
 Isı Bilimi ve Tekniği Dergisi, 33, 2, 75-82, 2013 

J. of Thermal Science and Technology 

©2013 TIBTD Printed in Turkey 
ISSN 1300-3615 

HEAT TRANSFER ANALYSIS FROM ROTATING POROUS PLATE WITH 

TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY 
 

Mohsen TORABI and Hessameddin YAGHOOBI 

Young Researchers Club, Central Tehran Branch, Islamic Azad University, Tehran, IRAN 

torabi.mech@gmail.com, yaghoobi.hessam@gmail.com  

 

(Geliş Tarihi: 04. 01. 2012, Kabul Tarihi: 25. 04. 2012) 

 

Abstract: In the present study, an analytical solution for the nonlinear energy equation due to temperature-dependent 

thermal conductivity is presented. The effects of variable thermal conductivity and other parameters on heat transfer 

are investigated for a hydromagnetic flow of an incompressible viscous electrically conducting fluid past a rotating 

porous plate. The plate rotates with a uniform angular velocity about an axis normal to the plate and the fluid at 

infinity rotates with the same angular velocity about a non-coincident parallel axis. The governing equations are 

solved analytically using the variational iteration method (VIM), and numerically using the Richardson extrapolation 

method. The temperature distribution and heat transfer of various suction parameters, Brinkman numbers, magnetic 

parameters and Prandtl numbers are presented. It is demonstrated that for large values of Brinkman number and 

magnetic parameter, a significant amount of heat is generated near the plate.  

Keywords: Temperature-dependent thermal conductivity, Hydromagnetic, Viscous fluid, Rotating porous plate, 

Variational iteration method (VIM). 

 

ISI İLETİM KATSAYISI SICAKLIĞA BAĞLI DÖNEN GÖZENEKLİ LEVHADAN ISI TRANSFERİNİN 

ANALİZİ 

 

Özet: Bu çalışmada, ısı iletim katsayısının sıcaklığa bağlı olması nedeniyle non-lineer olan enerji denkleminin 

analitik çözümü sunulmuştur. Dönen gözenekli levha üzerinden akan, elektrik iletken, sıkıştırılamaz ve viskoz 

hidromanyetik akışkanın, değişken ısı iletim katsayısının ve diğer parametrelerin ısı transferine etkileri araştırılmıştır. 

Levha, sabit bir açısal hızla levhaya dik bir eksen etrafında dönmektedir ve akışkan, levhadan uzakta levha eksenine 

paralel farklı bir eksen etrafında aynı hızla dönmektedir. Denklemler, değişken iterasyon metodu (VIM) kullanılarak 

analitik olarak ve Richardason ekstrapolasyon metodu kullanılarak sayısal olarak çözülmüştür. Değişik parametreler, 

Brinkman sayısı, manyetik parametreler ve Prandtl sayısı için sıcaklık dağılımı ve ısı transferi sonuçları sunulmuştur. 

Brinkman sayısı ve manyetik parametrelerin yüksek değerlerinde, levhanın yakınında önemli ısı üretimi olduğu 

görülmüştür. 

Anahtar Kelimeler: Sıcaklığa bağlı ısıl iletkenlik, Hidromanyetik, Viskoz akış, Dönen gözenekli plaka, Varyasyonel 

iterasyon metodu (VIM) 

 

Nomenclature 

B   Magnetic field 

Br  Brinkman number 

b   Temperature coefficient of thermal conductivity 

pc   Specific heat of fluid [ KkgkJ / ] 

Ec   Eckert number 

J   Current density 

)(Tk   Thermal conductivity [ KmW / ] 

L   Linear operator 

   Distance between two axes [ m ] 

M   Dimensionless magnetic parameter 

N   Nonlinear operator 

Pr   Prandtl number 

p  Fluid pressure 

q   Heat flux [
2/ mW ] 

q   Dimensionless heat flux 

S   Dimensionless suction parameter 

T   Temperature [ K ] 

0w   Suction/blowing velocity [ sm / ] 

vu,   Velocity components in x  and y  directions [ sm / ] 

Greek symbols 

   Dimensionless distance from plate 

   Dimensionless temperature 

   Absolute viscosity of fluid [ smkg / ] 

   Kinematic viscosity of fluid [ sm /2 ] 

  Lagrange multiplier 

   Fluid density [ 3/ mkg ] 

  Fluid thermal conductivity [ KmW / ] 

   Angular velocity [ srad / ] 

Subscripts 

w  Wall 

0  Initial guess 

   Freestream condition 
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INTRODUCTION 

 

Investigation about convective flow through porous 

media in rotating system is one of the important 

problems for engineers and continuing interest due to 

their applications in many industrial and technological 

applications. This study is noticeable in the design of 

turbines and turbo mechanics, in estimating the flight 

path of rotating wheels and spin-stabilized missiles. 

Also rotating heat exchangers are extensively used by 

the chemical and automobile industries. 

 

The study of magnetohydrodynamic (MHD) boundary 

layers under the influence of viscous forces is of 

immense importance and continuing interest due to their 

applications in many industrial, geothermal, 

geophysical, technological and engineering applications 

such as those that occur at the core-mantle interface of 

the earth. Since the pioneering work of Berker (1693), 

there has been a research undertaken on the flow of a 

viscous incompressible fluid between two parallel plates 

rotating non-coaxially but with the same angular 

velocity. Coirier (1972) studied the flow due to a disk 

and fluid at infinity which are rotating non-coaxially at 

slightly different angular velocity. Abbott and Walters 

(1970) studied the hydrodynamic flow between two 

disks, rotating with the same angular velocity about 

non-coincident axes. The MHDs flow between two 

disks, rotating with the same angular velocity about two 

different axes has been studied by Mohanty (1972) on 

neglecting the induced magnetic field. 

 

An extension of this problem for micropolar fluid has 

been made by Rao and Kasiviswanathan (1987). Other 

extensions of this type of flow to an Oldroyd-B fluid 

were studied by Rajagopal (1996) and in case of 

electrically conducting Oldroyd-B fluid by Ersoy 

(1999). Erdogan (1976) investigated the flow of a 

viscous fluid past a porous plate which rotates with 

uniform angular velocity about an axis normal to the 

plate, while the fluid at infinity rotates with the same 

angular velocity about a non-coincident parallel axis. 

Also, he studied the unsteady hydrodynamic viscous 

flow between eccentric rotating disks (Erdogan, 1995). 

Rao and Kasiviswanathan (1987) considered the flow of 

an incompressible viscous fluid between two eccentric 

rotating disks for unsteady cases. Lai et al. (1984) 

discussed the three-dimensional flow between two 

parallel plates which are rotating about a common axis 

or about distinct axes. Knight (1980) investigated the 

inertia effects of the non-Newtonian flow between 

eccentric disks rotating at different speeds. Erdogan 

(2000) obtained the exact solution of the time-

dependent Navier–Stokes equations for the flow due to 

non-coaxial rotations of a disk. Ersoy (2003) found the 

velocity field and the shear stress components on the 

disks exactly by a Fourier series solution. Hayat et al. 

(2001) derived an exact solution of the unsteady three-

dimensional Navier-Stokes equations for the case of 

flow due to non-coaxial rotations of a porous disk and a 

fluid at infinity in the presence of a uniform transverse 

magnetic field. Hayat et al.(2004) investigated the exact 

analytic solutions of two problems of a second order 

fluid in presence of a uniform transverse magnetic field 

by perturbation method. Chakraborti et al. (2005) 

investigated the hydromagnetic flow of an 

incompressible viscous electrically conducting fluid 

past a porous plate when the plate rotates with a uniform 

angular velocity about an axis normal to the plate and 

the fluid at infinity rotates with the same angular 

velocity about a non-coincident parallel axis. Guria et 

al. (2007a, 2007b, 2007c, 2007d) have studied the non-

coaxial rotations of two porous disks or the rotations of 

porous disk and a fluid at infinity under different 

environments. 

 

Such work seems to be important and useful for gaining 

our basic understanding of such flow and partly for 

possible applications to geophysical and astrophysical 

problems. Recently, Guria et al. (2008) studied 

hydromagnetic flow between two porous disks rotating 

with same angular velocity about two non-coincident 

axes in the presence of a uniform transverse magnetic 

field. Singh et al. (2009) investigated hydromagnetic 

convective flow of an incompressible homogeneous 

viscous liquid over an accelerated porous plate with 

suction/injection using Laplace transform technique. 

 

The pursuit of analytical solutions for the nonlinear 

equation arising in heat transfer from rotating porous 

plate is of intrinsic scientific interest. The primary 

purpose of the present paper is to investigate an 

analytical solution on heat transfer for an electrically 

conducting incompressible viscous fluid past a porous 

plate in the presence of a uniform transverse magnetic 

field with variable thermal conductivity. Analytical 

expressions for the temperature profile and the heat 

transfer from the plate with Dirichlet condition on the 

surface are determined using the variational iteration 

method (VIM) given by He (1999). It may be pointed 

out that, later, the VIM has been successfully used in a 

series of literature (Seadodin et al., 2011; Yaghoobi and 

Torabi, 2012, 2013) dealing with many engineering 

problems. 

 

BASIC IDEA OF VARIATIONAL ITERATION 

METHOD 

 

To illustrate the basic concept of the technique, we 

consider the following general differential equation: 

 
)(xgNuLu 

 (1)
 

 

where L  is a linear operator, N  a nonlinear operator, 

and )(xg
 
is the forcing term. According to variational 

iteration method, we can construct a correct functional 

as follows: 

 

x

nnnn dttgtuNtLuxuxu
0

1 ))()(~)(()()( 
 

(2) 

 

where   is a Lagrange multiplier, which can be 

identified optimally via variational iteration method. 
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The subscripts n  denote the nth approximation, nu~  is 

considered as a restricted variation, that is, 0~ nu ; and 

(2) is called as a correct functional. The solution of the 

linear problems can be solved in a single iteration step 

due to the exact identification of the Lagrange 

multiplier. In this method, it is required first to 

determine the Lagrange multiplier λ optimally. The 

successive approximation 1nu , 0n  of the solution u  

will be readily obtained upon using the determined 

Lagrange multiplier and any selective function 0u , 

consequently, the solution is given by 




n

nuu lim
 (3)

 

 

PROBLEM STATEMENT 

 

Consider a porous plate coincident with the plane 0z  

and rotating about the z  axis, with uniform angular 

velocity  , in an incompressible viscous electrically 

conducting fluid with thermal conductivity  . The 

plate is assumed to be electrically non-conducting. The 

geometry of the problem is shown in Fig. 1. A uniform 

magnetic field B  is applied parallel to the z  axis, and 

the fluid is rotating about an axis parallel to the z  axis 

with the same angular velocity  . The plate is 

maintained at a constant temperature wT . The distance 

between both axes of rotation is  . 

 

 
Figure 1. Geometry and coordinate system. 
 

Let ),( vu  be the velocity components in the x  and y  

directions, respectively. Following Chakraborti et al. 

(2005), the hydrodynamic boundary conditions can be 

written as 

 

0;0 wwxvyuz 
 

(4a)
 

0)(;  wxvyuz 
 
(4b) 

 

where 0w  is the suction/blowing velocity at the plate. 

Chakraborti et al. (2005) suggested the following 

velocity field for the plate: 

 

)();( zgxvzfyu 
 (5)

 

 

where )(zf  and )(zg  are the components of the 

velocity field in the direction normal to the plane 

containing the axis of rotation and in the transverse 

direction parallel to the plane of the plate, respectively. 

Chakraborti et al. (2005) used the following equations 

of momentum along the x  and y  directions: 
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where the prime denotes differentiation with respect to 

z . Using mass and momentum equations, they obtained 

these components in dimensionless form for suction: 
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where 
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(8c) 

 

with the dimensionless suction parameter S  and the 

magnetic parameter M , respectively, as 
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(9) 

 

For blowing at the plate )0( S , the dimensionless 

velocity components are the same as given by Eq. (7). 

In this case, we replace S  with 01 S  in Eqs. (8b) and 

(8c), so that, for blowing at the plate, 
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HEAT TRANSFER 

 

The governing boundary-layer equation with viscous 

dissipation and Joule effect for the steady-state heat 
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transfer equation can be written as (Chakraborti et al., 

2005)  
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where pc  is the specific heat of the fluid, and )(Tk  is 

the thermal conductivity of the fluid material that varies 

with temperature. When this variation in the range of 

practical interest is large, it is necessary to account for 

this variation to minimize the error in heat transfer. 

Accounting for the variation of the thermal conductivity 

with temperature makes the governing conduction 

equation nonlinear. The variation in thermal 

conductivity of a material with the temperature can be 

approximated in the following manner: 

 

 )(1)(  TTbkTk a

 
(12) 

 

where ak  is the thermal conductivity of the material at 

the reference temperature, and b  is the temperature 

coefficient of thermal conductivity. This temperature 

coefficient may be positive or negative, depending upon 

heating or cooling. The thermal boundary conditions are 

 

0 zatTT w  
(13a) 

  zasTT
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wT  and T  are constants, with TTw . For 

convenience in the subsequent analysis, the following 

dimensionless parameters are introduced in Eq. (6), 
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








TT

TzT

w

)(
)(

 (14a) 

dimensionless coordinate  

z

21

2







 





 (14b) 

dimensionless slop of thermal conductivity-temperature 

curve  
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Brinkman number 
EcBr Pr  (14f) 

 

and simplifying, we get the nonlinear energy equation, 
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with the dimensionless thermal boundary conditions: 

1)0(   (16a) 

0)(   (16b) 

 

It should be noted that Prandtl is the ratio of momentum 

diffusivity (kinematic viscosity) to thermal diffusivity, 

and Eckert number expresses the relationship between a 

flow's kinetic energy and enthalpy. 

 

Using Fourier’s law, the heat flux from the plate to the 

fluid can be written as 

0
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Accordingly, using Eqs. (12) and (14), heat flux in 

dimensionless form can be written as 
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IMPLEMENTATION OF VIM 

 

In order to solve Eq. (15) using VIM, we construct a 

correction functional, as follows 
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Its stationary conditions can be obtained as follows: 
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Thus the Lagrangian multiplier can therefore be 

identified as 
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As a result, we obtain the following iteration formula: 
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(22) 

 

From the boundary condition in Eq. (16a), that we have 

it in point 0  an arbitrary initial approximation can 

be obtained  
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(23) 

 

where C  is constant, and we will calculate it with 

considering another boundary condition in Eq. (16b) in 

point  . 

 

Using the variational Eq (22), we have 
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Substituting Eq. (23) into Eq. (24) we have 
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 (25) 

where 

)( 22 MBrA    (26) 

 

Accordingly, in the same manner the rest of the 

components of the iteration formula can be obtained. 

 

RESULTS AND DISCUSSION 

 

In this section we present the results with the VIM, 

described in the previous section for solving Eq. (15). 

To test the validity and accuracy of the method used in 

this study, the temperature distribution   for several 

values of SMBr ,,  and Pr  obtained by the VIM and 

well-established Richardson numerical solution 

(Richardson extrapolation) are displayed in Fig. 2. This 

figure shows very good agreement between the VIM 

and numerical solution. Moreover, this interesting 

agreement is tabulated in Table 1. In addition, it can be 

clearly seen from Fig. 2 that for sufficiently large values 

of Br  and M , a significant amount of heat is generated 

near the plate due to viscous dissipation as well as due 

to Joule heating arising from the flow of electric current 

in the fluid. Thus heat flows from the fluid to the plate 

even if the plate temperature is higher than the ambient 

temperature. Also, it can be seen from this figure that 

the temperature at a point decreases with an increase in 

S  or Pr . One can find the maximum temperature and 

its location by differentiating the temperature filed and 

solving the resultant equation for  . For example, using 

1Pr  BrS , 20M  and 1.0  the maximum 

value of temperature is 0698.1 , which occurs at 

0693.0 . Assuming temperature independent 

thermal conductivity for the fluid, i.e. 0.0 , for the 

same parameters the maximum value of temperature is 

0754.1 , which occurs at 0678.0 . It is very 

interesting that the temperature-dependent thermal 

conductivity is to lower the maximum temperature in 

the fluid. It is due to increasing the rate of heat transfer 

from fluid to both upper and plate.  

 

After these verifications, we analyze heat flux and the 

effects of some physical applicable parameters in this 

problem such as suction parameter, Brinkman number, 

magnetic parameter and Prandtl number. The effects of 

Brinkman number, ,Br  on heat transfer for fixed values 

of Pr,S  and M  are shown in Fig. 3. As expected, heat 

transfer is maximum at the surface for small values of 

Br  and decreases with the increasing vertical distance 

 . It is because the fact that as one goes further from 

the plate, the overall thermal conductivity of the fluid 

increases and it reduce heat transfer to the specific 

point. Therefore, the temperature of this point decreases. 

However, for large values of ,Br  due to large value of 

viscosity or annular velocity from Eq. (4), a significant 

amount of heat is generated near the plate. Because of 

this interesting effect, heat transfer at the surface 

increases with the increase in vertical distance at first, 

and follows with the decrease by increasing in vertical 

distance. 

Table 1. The results of VIM and Numerical Solution for 1Pr,1,1,1  SMBr  and 1.0 . 

   VIM   NS     NSVIMError    

0 1 1 0.0000000000 

0.3 0.7335135560 0.7328648312 0.0006487248 

0.6 0.4504575545 0.4502151854 0.0002423691 

0.9 0.2595377529 0.2596492175 0.0001114646 

1.2 0.1456206364 0.1457845375 0.0001639011 

1.5 0.0807542106 0.0808593755 0.0001051649 

1.8 0.0445432818 0.0445825905 0.0000393087 

2.1 0.0245075613 0.0244998753 0.0000076860 

2.4 0.0134673684 0.0134306850 0.0000366834 

2.7 0.0073960122 0.0073425221 0.0000534901 

3 0.0040604612 0.0039975112 0.0000629500 
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Figure 3. The effect of Brinkman number on heat transfer. 

 

 

Figure 4 shows the effects of magnetic parameter on 

heat transfer for fixed values of Pr,S  and .Br  It is 

obvious from Fig. 4 that the heat transfer decreases with 

the vertical distance from the plate, and with the thermal 

conductivity as well. It is also seen from this figure that 

the heat flux is almost equal for 8.0 . If one wants 

to find the maximum heat transfer rate and its location, 

it is easily achievable by differentiating the Eq. (17) or 

(18) and solving the resultant equation for  . For 

example, using 1Pr S , 5.0Br , 5M  and 

1.0  the maximum value of heat flux is 2500.1q , 

which occurs at 2109.0 . 

 

For fixed values of BrM ,  and Pr,  the effect of 

suction parameter on heat transfer is shown in Fig. 5. In 

this case, the suction parameter is varied, and the 

Brinkman number is kept low. For low values of suction 

parameter, i.e. 5.0S  the heat transfer along the z  

axis firstly increase, reaches to a maximum number and 

then decreases by increasing in the value of  .  

 

  

  
Figure 2. Comparison of dimensionless temperature variation obtained by the VIM and numerical solution 
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However, this trend for high values of suction parameter 

is much simpler. For high values of S , i.e. 2S  the 

heat flux decreases by increase in the value of  . This 

behavior is because the fact that high values of suction 

parameter can overcome effects of other parameters of 

the heat flux and becomes dominant compare with other 

parameters. 

 

The heat transfer from the porous plate also depends on 

the Prandtl number. This effect is shown in Fig. 6. Again, 

for large values of Pr, the heat transfer at the surface is 

maximum and decreases as   increases. However, as the 

value of Pr  decreases, i.e. 5.0Pr   the heat flux has the 

maximum. This maximum can be found easily from Eq. 

(18) same as what we done for Fig. 4. 

 

Herein the value of   was taken as 0.1. Moreover, in the 

wake of the large term of second iteration for the 

solution, the result of the first iteration is shown; however 

obtained results are calculated using two iterations. 

 
Figure 6. The effect of Prandtl number on heat transfer. 
 

CONCLUSION 
 

An analytical solution for the nonlinear energy equation 

due to temperature-dependent thermal conductivity is 

obtained for a hydromagnetic flow of an incompressible 

viscous electrically conducting fluid past a rotating 

porous plate. VIM is employed to solve a nonlinear 

energy equation. It has been shown that there is a very 

good agreement between the analytical and numerical 

results. The analysis is performed for different 

SMBr ,,  and Pr  numbers. It is demonstrated that for 

large values of Brinkman number and magnetic 

parameter a significant amount of heat is generated near 

the plate. It is interesting to note that, assuming 

temperature-dependent thermal conductivity for the 

fluid material, which is more realistic assumption 

compare with constant thermal conductivity, decreases 

the maximum temperature in the fluid. This conclusion 

should be very important for many applications, since in 

many of them it is very important to accurately estimate 

the temperature field in the rotating fluid. 
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