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Abstract: The Adomian decomposition method (ADM) is applied to analyze the thermal performance of an annular 

fin of hyperbolic profile with temperature dependent thermal conductivity. ADM provides the solution in an infinite 

series with easily computable components. It has been observed that the variation of thermo-geometric fin parameter 

and the thermal conductivity parameter have a significant effect on the temperature distribution in the fin and its 

efficiency. For engineering analysis and design, a regression equation is also proposed for fin efficiency as a function 

of fin radii ratio and thermo-geometric fin parameter. Obtained results are in a good agreement with numerical results 

of finite difference method (FDM) and exact solution with the constant thermal conductivity. 

Keywords: Hyperbolic profile annular fin, Fin efficiency, Variable conductivity, Adomian decomposition method. 

 

ADOMIAN AYRIŞTIRMA METODU İLE ISIL İLETKENLİĞİ SICAKLIKLA DEĞİŞEN 

HİPERBOLİK PROFİLLİ DAİRESEL KANATTA ISI İLETİMİ 
 
Özet: Bu çalışmada, Adomian ayrıştırma metodu (ADM) ile ısıl iletkenliği sıcaklıkla değişen hiperbolik profilli 

dairesel bir kanadın ısıl performansı incelenmiştir. ADM terimleri kolayca hesaplanabilen sonsuz seri formunda bir 

çözüm sunar. Yapılan analizde, termo-geometrik kanat parametresi ve ısıl iletkenlik parametresi değişimlerinin kanat 

boyunca sıcaklık dağılımına ve kanat verimine önemli bir etkisi olduğu görülmüştür. Ayrıca, kanat verimi için 

mühendislik analizi ve tasarımında kullanılmak amacı ile kanat yarıçap oranı ve termo-geometrik kanat 

parametresinin fonksiyonu olan bir korelasyon denklemi elde edilmiştir. Elde edilen sonuçların sonlu farklar 

yönteminden ve ısıl iletkenliği sabit durum için analitik çözümden elde edilen sayısal sonuçlarla uyum içinde olduğu 

görülmüştür. 

Anahtar Kelimeler: Dairesel kanat, Kanat verimi, Değişken ısıl iletkenlik, Adomian ayrıştırma yöntemi. 

 

 
NOMENCLATURE 

 

Ac cross-sectional area of the fin [m
2
] 

Ak Adomian’s polynomials 

dAs elemental surface area [m
2
] 

h heat transfer coefficient [W/(m
2
K)] 

k thermal conductivity of the fin material 

[W/(mK)]  

ka thermal conductivity at the ambient fluid 

temperature [W/(mK)] 

L the higher order derivative 

L
-1

 inverse operator of L 

N nonlinear operator 

r radial coordinate [m] 

r1 inner radius of the annular fin [m] 

r2 outer radius of the annular fin [m] 

T temperature [K] 

FDM Finite difference method 

ADM Adomian decomposition method 

Q heat transfer rate [W] 

 

 

 

Greek symbols 

 integral constant 

 dimensionless thermal conductivity parameter 

[=(Tb-Ta)] 

 fin efficiency 

 dimensionless coordinate [=(r-r1)/r1] 

 slope of the thermal conductivity-temperature 

curve [1/K] 

 thermo-geometric fin parameter [=2hr1
2
/ka1]

1/2 

 dimensionless temperature [=(T-Ta)/(Tb-Ta)] 

1 fin base thickness [m] 

2 fin tip thickness [m] 

 the radii ratio [=r2/r1] 

Subscripts 

s surface 

a ambient fluid 

b base 

f fin 
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INTRODUCTION 

 

Fins are extended surfaces that are used to enhance heat 

transfer between a primary surface and the surrounding 

fluid. Finned surfaces are widely seen in liquid-gas heat 

exchangers, air-cooled internal combustion engines, the 

cooling of electronic equipment and many other 

engineering applications. For this reason, numerous 

studies have been performed on different fin 

configuration with constant and variable thermal 

properties. Kraus et al. (2001) provided a very detailed 

review on this subject devoted to various aspects of 

extended surface convective heat transfer. Mokheimer 

(2002) investigated the performance of annular fins with 

different profiles subject to variable heat transfer 

coefficient. The performance of the fin expressed in 

terms of fin efficiency as a function of the ambient and 

fin geometry parameters. Zubair et al. (1996) presented 

the optimal dimensions of convective-radiating circular 

fins. A correlation for the optimal dimensions of a 

constant and variable profile fins is presented in terms 

of reduced heat-transfer rate. Arauzo et al. (2005) 

investigated the heat transfer characteristics of annular 

fins of hyperbolic profile with the power series method. 

They applied an elementary analytic procedure for the 

approximate solution of the quasi-one-dimensional heat 

conduction equation (a generalized Bessel equation) that 

governs the temperature variation in annular fins of 

hyperbolic profile. Campo and Cui (2008) examined 

temperature and heat analysis of annular fins of 

hyperbolic profile relying on the simple theory for 

straight fins of uniform profile. Their technical brief 

addresses an elementary analytic procedure for solving 

approximately the quasi-1D heat conduction equation (a 

generalized Airy equation) governing the annular fin of 

hyperbolic profile. Razelos and Imre (1980) obtained 

the optimum dimensions of circular fins with a profile 

of constant slope, including the effects of a linear 

variation of the thermal conductivity and a heat transfer 

coefficient that is assumed to vary according to a power 

law with distance from the bore. 

 

An extensive literature is seen on the thermal analysis of 

fins with variable thermal conductivity. Chiu and Chen 

(2002) used a decomposition method for solving the 

convective longitudinal fins with variable thermal 

conductivity. In their paper the Adomian decomposition 

method is used to evaluate the efficiency and the 

optimum length of a convective rectangular fin with 

variable thermal conductivity and to determine the 

temperature distribution within the fin. Arslanturk 

(2005) made an analysis for the efficiency of convective 

straight fins with temperature-dependent thermal 

conductivity by using the Adomian decomposition 

method. The fin efficiency of the straight fins has been 

obtained as a function of thermo-geometric fin 

parameter and the thermal conductivity parameter. Yu 

and Chen (1998) applied the differential transformation 

method to optimize the rectangular fin with variable 

thermal parameters. Chiu and Chen (2002) used 

decomposition method for the thermal stresses in 

isotropic circular fins with temperature-dependent 

thermal conductivity. Arslanturk (2009) obtained 

correlation equations for optimum design of annular fins 

with temperature dependent thermal conductivity. 

Nonlineer fin equation is solved by Adomian 

decomposition method. Chang (2005) applied Adomian 

decomposition method to investigate a straight fin 

governed by a power-law-type temperature dependent 

heat transfer coefficient. Yang et al. (2010) used a 

double decomposition method for solving the annular 

hyperbolic profile fins with variable thermal 

conductivity. The double decomposition method uses 

the same operator as Adomian decomposition method, 

but decomposes the first undefined parameters. They 

compare the results with the exact solution in the case of 

constant thermal conductivity. 

 

In this study, Adomian decomposition method is applied 

to determine the temperature distribution within the 

annular fin of hyperbolic profile with temperature 

dependent thermal conductivity. The effects of thermo-

geometric fin parameter and the thermal conductivity 

parameter variations on the temperature distribution are 

also investigated. In addition, fin efficiency obtained 

from temperature distribution within the fin is 

determined. Results from ADM are compared with 

numerical results of finite difference method (FDM) and 

exact solution with the constant thermal conductivity. 

Adomian decomposition method provides an easy and 

direct way to find an analytic solution without any 

linearization in the form of an infinite series. 
 

PROBLEM DESCRIPTION 

 

For the radial fin of hyperbolic profile displayed with its 

terminology and coordinate system in Fig. 1. A 

generalized differential equation and boundary 

conditions for radial fin of hyperbolic profile function 

can be written as following forms, 

 

  0TT
dr

dAh

dr

dT
kA

dr

d
a

s
c 








    (1) 

 

bTT    at 1rr 
 
     (2) 

 

0
dr

dT
   at 2rr       (3) 

 

where, k  is the thermal conductivity, cA  is the cross-

sectional area, h  is the heat transfer coefficient, sdA  is 

the elemental surface area, aT   is the ambient 

temperature. The profile function for this fin is 

considered as r/Cf  , where C is a constant. 

Moreover,   2/rf 11  and the constant 

becomes 2/rC 11 . Cross-sectional area and 

elemental surface area of the fin will be C4Ac   and 
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dsr4dAs  . Here, the surface element length 

ds approximates to the incremental radius dr . 

 

r

r
1

 2

dr

r
2

 1

 
Figure 1. Annular fin of hyperbolic profile. 

  

Thermal conductivity of the fin is assumed to be a linear 

function of temperature according to 

 

    aa TT1kTk        (4) 

 

where, ak  is the thermal conductivity of the fin at 

ambient temperature aT ,  is the parameter describing 

the variation of thermal conductivity. 

 

Substituting the following dimensionless variables, 

 

 

2/1

1a

2
1

1

2

ab
1

1

ab

a

k

hr2
,

r

r

TT,
r

rr
,

TT

TT






























   

(5) 

  

the governing differential equation and its boundary 

conditions reduces to 

 

  01
d

d

d

d

d

d 2

2

2

2

2

2









 














  (6) 

 

1   at 0      
 
(7) 

 

0
dr

d



  at 1       (8) 

 

 

 

THE ADOMIAN DECOMPOSITION METHOD 

 

The Adomian decomposition method (Adomian, 1994) 

has been applied to obtain analytical solutions in terms 

of convergent power series to a wide of problems 

involving algebraic, differential, integro-differential, 

and partial differential equations. The convergence of 

the decomposition series has been investigated by 

several researchers (Cherruault, 1989; Cherruault and 

Adomian, 1993; Abbaoui and Cherruault, 1994). 

 

Consider the differential equation in an operator form: 

 

gNuRuLu       (9)

    

where L  is the highest-order derivative which is 

assumed to be invertible, R  is a linear differential 

operator of order less than L , Nu  represents the 

nonlinear terms, and g  is the source term. Because L  

is invertible, applying the inverse operator 1L  to both 

sides of Eq. (9) and using the given conditions, we 

obtain 

 

     NuLRuLgLu 111  
             

 (10) 

 
where   satisfies the 0L  . The constant of 

integrations can be found from the given boundary or 

initial conditions.  

 

The nonlinear operator  uFNu   is usually 

represented by an infinite series, 

 








0k

kA)u(F

                 

(11) 

 

where kA are special polynomials obtained for the 

particular nonlinearity. The kA can be found from the 

formula, 

 

 
00i

i
i

k

k

k10k uF
d

d

!k

1
u,...,u,uA





 


























 






           

(12) 

 

Adomian’s decomposition method defines the solution 

u(x) by the infinite series 

 








0k

kuu

                        

(13)

 

 
Substituting the Eq. (11) and Eq. (13) in Eq. (10) results 

 

  











0k

k
11

0k

-1
k ALRuLgLu 

              

(14) 
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here the components u0, u1, u2, . . . are usually 

determined recursively by: 

 

gLu 1
0

  , 

   k
1

k
1

1k ALRuLu 
  ,  0k                (15) 

 

where Adomian’s polynomials from Eq. (12) gives 

 

 00 uFA 

     

      

 

 011 uFuA 

     

     

 

   0
2
1

022 uF
!2

u
uFuA 
















               (16)

 

     0
3
1

021033 uF
!3

u
uFuuuFuA 
















 

 

   

   0
)iv(

02
2
1

031
2
2044

uF
!4

1
uFuu

!2

1

uFuuu
!2

1
uFuA













 

 

. 

. 

. 

 

The solution for the n-term approximation is defined as  

 







1n

0k
kn u  

 

 

THE FIN TEMPERATURE DISTRIBUTION 

 

By defining the differential operator 22 d/dL  , Eq. 

(6) can be written as 

 

 








 








 1

d

d

d

d
L 2

2

2

2

               (17) 

      
   1NBNA 2   

 

where NA and  NB are nonlinear terms defined as, 

 








0k

k                (18a) 








0k

k2

2

A
d

d
NA




               (18b) 
















0k

k

2

B
d

d
NB




               (18c) 

 

 Adomian’s polynomials can be written by using Eq. 

(12) or Eqs. (16a-16d) as 

2

0
2

00
d

d
A






     

 

2

1
2

02

0
2

11
d

d

d

d
A









 

    

 

2

2
2

02

1
2

12

0
2

22
d

d

d

d

d

d
A














 

              (19)

 

2

3
2

02

2
2

12

1
2

22

0
2

33
d

d

d

d

d

d

d

d
A



















 

 

 

2

4
2

0

2

3
2

12

2
2

22

1
2

32

0
2

44

d

d

d

d

d

d

d

d

d

d
A






























. 

. 

. 

. 

 

and  

 
2

0
0

d

d
B 














     

 









d

d

d

d
2B 10

1 

     

 













d

d

d

d
2

d

d
B 10

2

1
2 










               (20)

 

















d

d

d

d
2

d

d

d

d
2B 3021

3 

   

 





















d

d

d

d
2

d

d

d

d
2

d

d
B 4031

2

2
4 










  

 

. 

. 

. 

Application of the inverse operator 1L  on both sides of 

Eq. (17), we get 

 

     1LNBLNALLL 12111

    
(21) 

 

The inverse operator 1L  can be taken as two-fold 

definite integral defined as 

 



 

dd.L

0 0

1

 

                

(22)

 

 
 




d

0d
0LL 1 

 

              (23) 

 

and we define  

 
 




d

0d
00                  (24)   
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Then 

 

0
1LL   ,                  (25) 

 

Hence, Eq. (21) can be rewritten as 

 

     1LNBLNAL 1211
0       

(26) 

 

The term dd in Eq. (24) represents the 

temperature gradient at the fin base and can be
 

evaluated from the boundary condition given in Eq. (8). 

If we equalize that dd Eq. (24) can be 

rewritten as 

 

 10                        
(27)

 
 

The next iterates are determined recursively as: 

 

  k
12

k
1

k
1

1k 1LBLAL   
       

(28) 

 

First three iterations are expressed as: 

 

   

42

32222
1

12

1

1
6

1

2

1









            (29a)

 

 

  

  

 

  7464

52222

422232

23222
2

504

1
23

360

1

413
120

1

65
24

1

43
6

1

2

1

















   

(29b) 

 

  

 

 





 



  84222

7422

26242

22223

52222

3442

222432

2322222
3

146149

20160

1
9138

150
5040

1
18

10221120

720

1
91028

19
60

1
510

2815
24

1
7

6
6

1

2

1

































 

    (29c) 

  10696

45360

1
713

90720

1
   

 

By summing those iterations, the n-term approximation 

is defined as 

 

n210

n

0k

k1n .....  


               (30) 

 

FIN EFFICIENCY 

 

The heat transfer rate can be written by applying 

Newton’s law of cooling, 

 

  

s

saf dATThQ                 (31) 

 

The fin efficiency is defined as the ratio of actual heat 

transfer rate to the maximum possible heat transfer rate 

which would be achieved if the entire fin were at the 

base temperature, Tb. Then, fin efficiency in terms of 

dimensionless parameters in Eq. (5) can be written as 

 

 

  

 

1

d12

TTrrh2

rdrTTh4

Q

Q

2

1

0

ab
2
1

2
2

r

r

a

max

f

2

1



























 

(32) 

 

 

RESULTS AND DISCUSSION 

 

The dimensionless temperature distribution along the fin 

was calculated by taking the fifteen terms from the 

series solution. In order to compare the accuracy of the 

results, problem is also solved numerically by using the 

MATLAB bvp4c finite difference code. The function 

bvp4c solves two-point boundary value problems for 

ordinary differential equations. Obtained results from 

the numerical and ADM solution are given in Table 1. 

A comparison is also made with the analytical solution 

in the case of constant thermal conductivity (0) in 

the same table. A very good agreement was obtained 

which represents the validity of the ADM. ADM results 

are identical with the numerical and analytical results 

for constant thermal conductivity. 

 

Dimensionless temperature distribution along the fin 

with varying from -0.4 to 0.4 are displayed in Fig. 2, 

(a)-(c) for the case of 3 and different values of 

thermo-geometric fin parameter 0.05, 0.15 and 

0.25, respectively. It will be observed that 

dimensionless temperature gradient along the fin 

decreases monotonically form the base to the tip. If the 

thermal conductivity of the fin’s material increases with 

the temperature (0), the dimensionless temperature 

gradient along the fin increases. Oppositely, if the 

thermal conductivity decreases with temperature 

(0), the temperature distribution decreases. As a 

result, this is a consequence of the nonlinearity due to 

temperature dependent thermal conductivity. From 

figures, it can also mentioned that dimensionless 
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temperature gradient along the fin increases with 

increasing the thermo-geometric fin parameter. 

Increasing thermo-geometric fin parameter value means 

that thermal conductivity of the fin decreases, hence 

internal thermal resistance of the fin increases due to 

conduction. 
 

Table 1. Comparison of the results of FDM, ADM and exact solutions for  (in the case of =0.2 and =4). 

  0.3  0   0.3 

  FDM ADM  FDM ADM Exact  FDM ADM 

0.0  1.000000 1.000000  1.000000 1.000000 1.000000  1.000000 1.000000 

0.2  0.944655 0.944653  0.957412 0.957412 0.957412  0.965157 0.965156 

0.4  0.893036 0.893034  0.916661 0.916661 0.916661  0.931477 0.931475 

0.6  0.845162 0.845159  0.877961 0.877961 0.877961  0.899170 0.899168 

0.8  0.801036 0.801033  0.841507 0.841507 0.841507  0.868441 0.868439 

1.0  0.760652 0.760648  0.807476 0.807476 0.807476  0.839482 0.839480 

1.2  0.723997 0.723994  0.776027 0.776027 0.776027  0.812481 0.812478 

1.4  0.691063 0.691059  0.747309 0.747309 0.747309  0.787616 0.787613 

1.6  0.661842 0.661839  0.721460 0.721461 0.721461  0.765060 0.765057 

1.8  0.636338 0.636335  0.698613 0.698613 0.698613  0.744981 0.744978 

2.0  0.614565 0.614563  0.678895 0.678895 0.678895  0.727544 0.727540 

2.2  0.596557 0.596555  0.662436 0.662436 0.662436  0.712909 0.712905 

2.4  0.582366 0.582365  0.649370 0.649370 0.649370  0.701238 0.701235 

2.6  0.572070 0.572070  0.639837 0.639837 0.639837  0.692694 0.692690 

2.8  0.565780 0.565780  0.633990 0.633990 0.633990  0.687442 0.687438 

3.0  0.563644 0.563644  0.632001 0.632001 0.632001  0.685652 0.685648 
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(c) 

Figure 2. Dimensionless temperature distribution along the fin for =3 and different values of  (a) =0.05, (b) =0.15,              

(c) =0.25 
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Variation of fin efficiency as a function of thermo-

geometric fin parameter for different values of thermal 

conductivity parameter and radii ratios is given in Fig. 

3. It can be observed that, fin efficiency increases with 

decreasing thermo-geometric fin parameter value. It can 

be found that fin efficiency increases with increasing 

radii ratio and thermal conductivity parameter for a 

given thermo-geometric fin parameter. From Fig.3, it 

can be seen that the results of exact solution match with 

the Adomian decomposition solution for the case of 

constant thermal conductivity, 0. 

 

A non-linear regression equation for fin efficiency as a 

function of radii ratio () and thermo-geometric fin 

parameter () is proposed in Eq. (33).  The variable 

parameters in the regression equation are taken as in the 

range of 6.01.0   and 52   . 

  

 
 




expfd1

expcba




                 (33) 

 

Coefficients in the regression equation are given in 

Table 2 for different values of thermal conductivity 

parameter (). The R-square value which is an indicator 

of how well the regression equation fits the data is also 

given for each specified case in the Table 2. As seen as, 

R-square values for each specified case are close to 1, 

hence the proposed regression equation can accurately 

be applied to calculate the fin efficiency for a given 

radii ratio and thermo-geometric fin parameter under 

specified cases given in Table 2. 
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Figure 3. Variation of fin efficiency with the thermo-geometric fin parameter () for different values of thermal conductivity 

parameter () and radii ratios (). 

 
Table 2. Coefficients in Eq. (33) for the fin efficiency. 

 a b c d f R
2 

0.3 0.098035 -0.239989 1.811962 -0.296460 0.993969 0.999 

0 0.312944 -0.188082 1.258718 -0.226359 0.640906 0.998 

0.3 0.503211 -0.167128 0.871628 -0.193759 0.428201 0.997 

 

 

CONCLUSION 

 

The radial fin of hyperbolic profile with temperature 

dependent thermal conductivity has been analyzed using 

the Adomian decomposition method. This method 

provides an easy and direct way to find an analytic 

solution without any linearization in the form of an 

infinite series. Dimensionless temperature distribution 

and fin efficiency as a function of thermo-geometric fin 

parameter for different values of thermal conductivity 

parameter and radii ratios have been obtained. The 

results are expressed in terms of suitable dimensionless 

parameters and are presented in graphical forms. A 

regression equation as a function of thermo-geometric 

fin parameter is also proposed for fin efficiency. It is 

found that the variation of thermo-geometric parameter 

and thermal conductivity parameter have a significant 

effect on the temperature distribution in the fin and its 

efficiency. 
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