other is computed (Ecer, 2020). 



JSTER - VOL. 5 NO. 2 (2024) 

 

 

106 

 

 

B. Theoretical Background of Proposed Method: Proportional Superiority Approach (PSA)  

In the MCDM literature, many methods have been developed with unique mathematical models or logic for 

measuring the performance of decision alternatives or solving selection problems (Ecer, 2020). Within the scope of 

MCDM, these mathematical models, obtained according to the respective method, demonstrate the quantitative 

superiority of decision alternatives and, consequently, their optimality or selectability. In this context, in the SAW 

method, the normalization of any decision alternative's criterion values and the corresponding criterion weight being 

higher indicate its quantitative superiority compared to other decision alternatives. This is because in the SAW 

method, the performances of decision alternatives are determined by the sum of the products of all normalized 

criterion values and their corresponding criterion weights (Churchman and Ackoft, 1954). 

In the WPM method, the quantitative superiority of any decision alternative arises from the exponential structure of 

the WPM method, where criterion values and their weights in the decision matrix are higher compared to other 

decision alternatives (Bridgman, 1922). The WASPAS method, being a combination of the SAW and WPM methods, 

ensures the superiority of any decision alternative over others, as described in the SAW and WPM methods 

(Zawadskas et al., 2012). In the COPRAS method, the quantitative superiority of any decision alternative is achieved 

by the increase/decrease of the total weighted standardized indexes for each decision alternative in terms of 

benefit/cost direction (Zavadskas and Kaklauskas, 1996). In the EDAS method, the superiority of any decision 

alternative is ensured by the positive/negative direction of the values corresponding to benefit-oriented criteria for 

the respective decision alternative in the decision matrix being greater/less than the positive/negative direction 

average value. Conversely, for cost-oriented criteria, the superiority of any decision alternative is determined by the 

values corresponding to cost-oriented criteria for the respective decision alternative in the decision matrix being 

less/greater than the negative/positive direction average value (Ghorabaee et al., 2015). 

In the ARAS method, the optimality of each decision alternative is measured by the total of the normalized weighted 

values for each criterion in the decision matrix, including the optimal values (the highest benefit-oriented value for 

each criterion and the lowest cost-oriented value). This is because for any decision alternative to be optimal, the ratio 

of the total of the normalized weighted values corresponding to the criteria for that decision alternative to the total of 

the optimal normalized weighted values is expected to be high (Zavadskas et al., 2010). In the TOPSIS method, the 

optimality of decision alternatives is determined by their distances to the ideal points. In this regard, if the negative 

distance value (negative ideal proximity) of any decision alternative in the normalized weighted matrix with respect 

to the criteria increases and the positive distance value (positive ideal proximity) decreases, the optimality level of 

that decision alternative increases. This is because a greater difference between the weighted normalized value of 

any decision alternative and the negative ideal solution value (the lowest value) implies a greater proximity of that 

decision alternative to the ideal solution. Conversely, a greater difference between the weighted normalized value of 

any decision alternative and the positive ideal solution value (the highest value) implies a lesser proximity of that 

decision alternative to the ideal solution (Hwang and Yoon, 1981). In the MAUT method, the higher the normalized 

values of any decision alternative, the higher its preference. This is because in this method, the optimality of decision 

alternatives is calculated by the sum of the products of criterion weights and normalized values for each decision 

alternative (Keeney and Raiffa, 1976). 

In the PSI method, the optimal decision alternative can be determined by having low variance values for each 

criterion's preference variance (variability) after normalization. This is because in the PSI method, if the decision 

alternative values for each criterion in the normalized decision matrix are greater than the average criterion value, it 

will reduce the total variance (variability) of the criteria. Furthermore, to achieve the best optimal value for decision 

alternatives, it is necessary for the difference between the total variance (variability) value and 1 to be maximized 

(Maniya and Bhatt, 2010). The core idea of the TODIM method is to measure the dominance degree of each 

alternative over the others using the expected value function. Essentially, in this method, if an alternative has the 

highest overall dominance value over the other alternatives, then the quantitative superiority of that alternative is 

greater (Ecer, 2020).  

In conclusion, SAW, WPM, WASPAS, and COPRAS methods focus solely on the mathematical model-based 

quantitative superiority of decision alternatives over each other without considering their relative dominance. On the 

other hand, EDAS, ARAS, and TOPSIS methods determine the performance of alternatives based on the 
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mathematical model's consideration of the quantitative values that should be taken into account for each alternative. 

Unlike other MCDM methods, the TODIM method identifies the quantitative superiority of each alternative by 

comparing it to each other alternative based on the mathematical model. The fundamental logic of the proposed 

method's mathematical model relies on the increase ratio among criteria for each decision alternative. Therefore, in 

this method, the optimality of any decision alternative is sought based on the proportional increase of its criterion 

values compared to those of other decision alternatives. Therefore, it can be considered that the fundamental structure 

of the proposed method is based on the logic of the TODIM method.  In this context, the implementation steps of the 

proposed method are outlined below: 

Step 1: Obtaining the Decision Matrix 

𝑖: 1, 2, 3. . . 𝑛, where 𝑛 represents the number of decision alternatives 

𝑗: 1, 2, 3, . . . 𝑚, where 𝑚 represents the number of criteria 

𝐷: Decision matrix 

𝐶: Criterion 

𝑑𝑖𝑗: The decision matrix is constructed according to Equation 1, where "𝑖𝑗" represents the 𝑖 − 𝑡ℎ decision alternative 

on the j-th criterion. 

𝐷 = [𝑑𝑖𝑗]𝑚𝑥𝑛  =

[
 
 
 
 
𝐶1
𝑥 11

𝐶2
𝑥 12

⋯
𝐶𝑛
𝑥 1𝑛

𝑥21
⋮
𝑥𝑚1

𝑥22
⋮
𝑥𝑚2

⋯
⋮
⋯

𝑥2𝑛
⋮
𝑥𝑚𝑛 ]

 
 
 
 

                                                                                                                  (1)   

Step 2: Normalization of Decision Matrix (𝑟𝑖𝑗
∗ ) 

The normalization of the decision matrix is conducted through the utilization of the subsequent equation. Benefit 

criteria undergo normalization using Equation 2, whereas cost criteria are subjected to normalization employing 

Equation 3. 

𝑟𝑖𝑗
∗ =

𝑥𝑖𝑗

𝑥𝑗
𝑚𝑎𝑥                                                                                                                                                                                         (2)        

𝑟𝑖𝑗
∗ =

𝑥𝑗
𝑚𝑖𝑛

𝑥𝑖𝑗
                                                                                                                                                                                         (3)        

The generated normalized decision matrix is shown in Equation 4. 

𝐷 = [𝑟𝑖𝑗
∗ ]
𝑚𝑥𝑛

 = [

𝑥11
∗

𝑥21
∗

⋮
𝑥𝑚1
∗

𝑥12
∗

𝑥22
∗

⋮
𝑥𝑚2
∗

⋯…
⋮
⋯

𝑥1𝑛
∗

𝑥2𝑛
∗

⋮
𝑥𝑚𝑛
∗

]                                                                                                                     (4)   

Step 3: Calculation of Proportional Increases in Criteria for Decision Alternatives (𝑹𝑰) 
In this step, the proportional increases of each criterion for decision alternatives are calculated in two cases. 

Case 1: When the normalized value of the criterion for the normalized decision alternative is numerically greater 

than that of the other decision alternative: 

For the first criterion and the first alternative: 

𝑥11
∗ > 𝑥21

∗   

𝑅𝐼𝑥11∗ → 𝑥21∗
+ =

(𝑥11
∗ − 𝑥21

∗ ). 100

𝑥21
∗                                                                                                                                                      (5)   

𝑥11
∗ > 𝑥31

∗  

𝑅𝐼𝑥11∗ → 𝑥31∗
+ =

(𝑥11
∗ − 𝑥31

∗ ). 100

𝑥31
∗                                                                                                                                                      (6) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

𝑥11
∗ > 𝑥𝑚1

∗  

𝑅𝐼𝑥11∗ → 𝑥𝑚1∗
+ =

(𝑥11
∗ − 𝑥𝑚1

∗ ). 100

𝑥𝑚1
∗                                                                                                                                                    (7) 
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For the first criterion and the second alternative: 

𝑥21
∗ > 𝑥11

∗   

𝑅𝐼𝑥21∗ → 𝑥11∗
+ =

(𝑥21
∗ − 𝑥11

∗ ). 100

𝑥11
∗                                                                                                                                                      (8) 

𝑥21
∗ > 𝑥31

∗   

𝑅𝐼𝑥21∗ → 𝑥31∗
+ =

(𝑥21
∗ − 𝑥31

∗ ). 100

𝑥31
∗                                                                                                                                                      (9) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

𝑅𝐼𝑥21∗ → 𝑥𝑚1∗
+ =

(𝑥21
∗ − 𝑥𝑚1

∗ ). 100

𝑥𝑚1
∗                                                                                                                                                  (10) 

For the first criterion, regarding the mth alternative: 

𝑥𝑚1
∗ > 𝑥11

∗  

𝑅𝐼𝑥𝑚1∗ → 𝑥11
∗

+ =
(𝑥𝑚1
∗ − 𝑥11

∗ ). 100

𝑥11
∗                                                                                                                                 (11) 

𝑥𝑚1
∗ > 𝑥21

∗  

𝑅𝐼𝑥𝑚1∗ → 𝑥21
∗

+ =
(𝑥𝑚1
∗ − 𝑥21

∗ ). 100

𝑥21
∗                                                                                                                                                  (12) 

 
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

   

For the nth criterion, concerning the first alternative: 

𝑥1𝑛
∗ > 𝑥2𝑛

∗  

𝑅𝐼𝑥1𝑛∗ → 𝑥2𝑛∗
+ =

(𝑥1𝑛
∗ − 𝑥2𝑛

∗ ). 100

𝑥2𝑛
∗                                                                                                                                  (13) 

𝑥1𝑛
∗ > 𝑥3𝑛

∗  

𝑅𝐼𝑥1𝑛∗ → 𝑥3𝑛∗
+ =

(𝑥1𝑛
∗ − 𝑥3𝑛

∗ ). 100

𝑥3𝑛
∗                                                                                                                                                   (14) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

 𝑥1𝑛
∗ > 𝑥𝑚𝑛

∗  

𝑅𝐼𝑥1𝑛∗ → 𝑥𝑚𝑛∗
+ =

(𝑥1𝑛
∗ − 𝑥𝑚𝑛

∗ ). 100

𝑥𝑚𝑛
∗                                                                                                                                                 (15) 

For the nth criterion, concerning the second alternative: 

𝑥2𝑛
∗ > 𝑥1𝑛

∗  

𝑅𝐼𝑥2𝑛∗ → 𝑥1𝑛∗
+ =

(𝑥2𝑛
∗ − 𝑥1𝑛

∗ ). 100

𝑥1𝑛
∗                                                                                                                                                   (16) 

𝑥2𝑛
∗ > 𝑥3𝑛

∗  

𝑅𝐼𝑥2𝑛∗ → 𝑥3𝑛∗
+ =

(𝑥2𝑛
∗ − 𝑥3𝑛

∗ ). 100

𝑥3𝑛
∗                                                                                                                                                   (17) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

 𝑥2𝑛
∗ > 𝑥𝑚𝑛

∗  

𝑅𝐼𝑥2𝑛∗ → 𝑥𝑚𝑛∗
+ =

(𝑥2𝑛
∗ − 𝑥𝑚𝑛

∗ ). 100

𝑥𝑚𝑛
∗                                                                                                                                                 (18) 

For the nth criterion, concerning mth alternative: 

𝑥𝑚𝑛
∗ > 𝑥1𝑛

∗  
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𝑅𝐼𝑥𝑚𝑛∗ → 𝑥1𝑛
∗

+ =
(𝑥𝑚𝑛
∗ − 𝑥1𝑛

∗ ). 100

𝑥1𝑛
∗                                                                                                                                                 (19) 

𝑥𝑚𝑛
∗ > 𝑥2𝑛

∗  

𝑅𝐼𝑥𝑚𝑛∗ → 𝑥2𝑛
∗

+ =
(𝑥𝑚𝑛
∗ − 𝑥2𝑛

∗ ). 100

𝑥2𝑛
∗                                                                                                                                                 (20) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

𝑥𝑚𝑛
∗ > 𝑥(𝑚−1)𝑛

∗  

𝑅𝐼𝑥𝑚𝑛∗ → 𝑥(𝑚−1)𝑛
∗

+ =
(𝑥𝑚𝑛
∗ − 𝑥(𝑚−1)𝑛

∗ ). 100

𝑥(𝑚−1)𝑛
∗                                                                                                                                 (21) 

Case 2: When the normalized value of the criterion for decision alternative is numerically smaller than that of the 

other decision alternative: 

For the first criterion and the first alternative: 

 𝑥11
∗ < 𝑥21

∗  

𝑅𝐼𝑥11∗ → 𝑥21∗
− =

(𝑥21
∗ − 𝑥11

∗ ). 100

𝑥11
∗                                                                                                                                                    (22) 

𝑥11
∗ < 𝑥31

∗  

𝑅𝐼𝑥11∗ → 𝑥31∗
− =

(𝑥31
∗ − 𝑥11

∗ ). 100

𝑥11
∗                                                                                                                                                    (23) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

 𝑥11
∗ < 𝑥𝑚1

∗  

𝑅𝐼𝑥11∗ →𝑥𝑚1∗
− =

(𝑥𝑚1
∗ − 𝑥11

∗ ). 100

𝑥11
∗                                                                                                                                                   (24) 

For the first criterion and the second alternative: 

𝑥21
∗ < 𝑥11

∗  

𝑅𝐼𝑥21∗ →𝑥11∗
− =

(𝑥11
∗ − 𝑥21

∗ ). 100

𝑥21
∗                                                                                                                                                     (25) 

𝑥21
∗ < 𝑥31

∗  

𝑅𝐼𝑥21∗ →𝑥31∗
− =

(𝑥31
∗ − 𝑥21

∗ ). 100

𝑥21
∗                                                                                                                                                     (26) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

𝑥21
∗ < 𝑥𝑚1

∗  

𝑅𝐼𝑥21∗ →𝑥𝑚1∗
− =

(𝑥𝑚1
∗ − 𝑥21

∗ ). 100

𝑥21
∗                                                                                                                                                  (27) 

For the first criterion, regarding the mth alternative: 

 𝑥𝑚1
∗ < 𝑥11

∗  

𝑅𝐼𝑥𝑚1∗ →𝑥11
∗

− =
(𝑥11
∗ − 𝑥𝑚1

∗ ). 100

𝑥𝑚1
∗                                                                                                                                                   (28) 

𝑥𝑚1
∗ < 𝑥21

∗  

𝑅𝐼𝑥𝑚1∗ →𝑥21
∗

− =
(𝑥21
∗ − 𝑥𝑚1

∗ ). 100

𝑥𝑚1
∗                                                                                                                                                  (29) 

 
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮
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For the nth criterion, concerning the first alternative: 

 𝑥1𝑛
∗ < 𝑥2𝑛

∗  

𝑅𝐼𝑥1𝑛∗ →𝑥2𝑛∗
− =

(𝑥2𝑛
∗ − 𝑥1𝑛

∗ ). 100

𝑥1𝑛
∗                                                                                                                                                    (30) 

𝑥1𝑛
∗ < 𝑥3𝑛

∗  

𝑅𝐼𝑥1𝑛∗ →𝑥3𝑛∗
− =

(𝑥3𝑛
∗ − 𝑥1𝑛

∗ ). 100

𝑥1𝑛
∗                                                                                                                                                    (31) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

 𝑥1𝑛
∗ < 𝑥𝑚𝑛

∗  

𝑅𝐼𝑥1𝑛∗ →𝑥𝑚𝑛∗
− =

(𝑥𝑚𝑛
∗ − 𝑥1𝑛

∗ ). 100

𝑥1𝑛
∗                                                                                                                                                 (32) 

For the nth criterion, concerning the second alternative: 

𝑥2𝑛
∗ < 𝑥1𝑛

∗  

𝑅𝐼𝑥2𝑛∗ →𝑥1𝑛∗
− =

(𝑥1𝑛
∗ − 𝑥2𝑛

∗ ). 100

𝑥2𝑛
∗                                                                                                                                                    (33) 

𝑥2𝑛
∗ < 𝑥3𝑛

∗  

𝑅𝐼𝑥2𝑛∗ →𝑥3𝑛∗
− =

(𝑥3𝑛
∗ − 𝑥2𝑛

∗ ). 100

𝑥2𝑛
∗                                                                                                                                                    (34) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

 𝑥2𝑛
∗ < 𝑥𝑚𝑛

∗  

𝑅𝐼𝑥2𝑛∗ →𝑥𝑚𝑛∗
− =

(𝑥𝑚𝑛
∗ − 𝑥2𝑛

∗ ). 100

𝑥2𝑛
∗                                                                                                                                                 (35) 

For the nth criterion, concerning the mth alternative: 

𝑥𝑚𝑛
∗ < 𝑥1𝑛

∗  

𝑅𝐼𝑥𝑚𝑛∗ →𝑥1𝑛
∗

− =
(𝑥1𝑛
∗ − 𝑥𝑚𝑛

∗ ). 100

𝑥𝑚𝑛
∗                                                                                                                                                 (36) 

𝑥𝑚𝑛
∗ < 𝑥2𝑛

∗  

𝑅𝐼𝑥𝑚𝑛∗ →𝑥2𝑛
∗

− =
(𝑥2𝑛
∗ − 𝑥𝑚𝑛

∗ ). 100

𝑥𝑚𝑛
∗                                                                                                                                                 (37) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

𝑥𝑚𝑛
∗ < 𝑥(𝑚−1)𝑛

∗  

𝑅𝐼𝑥𝑚𝑛∗ →𝑥2𝑛
∗

− =
(𝑥𝑚𝑛
∗ − 𝑥(𝑚−1)𝑛

∗ ). 100

𝑥(𝑚−1)𝑛
∗                                                                                                                                        (38) 

Step 4: Calculation of Proportional Increase Superiority (PIS) Values for Decision Alternatives  

PIS values of the first decision alternative relative to each decision alternative (𝑃𝐼𝑆𝐷𝐴1) 

For the second decision alternative: 𝑃𝐼𝑆𝐷𝐴1→𝐷𝐴2 = [∑ 𝑅𝐼1𝑗
+𝑛

𝑗=1 ]⏞      
𝐹𝑖𝑟𝑠𝑡 𝐺𝑟𝑜𝑢𝑝

− [∑ 𝑅𝐼1𝑗
−𝑛

𝑗=1 ]⏞      
𝑆𝑒𝑐𝑜𝑛𝑑 𝐺𝑟𝑜𝑢𝑝

                                                            (39) 

For the third decision alternative: 𝑃𝐼𝑆𝐷𝐴1→𝐷𝐴3 = [∑ 𝑅𝐼2𝑗
+𝑛

𝑗=1 ]⏞      
𝐹𝑖𝑟𝑠𝑡 𝐺𝑟𝑜𝑢𝑝

− [∑ 𝑅𝐼2𝑗
−𝑛

𝑗=1 ]⏞      
𝑆𝑒𝑐𝑜𝑛𝑑 𝐺𝑟𝑜𝑢𝑝

                                                           (40) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

For the mth decision alternative: 𝑃𝐼𝑆𝐷𝐴1→𝐷𝐴𝑚 = [∑ 𝑅𝐼𝑚𝑗
+𝑛

𝑗=1 ]⏞        
𝐹𝑖𝑟𝑠𝑡 𝐺𝑟𝑜𝑢𝑝

− [∑ 𝑅𝐼𝑚𝑗
−𝑛

𝑗=1 ]⏞        
𝑆𝑒𝑐𝑜𝑛𝑑 𝐺𝑟𝑜𝑢𝑝

                                                               (41) 



JSTER - VOL. 5 NO. 2 (2024) 

 

 

111 

 

 

PIS values of the second decision alternative relative to each decision alternative (𝑃𝐼𝑆𝐷𝐴2) 

For the first decision alternative: 𝑃𝐼𝑆𝐷𝐴2→𝐷𝐴1 = [∑ 𝑅𝐼1𝑗
+𝑛

𝑗=1 ]⏞      
𝐹𝑖𝑟𝑠𝑡 𝐺𝑟𝑜𝑢𝑝

− [∑ 𝑅𝐼1𝑗
−𝑛

𝑗=1 ]⏞      
𝑆𝑒𝑐𝑜𝑛𝑑 𝐺𝑟𝑜𝑢𝑝

                                                                 (42) 

For the third decision alternative: 𝑃𝐼𝑆𝐷𝐴2→𝐷𝐴3 = [∑ 𝑅𝐼2𝑗
+𝑛

𝑗=1 ]⏞      
𝐹𝑖𝑟𝑠𝑡 𝐺𝑟𝑜𝑢𝑝

− [∑ 𝑅𝐼2𝑗
−𝑛

𝑗=1 ]⏞      
𝑆𝑒𝑐𝑜𝑛𝑑 𝐺𝑟𝑜𝑢𝑝

                                                                (43) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

For the mth decision alternative: 𝑃𝐼𝑆𝐷𝐴2→𝐷𝐴𝑚 = [∑ 𝑅𝐼𝑚𝑗
+𝑛

𝑗=1 ]⏞        
𝐹𝑖𝑟𝑠𝑡 𝐺𝑟𝑜𝑢𝑝

− [∑ 𝑅𝐼𝑚𝑗
−𝑛

𝑗=1 ]⏞        
𝑆𝑒𝑐𝑜𝑛𝑑 𝐺𝑟𝑜𝑢𝑝

                                                               (44) 

PIS values of the mth decision alternative relative to each decision alternative (𝑃𝐼𝑆𝐷𝐴𝑚) 

For the first decision alternative: 𝑃𝐼𝑆𝐷𝐴𝑚→𝐷𝐴1 = [∑ 𝑅𝐼1𝑗
+𝑛

𝑗=1 ]⏞      
𝐹𝑖𝑟𝑠𝑡 𝐺𝑟𝑜𝑢𝑝

− [∑ 𝑅𝐼1𝑗
−𝑛

𝑗=1 ]⏞      
𝑆𝑒𝑐𝑜𝑛𝑑 𝐺𝑟𝑜𝑢𝑝

                                                           (45) 

For the second decision alternative: 𝑃𝐼𝑆𝐷𝐴𝑚→𝐷𝐴2 = [∑ 𝑅𝐼2𝑗
+𝑛

𝑗=1 ]⏞      
𝐹𝑖𝑟𝑠𝑡 𝐺𝑟𝑜𝑢𝑝

− [∑ 𝑅𝐼2𝑗
−𝑛

𝑗=1 ]⏞      
𝑆𝑒𝑐𝑜𝑛𝑑 𝐺𝑟𝑜𝑢𝑝

                                                           (46) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

    

For the (m-1)th decision alternative: 𝑃𝐼𝑆𝐷𝐴𝑚→𝐷𝐴𝑚−1 = [∑ 𝑅𝐼𝑚𝑗
+𝑛

𝑗=1 ]⏞        
𝐹𝑖𝑟𝑠𝑡 𝐺𝑟𝑜𝑢𝑝

− [∑ 𝑅𝐼𝑚𝑗
−𝑛

𝑗=1 ]⏞        
𝑆𝑒𝑐𝑜𝑛𝑑 𝐺𝑟𝑜𝑢𝑝

                                                   (47) 

Step 5: Calculating the Total 𝑃𝐼𝑆 Values of Decision Alternatives(𝑇𝑃𝑆𝐼) 

𝑇𝑃𝐼𝑆𝐷𝐴1 = 𝑃𝐼𝑆𝐷𝐴1→𝐷𝐴2 + 𝑃𝐼𝑆𝐷𝐴1→𝐷𝐴3 +⋯+ 𝑃𝐼𝑆𝐷𝐴1→𝐷𝐴𝑚 = ∑ 𝑃𝐼𝑆𝐷𝐴1→𝐷𝐴𝑖+1

𝑚−1

𝑖=1

                                                  (48) 

𝑇𝑃𝐼𝑆𝐷𝐴2 = 𝑃𝐼𝑆𝐷𝐴2→𝐷𝐴1 + 𝑃𝐼𝑆𝐷𝐴2→𝐷𝐴3 +⋯+ 𝑃𝐼𝑆𝐷𝐴2→𝐷𝐴𝑚 = ∑ 𝑃𝐼𝑆𝐷𝐴2→𝐷𝐴𝑖+1

𝑚−1

𝑖=0,𝑖≠1

                                              (49) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                   
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                    
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

 

𝑇𝑃𝐼𝑆𝐷𝐴𝑚 = 𝑃𝐼𝑆𝐷𝐴𝑚→𝐷𝐴1 + 𝑃𝐼𝑆𝐷𝐴𝑚→𝐷𝐴3 +⋯+ 𝑃𝐼𝑆𝐷𝐴𝑚→𝐷𝐴𝑚−1 = ∑ 𝑃𝐼𝑆𝐷𝐴𝑚→𝐷𝐴𝑗

𝑚−1

𝑗=1

                                             (50) 

Step 6: Calculating the Proportional Superiority Performance PSP Values of Decision Alternatives 

Case 1: The situation where all TPSI values of decision alternatives are positive 

𝑃𝑆𝑃 =
𝑇𝑃𝐼𝑆𝑗

∑ 𝑇𝑃𝐼𝑆𝑗
𝑚
1

                                                                                                                                                                           (51) 

Case 2: The situation where any of the TPSI values of decision alternatives is negative 

In this case, firstly, 𝑍-Score transformation is applied to the TPSI values. This ensures that the negative TPSI values 

become positive. The 𝑍-Score formula is shown in Equation 52 (Zhang et al., 2014). 

𝑧𝑗 =
𝑥𝑗 − 𝑥�̅�

𝜎𝑗
                                                                                                                                                                                    (52) 

The values 𝑥�̅� and 𝜎𝑗 shown in Equation 52 represent the mean and standard deviation values of the 𝑗𝑡ℎ criterion, 

respectively. By applying the transformations indicated in Equations 53 and 54, the data in the decision matrix are 

ensured to be positively oriented (Zhang et al., 2014). 

𝑧𝑗
′ = 𝑧𝑗 + 𝐴                                                                                                                                                                                      (53)  

𝐴 > |𝑚𝑖𝑛 𝑍𝑗|                                                                                                                                                                                   (54) 

The value 𝐴 is the value closest to the smallest 𝑧𝑖𝑗 value that is planned to be assigned. In this context, the equations 

related to 𝑇𝑃𝑆𝐼 provided by 𝑍-Score are shown below. 
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𝑇𝑃𝑆𝐼𝑧𝑗 =
𝑇𝑃𝑆𝐼𝑗 − 𝑇𝑃𝑆𝐼𝑗̅̅ ̅̅ ̅̅ ̅

𝜎𝑗
                                                                                                                                                             (55) 

𝑇𝑃𝑆𝐼𝑧𝑗
′ = 𝑇𝑃𝑆𝐼𝑧𝑗 + 𝐴                                                                                                                                                                   (56) 

After calculating the 𝑇𝑃𝑆𝐼𝑧𝑗
′ values for decision alternatives, Equation 57 is used to measure the 𝑃𝑆𝑃 values of 

decision alternatives. 

𝑃𝑆𝑃 =
𝑇𝑃𝑆𝐼𝑧𝑗

′

∑ 𝑇𝑃𝑆𝐼𝑧𝑗
′

𝑚
1

                                                                                                                                                                        (57) 

One of the most distinctive features of the PSA method is the absence of assigning criterion weights. This is because 

the method explicitly demonstrates, especially in its third step, the calculation of proportional increases in criteria for 

decision alternatives(𝑅𝐼), how much each alternative increases proportionally compared to others for each criterion, 

thereby indirectly calculating the strength of the criterion. Similarly, in the PSI method, the absence of criterion 

weights is due to the determination of the criterion's influence within the scope of the method's implementation steps, 

based on the deviation and overall (total) preference values of the criteria. Thus, in both methods, the true power of 

decision alternatives is determined not from their values on different criteria but rather from calculations made on 

different values of decision alternatives for each criterion. Moreover, when examining the MCDM literature, as 

explained in many MCDM methods, the evaluation of criterion weights is achieved through normalized decision 

matrix values. Even if weights are assigned to normalized decision matrix values in this method, there will be no 

change in the calculation of proportional increases of criteria(𝑅𝐼), as explained previously, since the true power of 

decision alternatives in the method is revealed through calculations made on different values of decision alternatives 

for each criterion. On the other hand, in some MCDM methods (MAUT, OWA operator), criterion weights are 

assigned during or after the specific calculation logic of the method. Because the main mathematical model in this 

method is the proportional increase calculated based on different values of decision alternatives for each criterion, 

applying weighting to these increase rates would result in the loss of logic of the method. In this context, as in the 

PSI method, no weight value is assigned to the proposed method. 

The method has various advantages. Firstly, as previously mentioned, one of the advantages is the absence of 

assigning criterion weights in the method. Because the absence of criterion weight assignment can be quite useful in 

cases where there is disagreement regarding assigning weights to the criteria of the problem (Madic et al., 2017 cited 

in Tuş and Aytaç Adalı, 2018: 248). Secondly, the method clearly demonstrates which alternatives perform better 

than others based on the proportional increases of decision alternatives in each criterion. This is because in many 

MCDM methods, the superiority of decision alternatives to each other is generally calculated based on common 

values such as the optimal (maximum or minimum) values, mean value, standard deviation, etc., of decision 

alternatives' criteria. Therefore, by calculating the impact of each criterion on different decision alternatives in the 

method, it can make the decision-making process more objective. This, in turn, further increases the optimality of 

decision alternatives. Another advantage of the method is that, since the proportional superiority of decision 

alternatives is clearly calculated for each criterion, the method provides a good discrimination of performance scores 

of decision alternatives. 

The method has both advantages and disadvantages. One of the disadvantages is that if the decision matrix takes on 

values of 0 or negative, it requires the calculation of 𝑍-Score values to achieve a positive transformation of the 

decision matrix. Another disadvantage is that when the number of criteria and decision alternatives increases, it 

becomes more challenging to calculate the optimal values of decision alternatives in the method. However, complex 

calculations can be facilitated with various software programs such as Microsoft Excel. 

C. Data Set and Analysis of the Study 

The dataset of the research consists of values related to selected 10 criteria of the Economic Freedom Index (EFI) 

developed by the Heritage Foundation for the G7 countries for the year 2023. In this context, the performance of G7 

countries has been measured using the PSA method based on selected EFI criteria values in the research. These 10 

criteria were chosen to have different numerical ranges for each country. In the EFI literature, all criteria are utility-

oriented. To better understand the characteristics of the proposed method, the EFI12 criterion has been transformed 

into a cost-oriented quantity. This transformation activity was calculated by subtracting the country's EFI12 value 
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from 100. This is because, according to the EFI literature, considering that the maximum value of EFI criteria for 

countries is 100, the cost-oriented criterion value of any country can be calculated by subtracting the utility-oriented 

performance of the criterion from the 100 value of the criterion. Aside from these, the weight coefficients of all 

criteria are of equal quantity (Heritage Foundation, 2023). Additionally, in terms of methodology, the weight 

coefficients of the criteria used in comparative and simulation analyses with MCDM methods have been calculated 

as equal quantities (1 10⁄ = 0,100). In this context, abbreviations of EFI criteria are explained in Table 1 for 

convenience in the research. 

 
Table 1. EFI Criteria and Abbreviations 

Criteria Abbreviations 

Property Rights EFI1 

Government Integrity EFI2 

Judicial Effectiveness EFI3 

Tax Burden EFI4 

Business Freedom EFI7 

Labor Freedom EFI8 

Monetary Freedom EFI9 

Trade Freedom EFI10 

Investment Freedom EFI11 

Financial Freedom EFI12 

 

III. THE CASE STUDY 

A. Computational Analysis 

In the study, firstly, decision matrix was constructed with Equality 1. The decision matrix values pertaining to this 

are shown in Table 2. 
Table 2. Decision Matrix 

Countries EFI1 EFI2 EFI3 EFI4 EFI7 EFI8 EFI9 EFI10 EFI11 EFI12 

Criteria Max. Max. Max. Max. Max. Max. Max. Max. Max. Min. 

Canada 88.5 95.1 83.1 75.0 87.9 69.0 74.8 83.4 80 20 

France 93.0 83.9 75.5 52.9 78.2 59.2 76.9 78.6 75 30 

Germany 94.8 93.1 89.4 60.2 79.7 52.8 75.3 78.6 80 30 

Italy 81.2 77.9 61.1 57.3 73.8 70.6 82.6 78.6 80 50 

Japan 94.1 94.7 80.7 68.1 78.3 66.8 87.1 75.2 60 40 

UK 95.1 84.8 86.4 65.4 79.1 62.2 80.8 81.8 80 20 

USA 94.7 76.1 73.4 75.4 83.8 76.3 78.0 75.4 85 20 

Minimum 81.2 76.1 61.1 52.9 73.8 52.8 74.8 75.2 60.0 20.0 

Maximum 95.1 95.1 89.4 75.4 87.9 76.3 87.1 83.4 85.0 50.0 

Reference: Heritage Foundation. 2023 

 

In the second step of the proposed method in the research, benefit-oriented normalization was conducted with 

Equality 2, while cost-oriented normalization was achieved with Equality 3. Subsequently, a normalized decision 

matrix was formed with Equality 4. The normalized values calculated based on the decision matrix values are 

explained in Table 3. 

Table 3. Normalized Decision Matrix 

Criteria Canada France Germany Italy Japan UK USA 

EFI1 0.930599 0.977918 0.996845 0.853838 0.989485 1 0.995794 

EFI2 1 0.882229 0.97897 0.819138 0.995794 0.891693 0.80021 

EFI3 0.92953 0.844519 1 0.683445 0.902685 0.966443 0.821029 

EFI4 0.994695 0.701592 0.798408 0.759947 0.903183 0.867374 1 

EFI7 1 0.889647 0.906712 0.83959 0.890785 0.899886 0.953356 
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EFI8 0.904325 0.775885 0.692005 0.925295 0.875491 0.815203 1 

EFI9 0.858783 0.882893 0.864524 0.948335 1 0.927669 0.895522 

EFI10 1 0.942446 0.942446 0.942446 0.901679 0.980815 0.904077 

EFI11 0.941176 0.882353 0.941176 0.941176 0.705882 0.941176 1 

EFI12 1 0.666667 0.666667 0.4 0.5 1 1 

 

The calculation method for normalization is demonstrated below, taking into account the benefit-oriented EFI1 and 

cost-oriented EFI12 decision matrix values for Canada. 

In the third step, the rates of increase (𝑅𝐼) of each decision alternative over other decision alternatives on a criterion 

basis were measured based on the normalized decision matrix values, considering their quantitative magnitudes and 

directions relative to each other. The relevant calculations were made using the pertinent equations from Equation 5 

to Equation 38. The resulting values are presented in Table 4. 

 
Table 4. Rates of Increase of Decision Alternatives (Countries) Over Each Other 

CANADA 

Criteria France Germany Italy Japan UK USA 

EFI1 5.084746 7.11864407 8.990148 6.327684 7.457627 7.00565 

EFI2 13.34923 2.14822771 22.07959 0.422386 12.14623 24.96715 

EFI3 10.06623 7.58122744 36.00655 2.973978 3.971119 13.21526 

EFI4 41.77694 24.5847176 30.89005 10.13216 14.6789 0.533333 

EFI7 12.40409 10.2885822 19.10569 12.26054 11.12516 4.892601 

EFI8 16.55405 30.6818182 2.318841 3.293413 10.93248 10.57971 

EFI9 2.807487 0.6684492 10.42781 16.44385 8.02139 4.278075 

EFI10 6.10687 6.10687023 6.10687 10.90426 1.95599 10.61008 

EFI11 6.666667 0 0 33.33333 0 6.25 

EFI12 50 50 150 100 0 0 

FRANCE 

Criteria Canada Germany Italy Japan UK USA 

EFI1 5.084746 1.935484 14.53202 1.182796 2.258064516 1.827957 

EFI2 13.34923 10.96544 7.702182 12.87247 1.072705602 10.24967 

EFI3 10.06623 18.4106 23.56792 6.887417 14.43708609 2.861035 

EFI4 41.77694 13.79962 8.31758 28.73346 23.6294896 42.53308 

EFI7 12.40409 1.918159 5.96206 0.127877 1.150895141 7.161125 

EFI8 16.55405 12.12121 19.25676 12.83784 5.067567568 28.88514 

EFI9 2.807487 2.124834 7.412224 13.26398 5.071521456 1.430429 

EFI10 6.10687 0 0 4.521277 4.071246819 4.244032 

EFI11 6.666667 6.666667 6.666667 25 6.666666667 13.33333 

EFI12 50 0 66.66667 33.33333 50 50 

GERMANY 

Criteria Canada France Italy Japan UK USA 

EFI1 7.118644 1.935484 16.74877 0.743889 0.316456 0.105597 

EFI2 2.148228 10.96544 19.5122 1.718582 9.787736 22.33903 

EFI3 7.581227 18.4106 46.31751 10.78067 3.472222 21.79837 

EFI4 24.58472 13.79962 5.061082 13.12292 8.637874 25.24917 

EFI7 10.28858 1.918159 7.99458 1.787995 0.758534 5.144291 

EFI8 30.68182 12.12121 33.71212 26.51515 17.80303 44.50758 

EFI9 0.668449 2.124834 9.694555 15.67065 7.304117 3.585657 

EFI10 6.10687 0 0 4.521277 4.071247 4.244032 

EFI11 0 6.666667 0 33.33333 0 6.25 

EFI12 50 0 66.66667 33.33333 50 50 

ITALY 

Criteria France Germany Italy Japan UK USA 

EFI1 8.990148 14.53202 16.74877 15.8867 17.11823 16.62562 

EFI2 22.07959 7.702182 19.5122 21.56611 8.85751 2.365309 

EFI3 36.00655 23.56792 46.31751 32.07856 41.40753 20.13093 
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EFI4 30.89005 8.31758 5.061082 18.84817 14.13613 31.58813 

EFI7 19.10569 5.96206 7.99458 6.097561 7.181572 13.55014 

EFI8 2.318841 19.25676 33.71212 5.688623 13.50482 8.073654 

EFI9 10.42781 7.412224 9.694555 5.447942 2.227723 5.897436 

EFI10 6.10687 0 0 4.521277 4.071247 4.244032 

EFI11 0 6.666667 0 33.33333 0 6.25 

EFI12 150 66.66667 66.66667 25 150 150 

JAPAN 

Criteria France Germany Italy Japan UK USA 

EFI1 6.327684 1.182796 0.743889 15.8867 1.062699 0.63762 

EFI2 0.422386 12.87247 1.718582 21.56611 11.67453 24.44152 

EFI3 2.973978 6.887417 10.78067 32.07856 7.063197 9.945504 

EFI4 10.13216 28.73346 13.12292 18.84817 4.12844 10.71953 

EFI7 12.26054 0.127877 1.787995 6.097561 1.021711 7.024266 

EFI8 3.293413 12.83784 26.51515 5.688623 7.395498 14.22156 

EFI9 16.44385 13.26398 15.67065 5.447942 7.79703 11.66667 

EFI10 10.90426 4.521277 4.521277 4.521277 8.776596 0.265957 

EFI11 33.33333 25 33.33333 33.33333 33.33333 41.66667 

EFI12 100 33.33333 33.33333 25 100 100 

UK 

Criteria Canada France Germany Italy Japan USA 

EFI1 7.457627 2.258065 0.316456 17.11823 1.062699 0.422386 

EFI2 12.14623 1.072706 9.787736 8.85751 11.67453 11.43233 

EFI3 3.971119 14.43709 3.472222 41.40753 7.063197 17.71117 

EFI4 14.6789 23.62949 8.637874 14.13613 4.12844 15.29052 

EFI7 11.12516 1.150895 0.758534 7.181572 1.021711 5.941846 

EFI8 10.93248 5.067568 17.80303 13.50482 7.395498 22.66881 

EFI9 8.02139 5.071521 7.304117 2.227723 7.79703 3.589744 

EFI10 1.95599 4.071247 4.071247 4.071247 8.776596 8.488064 

EFI11 0 6.666667 0 0 33.33333 6.25 

EFI12 0 50 50 150 100 0 

USA 

Criteria Canada France Germany Italy Japan UK 

EFI1 7.00565 1.827957 0.105597 16.62562 0.63762 0.422386 

EFI2 24.96715 10.24967 22.33903 2.365309 24.44152 11.43233 

EFI3 13.21526 2.861035 21.79837 20.13093 9.945504 17.71117 

EFI4 0.533333 42.53308 25.24917 31.58813 10.71953 15.29052 

EFI7 4.892601 7.161125 5.144291 13.55014 7.024266 5.941846 

EFI8 10.57971 28.88514 44.50758 8.073654 14.22156 22.66881 

EFI9 4.278075 1.430429 3.585657 5.897436 11.66667 3.589744 

EFI10 10.61008 4.244032 4.244032 4.244032 0.265957 8.488064 

EFI11 6.25 13.33333 6.25 6.25 41.66667 6.25 

EFI12 0 50 50 150 100 0 

 

To provide a better explanation of the proposed method and to illustrate an example calculation, in the fourth step, 

the rate of increase between Canada and France under the criterion EFI1 is computed using Equation 22 for Case 2 

and Equation 8 for Case 1. 

For Case 2, since 𝑟𝐸𝐹𝐼1:𝐶𝑎𝑛𝑎𝑑𝑎→𝐹𝑟𝑎𝑛𝑐𝑒
∗ = 0.930599 < 0.977918, Equation 22 is considered. 

𝑅𝐼−𝐸𝐹𝐼1:𝐶𝑎𝑛𝑎𝑑𝑎→𝐹𝑟𝑎𝑛𝑐𝑒 =
(0.977918 − 0.930599). 100

0.930599
= 5.084746 

For Case 1, since 𝑟𝐸𝐹𝐼1:𝐹𝑟𝑎𝑛𝑐𝑒→𝐶𝑎𝑛𝑎𝑑𝑎
∗ = 0,977918 > 0,930599, Equation 8 is considered. 

𝑅𝐼+𝐸𝐹𝐼1:𝐹𝑟𝑎𝑛𝑐𝑒→𝐶𝑎𝑛𝑎𝑑𝑎 =
(0.977918 − 0.930599). 100

0.930599
= 5.084746 
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In the 5th step of the method, first, utilizing the relevant equations from Equation 39 to Equation 47, the Proportional 

Increase Superiority (PIS) values of each decision alternative over the other decision alternatives are calculated. In 

the 6th step of the method, the Total Proportional Increase Superiority (TPIS) values of the countries are determined 

using Equation 48, Equation 49, and Equation 50. The calculated values regarding this process are presented in Table 

5. 

Table 5. The PIS and TPIS Values of the Countries 
Canada France Germany Italy 

Countries PIS Countries PIS Countries PIS Countries PIS 

France 149.03184 Canada -149.03184 Canada -108.44190 Canada -260.43225 

Germany 108.44190 Germany 19.30215 France 39.44992 France -76.77762 

Italy 260.43225 Italy 61.37326 Italy 118.89413 Germany -118.89413 

Japan 150.54853 Japan -12.79547 Japan 30.91035 Japan -81.38181 

UK 31.38861 UK -113.42524 UK -74.11423 UK -227.03966 

USA 25.03832 USA -113.49407 USA -86.24967 USA -233.71169 

TPIS 724.88144 TPIS -308.07122 TPIS -79.55140 TPIS -998.23716 

Japan UK USA 

Countries PIS Countries PIS Countries PIS 

Canada -149.70375 Canada -31.38861 Canada -25.03832 

France -12.69371 France 113.42524 France 127.81632 

Germany -30.91035 Germany 74.11423 Germany 86.24967 

Italy 38.24959 Italy 227.03966 Italy 193.44983 

UK -143.61110 Japan 120.26204 Japan 148.37291 

USA -163.31642 USA -8.50748 UK 8.50748 

TPIS -461.98575 TPIS 494.945081 TPIS 539.357898 

 

In the fifth step, as an example to illustrate the calculation of the relevant values of the method, Canada's PIS values 

are determined using Equation 39, Equation 40, and Equation 41, while the TPIS value of the countries is computed 

using Equation 48, Equation 49, and Equation 50, as shown below. For this purpose, it is necessary to first compare 

Canada's normalized values with those of other countries. 

for 𝑃𝐼𝑆𝐶𝑎𝑛𝑎𝑑𝑎:  
Since 𝑟𝐸𝐹𝐼1:𝐶𝑎𝑛𝑎𝑑𝑎

∗ (0.930599) < 𝑟𝐸𝐹𝐼1:𝐹𝑟𝑎𝑛𝑐𝑒
∗ (0.977918), the value of 𝑅𝐼−𝐸𝐹𝐼1:𝐶𝑎𝑛𝑎𝑑𝑎→𝐹𝑟𝑎𝑛𝑐𝑒 (5.084746) belongs 

to the second group. 

Since 𝑟𝐸𝐹𝐼2:𝐶𝑎𝑛𝑎𝑑𝑎
∗ (1) > 𝑟𝐸𝐹𝐼2:𝐹𝑟𝑎𝑛𝑐𝑒

∗ (0.882229), the value of 𝑅𝐼+𝐸𝐹𝐼2:𝐶𝑎𝑛𝑎𝑑𝑎→𝐹𝑟𝑎𝑛𝑐𝑒 (13.34923) belongs to the 

first group. 

Since 𝑟𝐸𝐹𝐼3:𝐶𝑎𝑛𝑎𝑑𝑎
∗ (1) > 𝑟𝐸𝐹𝐼3:𝐹𝑟𝑎𝑛𝑐𝑒

∗ (8.44519), the value of 𝑅𝐼+𝐸𝐹𝐼3:𝐶𝑎𝑛𝑎𝑑𝑎→𝐹𝑟𝑎𝑛𝑐𝑒 (10.06623) belongs to the first 

group. 

Since 𝑟𝐸𝐹𝐼4:𝐶𝑎𝑛𝑎𝑑𝑎
∗ (0.994695) > 𝑟𝐸𝐹𝐼4:𝐹𝑟𝑎𝑛𝑐𝑒

∗ (0.701592), the value of 𝑅𝐼+𝐸𝐹𝐼4:𝐶𝑎𝑛𝑎𝑑𝑎→𝐹𝑟𝑎𝑛𝑐𝑒 (41.77694) belongs 

to the first group. 

Since 𝑟𝐸𝐹𝐼7:𝐶𝑎𝑛𝑎𝑑𝑎
∗ (1) > 𝑟𝐸𝐹𝐼7:𝐹𝑟𝑎𝑛𝑐𝑒

∗ (0.889647), the value of 𝑅𝐼+𝐸𝐹𝐼7:𝐶𝑎𝑛𝑎𝑑𝑎→𝐹𝑟𝑎𝑛𝑐𝑒 (12.40409) belongs to the 

first group. 

Since 𝑟𝐸𝐹𝐼8:𝐶𝑎𝑛𝑎𝑑𝑎
∗ (1) > 𝑟𝐸𝐹𝐼8:𝐹𝑟𝑎𝑛𝑐𝑒

∗ (0,904325), the value of 𝑅𝐼+𝐸𝐹𝐼8:𝐶𝑎𝑛𝑎𝑑𝑎→𝐹𝑟𝑎𝑛𝑐𝑒 (16.55405) belongs to the 

first group. 

Since 𝑟𝐸𝐹𝐼9:𝐶𝑎𝑛𝑎𝑑𝑎
∗ (0.858783) < 𝑟𝐸𝐹𝐼9:𝐹𝑟𝑎𝑛𝑐𝑒

∗ (0.882893), the value of 𝑅𝐼−𝐸𝐹𝐼9:𝐶𝑎𝑛𝑎𝑑𝑎→𝐹𝑟𝑎𝑛𝑐𝑒 (2.80749) belongs to 

the second group. 

Since 𝑟𝐸𝐹𝐼10:𝐶𝑎𝑛𝑎𝑑𝑎
∗ (1) > 𝑟𝐸𝐹𝐼10:𝐹𝑟𝑎𝑛𝑐𝑒

∗ (0.942446), the value of 𝑅𝐼+𝐸𝐹𝐼10:𝐶𝑎𝑛𝑎𝑑𝑎→𝐹𝑟𝑎𝑛𝑐𝑒 (6.10687) belongs to the 

first group. 

Since 𝑟𝐸𝐹𝐼11:𝐶𝑎𝑛𝑎𝑑𝑎
∗ (0.941176) > 𝑟𝐸𝐹𝐼11:𝐹𝑟𝑎𝑛𝑐𝑒

∗ (0.882353), the value of 𝑅𝐼+𝐸𝐹𝐼11:𝐶𝑎𝑛𝑎𝑑𝑎→𝐹𝑟𝑎𝑛𝑐𝑒 (6.666667) 

belongs to the first group. 

Since 𝑟𝐸𝐹𝐼12:𝐶𝑎𝑛𝑎𝑑𝑎
∗ (1) > 𝑟𝐸𝐹𝐼12:𝐹𝑟𝑎𝑛𝑐𝑒

∗ (0.666667), the value of 𝑅𝐼+𝐸𝐹𝐼12:𝐶𝑎𝑛𝑎𝑑𝑎→𝐹𝑟𝑎𝑛𝑐𝑒 (50) belongs to the first 

group. 

𝑷𝑰𝑺𝑪𝒂𝒏𝒂𝒅𝒂→𝑭𝒓𝒂𝒏𝒄𝒆 = (13.34923 + 10.06623 + 41.77694 + 12.40409 + 16.55405 + 6.10687 + 6.666667 +
50) − (5.084746 + 2.80749) =  149.031839  
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𝑻𝑷𝑰𝑺𝑪𝒂𝒏𝒂𝒅𝒂 = 149.03184 + 108.44190 + 260.43225 + 150.54853 + 31.38861 + 25.03832 = 724.88144  

In the final step, to measure the proportional superiority performance (PSP) of decision alternatives based on their 

TPIS values, Equation 51 is utilized in Case 1 (where all countries' TPIS values are positive). However, in Case 2, 

where some countries' TPIS values are negative according to Table 5, Equations 51 to 57 are employed to assess the 

PSP values of decision alternatives. Within this framework, the PSP values for each country are presented in Table 

6. 

Table 6. 𝑍-Scores, Std. 𝑍-Scores, and PSP Values of Countries 

Countries TPIS 𝒁-Score 𝒁-Score Std. (𝒁′) PSP Ranking 

Canada 724.881444 1.17318763 2.773188 0.247606 1 

France -308.071219 -0.4698897 1.13011 0.100903 5 

Germany -79.5514023 -0.1063922 1.493608 0.133358 4 

Italy -998.237165 -1.5677097 0.03229 0.002883 7 

Japan -461.985746 -0.7147155 0.885284 0.079043 6 

UK 494.945081 0.80743686 2.407437 0.21495 3 

USA 539.357898 0.87808259 2.478083 0.221257 2 

Mean -12.6658728     

Std. Dev. 628.669532     

Minimum  -1.5677097    

Sum   11.2   

 

Upon examination of Table 6, countries' PSP or economic freedom performances are ranked as Canada, USA, UK, 

Germany, France, Japan, and Italy. To illustrate the calculation method, the calculation processes of Canada's 𝑍-

Score, Std. 𝑍-Score, and PSP values are presented below. 

𝑍 − 𝑆𝑐𝑜𝑟𝑒𝐶𝑎𝑛𝑎𝑑𝑎 =
(724.881444 − (−12.665873))

628.669532
= 1.17318763 

𝐴𝑖 = 1.6 > |−1.5677097| 
𝑍 − 𝑆𝑐𝑜𝑟𝑒 𝑆𝑡𝑑.𝐶𝑎𝑛𝑎𝑑𝑎= (𝑍

′)𝐶𝑎𝑛𝑎𝑑𝑎 = 1.17318763 + 1.6 = 2.773188 

In the calculation of the 𝑍-Score std. the value of 𝐴𝑖 is determined to be 1,5. This is because Zwang et al. (2014) 

calculated the transformation of a 𝑍 value to its 𝑍 standard value by adding 0,1 to the decimal value of the smallest 

magnitude of 𝑍 values in the respective series (-1.5677097). 

𝑃𝑆𝑃𝐶𝑎𝑛𝑎𝑑𝑎 =
2.773188

11.2
= 0.247606 

B. Comparative Analysis 

The proposed method's credibility and reliability are assessed by comparing its relationship and position with other 

objective weight coefficient calculation methods. In this comparison, we expect the new method to be consistent with 

existing methods, showing a close alignment and a positive, significant correlation with their weight coefficients 

(Keshavarz-Ghorabaee et al., 2021). In this context, the countries' economic freedom performances calculated using 

the ARAS, COPRAS, EDAS, TOPSIS, MUT, SAW, and PSI methods are described in Table 7. 

 
Table 7. Economic Freedom Performances Calculated Using the ARAS, COPRAS, EDAS, TOPSIS, MUT, SAW, and PSI 

Methods for Countries 

Countries 
ARAS COPRAS WASPAS EDAS 

Score Rank Score Rank Score Rank Score Rank 

Canada 0.995254 1 0.876253 1 0.955297 1 0.904122 1 

France 0.685522 5 0.794085 6 0.841768 6 0.186509 6 

Germany 0.689209 4 0.829318 5 0.874631 4 0.391865 5 

Italy 0.444018 7 0.788778 7 0.800635 7 0.088996 7 

Japan 0.539237 6 0.835338 4 0.858717 5 0.46174 4 

UK 0.992253 3 0.847422 3 0.928109 3 0.73254 2 
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USA 0.993261 2 0.857283 2 0.935475 2 0.712476 3 

Countries 
TOPSIS MAUT SAW PSI 

Score Rank Score Rank Score Rank Score Rank 

Canada 0.762192 1 0.777415 1 0.385482 1 0.954273 1 

France 0.458788 6 0.420471 6 0.340626 6 0.852864 6 

Germany 0.579839 4 0.553799 4 0.377422 3 0.88758 4 

Italy 0.349307 7 0.289652 7 0.311637 7 0.82783 7 

Japan 0.515877 5 0.552337 5 0.379115 2 0.880999 5 

UK 0.681661 2 0.677601 2 0.372551 4 0.927058 3 

USA 0.663196 3 0.639962 3 0.361703 5 0.934461 2 

 

 

Figure 1. Positions of the ARAS, COPRAS, WASPAS, EDAS, TOPSIS, MAUT, SAW and PSI Methods 

Note: The axises is graduated in increments of 0, 0.20, 0.4, 0.6, 0.8 and 1 
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Figure 2. Position of PSA 

Note: The axises is graduated in increments of 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 

 

 

Figure 3. Positions of the PSA, ARAS, COPRAS, WASPAS, EDAS, TOPSIS, MAUT, SAW, and PSI Methods 

 

When Table 7 and Figure 3 are examined together, it is observed that the fluctuations in the performance scores of 

countries according to the PSA method are generally consistent with the MCDM methods. Therefore, based on this 

visual structure, it is believed that there is a significant relationship between the performance values of countries 

calculated by the PSA method and those calculated by other MCDM methods. Accordingly, the correlation values 

of the PSA method with other MCDM methods are shown in Table 8. 
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Table 8. Pearson Correlation Values of the PSA Method with Other MCDM Methods 

Methods ARAS COPRAS WASPAS EDAS TOPSIS MAUT SAW PSI 

Score 0.980** 0.885** 0.986** 0.930** 0.974** 0.934** 0.700** 0.966** 

p**<.01. p*<.05 

 

Keshavarz-Ghorabaee (2021) citing the findings of Walters (2009), noted that when measuring the Pearson 

correlation among the MEREC method and other techniques (such as SD, ENTROPY, and CRITIC), a positive and 

significant correlation falling within the range of 0,400-0,600 indicates a moderate level of association between 

variables. Moreover, if the correlation exceeds 0,600, it signifies a substantial relationship. Accordingly, when Table 

8 is examined, it is observed that the PSA method has a positive, significant, and very high-level correlation with all 

MCDM methods except for the SAW method, with which it has a significant and high-level correlation. Therefore, 

based on these results, it is evaluated that the PSA method's methodology shows more differences compared to the 

SAW method than other MCDM methods and that the PSA method is credible and reliable. 

C.Simulation Analysis 

To assess robustness and stability of the proposed method's results under various conditions, a simulation analysis is 

conducted using different scenarios represented by diverse decision matrices. Firstly, as the number of scenarios 

increases, the proposed method is expected to exhibit a greater degree of differentiation from other methods in terms 

of the resulting performance scores. This suggests that the proposed method is more sensitive to the specific context 

of each scenario. Secondly, on average, the variance of the performance scores obtained using the proposed method 

across different scenarios should be demonstrably greater than the variance observed with at least one or more 

alternative weight calculation methods. This indicates that the proposed method is more effective in differentiating 

the relative importance of different criteria. Thirdly, homogeneity of variances within scenarios: Within each 

individual scenario, the variances of the weights obtained using different methods should exhibit a degree of 

homogeneity. This implies that the proposed method, along with other methods, consistently captures the inherent 

variability of the weights within each specific scenario (Keshavarz-Ghorabaee, 2021). During the simulation analysis, 

the correlation coefficients of the PSA method with other methodologies were computed using the initial 10 

scenarios, and these findings are outlined in Table 9. 

Table 9. Correlation Values of the PSA Method with Other Methods under Different Scenarios 

Scenarios ARAS COPRAS WASPAS EDAS TOPSIS MAUT SAW PSI 

1. Sce. 0.985** 0.889** 0.989** 0.945** 0.981** 0.941** 0.725** 0.975** 

2. Sce. 0.975** 0.883** 0.985** 0.935** 0.977** 0.935** 0.710** 0.966** 

3. Sce. 0.970** 0.885** 0.990** 0.921** 0.965** 0.928** 0.685* 0.955** 

4. Sce. 0.981** 0.887** 0.975** 0.923** 0.969** 0.915** 0.679* 0.949** 

5. Sce. 0.967** 0.867** 0.973** 0.901** 0.958** 0.889** 0.677* 0.936** 

6. Sce. 0.965** 0.869** 0.967** 0.885** 0.945** 0.885** 0.669* 0.941** 

7. Sce. 0.967** 0.977** 0.965** 0.888** 0.949** 0.884** 0.683* 0.901** 

8. Sce. 0.959** 0.961** 0.971** 0.887** 0.952** 0.988** 0.671* 0.885** 

9. Sce. 0.963** 0.955** 0.975** 0.889** 0.963** 0.881** 0.668* 0.873** 

10. Sce. 0.961** 0.951** 0.962** 0.883** 0.953** 0.879** 0.663* 0.865** 

p**<.01. p*<.05 

 

Upon examination of Table 9, it was observed that the PSA method exhibits positive and significant correlations with 

other MCDM methods in each scenario. Subsequently, scenarios 1, 2, and 3 were grouped as the first group, while 

the remaining 7 scenarios were grouped as the second group, and the correlation positions of these two groups were 

compared separately. Accordingly, a visual representation showing the encounter analysis between correlation 

groups under scenarios is presented in Figure 4. 
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Figure 4. The Correlation Status of The PSA Method with Other Approaches within Various Scenarios 

When Table 9 and Figure 4 are considered together, it is observed that as the scenarios increase, the correlation values 

of the PSA method with other MCDM methods diverge and decrease. As a consequence, it has been noted that the 

distinctive characteristics of the methodologies become increasingly conspicuous with the expansion of scenarios, 

leading to more pronounced disparities between them. Throughout the simulation analysis, the variance values of the 

methodologies were computed across various scenarios, and the resulting values are elaborated. The variance values 

of the performance scores determined for each scenario with respect to the mentioned scenarios, along with the mean 

variance values, are presented in Table 10. 

Table 10. Variability in Methodologies Across Scenarios 

Methods ARAS COPRAS WASPAS EDAS 

1.Sce 0.054313 0.001498 0.004313 0.092318 

2.Sce 0.053921 0.001201 0.004218 0.091921 

3.Sce 0.055433 0.001324 0.004519 0.093027 

4.Sce 0.054765 0.001465 0.004356 0.094156 

5.Sce 0.055187 0.001389 0.004478 0.093781 

6.Sce 0.054123 0.001527 0.004191 0.092519 

7.Sce 0.054929 0.001372 0.004587 0.094011 

8.Sce 0.055842 0.001438 0.004397 0.092878 

9.Sce 0.054621 0.001289 0.004245 0.095011 

10.Sce 0.055296 0.001503 0.004514 0.093687 

Mean 0.054842 0.001401 0.004382 0.093331 

Methods TOPSIS MAUT SAW PSI PSA 

1.Sce 0.023218 0.030218 0.000789 0.002523 0.008423 

2.Sce 0.022991 0.028991 0.000852 0.002357 0.008212 

3.Sce 0.021987 0.029987 0.000734 0.002568 0.008342 

4.Sce 0.024156 0.028156 0.000916 0.002432 0.008476 

5.Sce 0.022781 0.030781 0.000827 0.002497 0.008536 

6.Sce 0.023519 0.029519 0.000895 0.002374 0.008489 

7.Sce 0.024011 0.031011 0.000768 0.002586 0.008278 

8.Sce 0.022878 0.029878 0.000912 0.002491 0.008355 

9.Sce 0.025011 0.030011 0.000845 0.002425 0.008491 

10.Sce 0.022687 0.028687 0.000781 0.002518 0.008578 

Mean 0.023324 0.029724 0.000832 0.002477 0.008418 
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According to Table 10, within the scope of scenarios, the average variance value of the PSA method is higher 

compared to the PSI, SAW, WASPAS, and COPRAS methods, while it is lower compared to other MCDM methods. 

In this regard, it can be evaluated that the PSA method is more effective in distinguishing the performance of decision 

alternatives compared to the PSI, SAW, WASPAS, and COPRAS methods. It can be considered that the proposed 

method has capacity in distinguishing the performance of decision alternatives. 

In the continuation of the simulation analysis, the consistency of variances in the criterion weights of the PSA method 

was assessed using ADM (Analysis of Means for variances with Levene) analysis across various scenarios. This 

analytical method offers a visual representation for evaluating the equality of variances. The visual representation 

consists of three elements: the overall mean ADM acts as the central line, accompanied by the upper decision limits 

(UDL) and lower decision limits (LDL). If the standard deviation of a group (cluster) surpasses the decision limits, 

it indicates a notable deviation from the general mean ADM, suggesting heterogeneity in variances. Conversely, if 

the standard deviations of all clusters lie within the LDL and UDL, it confirms the uniformity of variances. The 

graphical depiction of the ADM analysis is showcased in Figure 5. 

 

Figure 5. ADM Visual 

 

Based on the information in Figure 5, the ADM analysis confirms that the variances in the identified performance 

for each scenario exhibit homogeneity. This means that the variations in the performance values across different 

scenarios are statistically similar. In simpler terms, the performance score are consistent across the scenarios. This 

finding is further corroborated by the results of the Levene Test, which are likely presented in Table 11. 
Table 11. Levene Test 

Levene Statistic df1 df2 Sig. 

0.268 2 10 0.124 

p**<.05 

 

The Levene Test is a statistical test specifically designed to assess the equality of variances between groups. Table 

11 further corroborates the aforementioned conclusion. The p-value obtained from the Levene Test is 0,212, which 

is greater than the significance threshold of 0,05. This outcome statistically confirms the homogeneity of variances 

in the performance value of decision alternatives across different scenarios. Overall, the ADM analysis and Levene 

Test together provide strong evidence that the variances in the criterion weights are consistent across the different 
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scenarios investigated in the simulation analysis. In conclusion, the findings of the simulation analysis provide 

compelling evidence regarding the robustness and stability of the PSA method. The consistent performance of the 

method across diverse scenarios demonstrates its the robustness, stability and potential for practical applications. 

 

IV. CONCLUSION  

The complex problems of today necessitate a systematic and consistent decision-making process that considers 

multiple criteria. This is because novel approaches can render the decision-making process more transparent and 

enable better coping with uncertainties. Therefore, developing new approaches and methods in multi-criteria 

decision-making is crucial for solving complex problems more effectively and making more informed decisions. In 

this context, this research proposes a new method (PSA) that can be used in measuring the performance of decision 

alternatives or in selection problems. The fundamental principle of the PSA method is based on the proportional 

increase in values assigned to each criterion across different decision alternatives. Therefore, any decision alternative 

whose increase in criterion values is higher compared to other decision alternatives enhances its performance. The 

most significant advantage of the method lies in enabling a clear and objective evaluation of decision alternatives' 

performances by comparing the increase rates in different criteria within the method. The method's most distinctive 

feature is the absence of weighting criteria. This is because by clearly indicating which alternatives perform better 

than others for each criterion, the strength of the criterion is implicitly calculated. 

The research dataset consists of Economic Freedom Index criterion values for G7 countries. Initially, the results of 

the proposed method were compared with ARAS, COPRAS, WASPAS, EDAS, TOPSIS, MAUT, SAW, and PSI 

methods using the same dataset values. According to the findings, it was observed that the PSA method had a positive, 

significant, and very high correlation with the ARAS, COPRAS, WASPAS, EDAS, TOPSIS, MAUT, and PSI 

methods, and a high correlation with the SAW method. Based on all these results, the proposed method was evaluated 

as credible and reliable. 

In the simulation analysis, initially, 10 different scenarios were created, and the relationship between the PSA method 

and other MCDM methods was evaluated according to these 10 scenarios. The results indicated that as the number 

of scenarios increased, the relationships between the PSA method and other MCDM methods decreased, making its 

characteristic feature more pronounced. Continuing with the simulation analysis, the average variance values of the 

methods were measured across the 10 scenarios. Upon examining the results, it was found that the PSA method had 

higher average variance values compared to the COPRAS, WASPAS, SAW, and PSI methods. Based on this result, 

it was evaluated that the PSA method has a capability to distinguish the performance of decision alternatives. Finally, 

an ADM analysis was conducted with 10 different scenarios for the PSA method. As a result, it was found that the 

homogeneity of variances was achieved. Considering all these results of the simulation analysis, it was concluded 

that the proposed method is robust and stable. 

In future studies, decision-making problems concerning the superiority of decision alternatives based on criteria 

values can be addressed using different mathematical models to calculate or solve the selection problem of decision 

alternatives. The superiority, weaknesses, and contributions to the literature of models constructed by comparing 

different mathematical models explaining the performance of said decision alternatives can be discussed more 

comprehensively. 
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