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OVERVIEW 
The multi-step process of drug research and development 
includes clinical testing, manufacturing approval, and drug 
discovery. It is costly, time-consuming, complex, and has a 
high attrition rate (Waring M.J. et al. 2015). Clinical trial drug 
attrition results in a significant loss of resources (Fleming 
N. 2018). Chemical and biological scientists have faced a 
significant problem over the past 20 years: creating effective 
and sophisticated systems for the targeted administration 
of therapeutic substances with maximum efficiency and 
minimal danger (Lipinski CF., 2019). Another obstacle in 
the process of designing and developing new drugs is the 
expense and duration involved in creating novel therapeutic 
agents (Hamet P., Tremblay J., 2017). Researchers all over the 
world have resorted to computational techniques like virtual 
screening (VS) and molecular docking, also referred to as 
traditional approaches, to try and minimize these difficulties 
and barriers; however, these methods have also introduced 
problems like inaccuracy and inefficiency (Hassanzadeh 
P. et al., 2019). Long and intricate processes like target 
identification and validation, therapeutic screening, lead 
compound optimization, preclinical and clinical trials, and 
manufacturing applications are all part of the drug research 
and design process. The process of identifying the medication 
that works best to treat a condition is further complicated by 
all these procedures. Consequently, controlling process speed 
and cost is the largest issue facing pharmaceutical businesses 
(Zhang L. et al., 2017). By providing straightforward, scientific 
solutions to all of these issues, artificial intelligence shortens 
the process’s time and expense (Jordan A.M., 2018).  

Machine intelligence, another name for artificial intelligence, 
is the capacity of computer systems to learn from inputs or 
past data. When a machine simulates cognitive behavior 
linked to learning and problem-solving in the human 
brain, it is said to be artificial intelligence (Goel AK, Davies 
J (2019) Artificial intelligence. In: Cambridge Handbook 
of Intelligence. Cambridge). The fields of logic, statistics, 
cognitive psychology, decision theory, cybernetics, computer 
engineering, neuroscience, and linguistics are the foundations 
of artificial intelligence (AI). A better understanding of AI will 
help to mitigate its negative effects on worker safety, health, 
and welfare as well as its opportunities and challenges for the 
future of work (Russell S.J.; Norvig, P., 2016). 

1.THE EMERGENCE OF ARTIFICIAL INTELLIGENCE 
Robotics is widely acknowledged as the source of artificial 

intelligence. The Czech word “robota,” which means “robot,” 
was originally used in the science fiction drama “Rossum’s 
Universal Robots” by author Karel Capek in 1921. The term 
“robot” was made famous by Isaac Asimov in the middle of 
the 20th century while compiling a collection of contemporary 
science fiction short stories. But the earliest record of a 
humanoid automaton dates back to the third century in China, 
when Yan Shi, a mechanical expert, gave the Zhou Emperor 
Mu a handcrafted, humanoid mechanical figure composed of 
wood, leather, and synthetic materials (Hamet P, Tremblay J., 
2017). Al-Jazari, a Muslim philosopher from the Golden Age, 
invented a humanoid robot that could strike cymbals in the 
12th century. Leonardo da Vinci studied human anatomy in 
great detail throughout the Renaissance in order to construct 
his humanoid robot. Only in the 1950s were his 1495 sketches 
unearthed. Driven by pulleys and wires, Leonardo’s robot was 
a knight-like device that could sit, stand, swing its arms, and 
move its head and jaw. 

From Charles Babbage, who created the first mechanical 
computer in 1850, to the question “can machines think?” in 
1950, computer scientists and science fiction authors were 
captivated by the notion of machine intelligence comparable 
to human intelligence. Alan Turing proposed a machine 
intelligence test in 1950. This test, often known as the Turing 
test, assesses a machine’s capacity for intelligent behavior 
that is on par with or identical to that of a human. If “a 
human interrogator, after some written questions have been 
posted, cannot tell whether the written answers come from 
a human or a machine,” then the computer passes the test. 
In order to pass the Turing test, a computer needs to be able 
to recognize speech, store information from what it hears or 
knows (knowledge representation), utilize that information to 
answer questions and make inferences (automatic reasoning), 
and recognize new patterns in order to adapt to changing 
conditions (ML).  The computer will meet the requirements 
of the so-called Total Turing test if it is equipped with two 
more capabilities: computer vision and physical interaction. 
The primary focuses of AI research and development at the 
moment are represented by these six capabilities (Howard J., 
2019). 

When Arthur L. Samuel created an IBM checkers software 
in 1952, he popularized the phrase “machine learning.” “The 
science and engineering of making intelligent machines” is 
how John McCarthy defined artificial intelligence (AI) when 
he first used the word in 1955. He had a significant impact on 
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AI’s early development. He and his colleagues created the 
field of artificial intelligence during a 1956 conference held 
at Dartmouth College. This event gave rise to the term that 
became a new field of study spanning multiple disciplines 
and served as the conceptual foundation for all ensuing 
computer-related research and development projects 
(Hamet P., Tremblay J., 2017). Frank Rosenblatt created the 
perceptron in 1957 with the purpose of recognizing images 
(Rosenblatt F., 1957). The continuous back-propagation 
model was created by Henry J. Kelley in 1960, and Stuart 
Dreyfus created a more straightforward version in 1962 based 
solely on the chain rule (Kelley H.J., 2012; Dreyfus S., 1962). 
The first functional deep learning networks were created in 
1965 by Ivakhnenko and Lapa (Gupta R., et al., 2021). Around 
1980, Kunihiko Fukushima created the first convolutional 
neural network (CNN), which was modeled after the structure 
of an animal’s visual cortex (Fukushima K., 1988). 

1.1. SYSTEMATIC LEARNING 
Machine learning (ML) is a subfield of artificial intelligence that 
allows computers to learn from data. It has become popular 
for using computers to make predictions, acquire cognitive 
insights, and assist in decision-making (Jordan M.I., Mitchell 
T.M., 2015). ML is a break from earlier artificial intelligence 
techniques, which worked by hand-coding a full set of logic 
rules into software in an effort to foresee every scenario 
that could arise. With machine learning (ML), computers 
can use cutting-edge software techniques to extract their 
own rules (Haugeland J. Artificial Intelligence: The Very Idea. 
Cambridge).   

1.1.2. GUIDED EXPERIENCE  
Using a training dataset that has been precisely labeled by 
a human expert, supervised learning looks for patterns and 
makes predictions (Maini V. et al., 2019). A radiographic 
data image classification algorithm can learn the correct 
relationship between an input image (X-ray, for example) 
and an output label (lung cancer) using a supervised learning 
training dataset. It can then use this relationship to classify 
unlabeled images that the computer has never seen before 
(Choy G. et al., 2018).   

1.1.3.UNSUPERVISED LEARNING 
There is no usage of a preset training dataset. The learning 
algorithm receives unlabeled data; without human assistance, 
it then finds the data’s hidden structure and groups the data 
into clusters (Hinton G., Sejnowski T.J., 1999; James G. et al., 
2017).   

1.1.4.SEMI-SUPERVISED LEARNING  
It’s a machine learning technique for better comprehending a 
dataset’s structure. Currently, a variety of industry sectors are 
producing large volumes of unlabeled data from text, audio, 
and images (Chapelle O. et al., 2006).

1.1.5. LEARNING REINFORCEMENT  
Reinforcement learning is a type of computer experimentation 
that is derived from basic learning theory in psychology. It is a 
training approach that is based on rewarding good behaviors 
and penalizing undesired ones (Thorndike E., 1932, Varian H., 

2019). With reinforcement learning, a machine may be taught 
the right answers by applying incentives and penalties in the 
same way that humans learn by making mistakes (Sutton 
RS, Barto AG., 2018). Reinforcement learning can be utilized 
in conjunction with neural networks to train a robot to grasp 
objects it has never seen before or to operate autonomous 
vehicles (Knight W., 2017). 

1.1.6. DEEP NEURAL NETWORKS 
Neural networks that are fully connected and have several 
hidden layers. There are several nonlinear processing units 
in each hidden layer. DNNs use several neurons in numerous 
layers to automatically extract features at hierarchical levels 
(D’Souza S., et al., 2020). 

1.1.7.DEEP LEARNING 
According to Goodfellow, Bengio, and Courville (2016), deep 
learning is a subtype of neural networks that recognizes 
patterns using many processing layers of coupled neurons 
between input and output layers. In the areas of speech 
recognition, image identification, and natural language 
understanding, deep learning algorithms have made great 
progress (Krizhevsky A., et al, 2012; Hinton G., et al, 2012; 
Hirschberg J., et al, 2015).  

2.GENERAL USAGE AREAS OF ARTIFICIAL INTELLIGENCE 
2.1. ELECTRONIC DEVICES 
Functional sensors are not as valuable as advanced or smart 
sensors. To monitor various parameters, these smart sensors 
can be surgically implanted in the body, fastened to safety 
gear, or fastened to any item (Nag A., et al., 2017; Howard 
J., 2019).  The Internet of Things (IoT) can be created by 
connecting any product or device with integrated sensors to 
the internet and other similar devices (Chui M., et al., 2010).  
Applications of artificial intelligence are being brought into 
a wide range of industries, including banking, insurance, 
criminal justice, healthcare, and national security (West D.M., 
Allen J.R., 2018). Cutting-edge sensor systems can “sense” 
their surroundings using deep learning models, much like 
how humans perceive sound and vision (Howard J., 2019). 

2.2.ROBOTIC DEVICES 
“Cloud robotics” allows one AI-enabled robotic device to 
upload its learning experience to all other robots that are 
linked. (B. Kehoe and others, 2015). All cloud-connected 
robotic devices can be updated to use the new procedure 
when a robot’s output reveals a safer way to complete a task 
at work. Robotics can learn more effectively through universal 
robotic upgradability in a cloud-connected network than 
through human learning, which is individually dependant 
(Pratt G.A., 2015). 

2.3.DECISION SUPPORT SYSTEMS 
A multipurpose informative tool with AI support can be used 
to extract information from data for applications involving 
decisionmaking (Howard J., 2019). Utilizing data already 
recorded in management information systems, technologies 
are being used to support business decisions as a result of 
the notion that computers should support decision makers 
(Bonini C.P., 1963; Pervan G., Willcocks L., 2005). Many industry 
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sectors, particularly the medical field, use ML-enabled DSSs 
for decision-making (Kononenko I., 2001; Topol E., 2019). 
Clinical DSSs are marketed as having the ability to increase 
diagnostic accuracy and assist physicians in understanding 
the intricate relationships between clinical variable scores. 
The healthcare industry generates large amounts of data, 
which make them ideal learning inputs for ML-enabled DSSs 
(Ehteshami Bejnordi B., et al., 2017; Obermeyer Z, Emanuel 
E.J., 2016; Phillips-Wren G., 2012). Several studies that have 
used ML-enabled DSSs to date include: 
Lung cancer screening (Ardila D., et al., 2019), 
Detection of pulmonary tuberculosis (Lakhani P., Sundaram 
B., 2017), 
Determination of diabetic retinopathy (Gulsen V., et al., 2016; 
Kanagasingam Y., et al., 2018), 
Skin cancer diagnosis (Esteva A., et al., 2017), 
Anticancer medication response prediction in precision 
oncology therapy (Azuaje F., 2019; Tan M., 2016), 
Progress has been made in areas such using retinal pictures 
to predict cardiovascular risk factors (Poplin R., et al., 2018). 

Transforming research findings into clinical advancements 
is still a difficult undertaking, despite the early research 
accomplishments using machine learning to huge medical 
datasets holding significant potential in enhancing the quality 
of healthcare (Deo R.C., 2015). For instance, an AI-enabled 
ML image classifier for melanoma skin cancer that is trained 
solely on fair skin types will reinforce current health disparities 
rather than serve as a means of eradicating them (Adamson 
A.S., Smith A., 2018). 

3.DRUG DISCOVERY PROCESS AND ARTIFICIAL 
INTELLIGENCE 
3.1. PROCESS OF DRUGS DISCOVERY 
3.1.1.DISEASE MODELLING AND TARGET IDENTIFICATION 

The success rate of drug development is greatly impacted 
by disease modeling and target identification, which is 
a crucial initial phase in the drug discovery process (Pun 
F.W., et al., 2023). Furthermore, target identification helps 
researchers understand the mode of action of unknown 
medications, which makes it a critical step in the discovery 
and development of new drugs (Schenone M., et al., 2013). 
Researchers can more effectively tailor a medication for a 
specific ailment or disease by identifying the molecular target 
of that medication (McFedries A., et al., 2013; Hughes J.P., et 
al., 2010). To maximize medication selectivity and minimize 
possible adverse effects, target identification is also crucial 
(Schenone M., et al., 2013; Hughes J.P., et al., 2010).  

A molecule must be “druggable” in order to have even the 
remotest chance of being a target for medication. The field of 
drug development is shifting toward the application of novel 
design principles to molecules, connecting them to difficult 
biological targets for novel medications of the future or 
novel approaches to dosage modification. The conventional 
pharmaceutical industry concentrates on creating tiny 
compounds that are orally bioavailable and have specific 
objectives (Sarkar C., et al., 2023).
 
 

Figure 1. Artificial Intelligence’s role in medication discovery. Various 
steps of drug discovery, including as drug design, chemical synthesis, 
drug reuse, drug screening, drug interaction prediction, optimization, 
data analysis, and modeling, can benefit from the application of 
artificial intelligence.  

Millions of molecules may be present in datasets used by 
pharmaceutical companies for medication research, but 
conventional machine learning techniques may not be able 
to handle this volume of data. Though computational models 
based on the quantitative structure-activity relationship 
(QSAR) can rapidly predict a large number of compounds 
or basic physicochemical parameters like logP (partition 
coefficient), they are not very good at predicting complex 
biological properties. Additionally, QSAR-based models 
have issues with experimental data error and insufficient 
experimental validation on training sets. In order to address 
these issues, new AI techniques like deep learning (DL) and 
associated modeling investigations can be used for large data 
modeling and analysis-based safety and efficacy evaluations 
of pharmaceutical compounds (Paul D., et al., 2021). 

3.1.2. DRUG SCREENING WITH ARTIFICIAL INTELLIGENCE 
3.1.2.1. PHYSICAL AND CHEMICAL PROPERTIES 
PREDICTION 
When developing a new drug, physicochemical characteristics 
like solubility, intrinsic permeability, degree of ionization, and 
partition coefficient (logP) should be taken into account 
as they have an indirect impact on the pharmacokinetic 
characteristics of the drug and its target receptor family 
(Zang Q., et al., 2017). A variety of AI-based instruments 
are available for physicochemical property prediction. For 
instance, ML trains the program using massive data sets 
produced during prior chemical optimization (Yang X., et al., 
2019).  Drug design algorithms use chemical descriptors, such 
as coordinates of 3D atoms, electron density surrounding the 
molecule, and SMILES sequences, to produce appropriate 
molecules via DNN and subsequently predict their attributes 
(Baringhaus K.H., Hessler G., 2018).  

3.1.2.2. THE BIOACTIVITY PREDICTION 
Drug molecules’ ability to generate a therapeutic response 
is contingent upon their affinity for the target protein or 
receptor; those that do not exhibit any interaction with the 
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targeted protein will not be effective. Toxic interactions 
between produced medication molecules and undesirable 
proteins or receptors can also occur in certain situations. As 
a result, drug-target interaction prediction greatly depends 
on drug target binding affinity (DTBA). AI-based techniques 
can calculate a drug’s binding affinity by considering the 
characteristics or similarities between the drug and its target. 
While similarity-based interactions consider the similarity 
between the drug and the target and presume that similar 
drugs will interact with the same targets, feature-based 
interactions identify the chemical moieties of the drug and 
the target to determine feature vectors (Öztürk H., et al., 
2018). 

To predict drug-target interactions, a variety of techniques, 
such as machine learning and deep learning, have been 
employed. To determine DTBA, machine learning (ML) 
techniques like Kronecker regularized least squares (KronRLS) 
assess how similar medicines and protein molecules are. 
Similarly, SimBoost took into account both feature-based and 
similarity-based interactions while predicting DTBA using 
regression trees (Öztürk H., et al., 2018). 

3.1.2.3. TOXICITY PREDICTION 
Any pharmacological molecule’s predicted toxicity can be 
utilized as a guide to prevent harmful consequences, and cell-
based in vitro experiments are frequently employed as pilot 
research. The expense of drug discovery rises when research 
on animals are carried out to ascertain a compound’s toxicity 
right after. Cutting-edge AI-based methods either predict a 
compound’s toxicity based on input features or search for 
commonalities between compounds. By identifying static 
and dynamic properties like molecular weight and Van der 
Waals volume within the chemical descriptors of molecules, 
an ML algorithm named DeepTox outperformed all other 
methods. It was also able to predict a molecule’s toxicity with 
high efficiency using 2500 predefined toxicophore properties 
(Mayr A., et al., 2016). 

3.2. DESIGN OF DRUG MOLECULES WITH ARTIFICIAL 
INTELLIGENCE 
The necessity of developing novel medications is underscored 
by the advent of pandemics and epidemics, as well as the 
growth of grave illnesses like cancer and heart disease. 
Target selection, validation, high-throughput screening, 
animal studies, safety and efficacy protocols, clinical trials, 
and regulatory approval are all necessary steps in the often 
multi-step process of drug discovery (Vamathevan J., et al., 
2019). Certain phases of this process, like finding new targets, 
assessing drug-target interactions, researching disease 
mechanisms, and enhancing small-molecule drug design and 
optimization, can benefit from the application of artificial 
intelligence-based techniques (Jeon J., et al., 2014; Katsila 
T., et al., 2016; Lee L., et al., 2019; Nicolaou C.A., Brown N., 
2013; Vamathevan J., et al., 2019). These techniques can also 
be applied to the investigation of pharmacological efficacy, 
response, and resistance as well as the identification and 
development of prognostic biomarkers (Qureshi R., et al., 
2022). 

3.2.1. IDENTIFICATION OF THE TARGET IN DRUG 
DISCOVERY 
Target identification is the process of finding molecules 
(typically proteins) that have the ability to change a disease 
state. Numerous data sources, such as gene expression 
profiles, protein-protein interaction networks, genomic, and 
proteomic data, can be evaluated using machine learning 
(ML) methods to find possible targets that may be involved in 
disease pathways (Sliwoski G., et al., 2014). 

Determining the cause of the illness and the target is the 
first stage in defining a target (Lv B. M., et al., 2014). Tree-
based approaches, GNNs, and graphs can be used to 
determine the causal links between genes and diseases. It 
was also suggested to identify genes linked to druggable 
morbidity using a decision tree-based meta-classifier that 
was trained on a network topology that included protein-
protein, metabolic and transcription relationships, tissue 
expression of proteins, and subcellular localization (Qureshi 
R., et al., 2023). Key characteristics from the decision tree 
included regulation by several transcription factors, centrality 
in metabolic pathways, and extracellular placement. Based 
on characteristics including protein-protein interaction, 
gene expression, DNA copy number, and the presence of 
mutations, ML-based techniques categorized proteins as 
therapeutic targets or non-targets for particular diseases like 
lung, pancreatic, and ovarian cancer (Jeon J., et al., 2014). 

3.2.2. PREDICTION OF TARGET PROTEİN STRUCTURE 
The development of the disease involves many proteins, 
some of which are overexpressed. Predicting the target 
protein structure while creating a therapeutic molecule is 
therefore crucial for the selective targeting of disease. By 
anticipating the 3D protein structure as the design aligns with 
the target protein region’s chemical environment, artificial 
intelligence can support structurebased drug discovery by 
assisting in the prediction of a compound’s effect on the 
target as well as safety concerns prior to synthesis (Wann 
F., Zeng J.M., 2016). In order to predict the 3D target protein 
structure, AlphaFold, an artificial intelligence tool based on 
DNNs, was used to analyze the angles of peptide bonds and 
the distances between adjacent amino acids. It demonstrated 
excellent results, correctly predicting 25 out of 43 structures 
(Paul D., et al., 2021). 

3.2.3. DRUG-PROTEIN INTERACTION PREDICTION 
The effectiveness of therapy is greatly dependent on 
drug-protein interactions. Understanding drug efficacy, 
permitting the bait and switch of medications, and avoiding 
polypharmacology all depend on the ability to predict how 
a drug will interact with a receptor or protein. Different AI 
techniques have improved therapeutic efficacy by accurately 
predicting ligand-protein interactions (Wann F., Zeng J.M., 
2016).  

Because AI can anticipate drug-target interactions, it can 
also be used in Phase II clinical trials to assist minimize 
polypharmacology and reuse current medications (Mak K.K., 
Pichika M.R., 2019). This also lowers costs because it is more 
expensive to relaunch a current drug than to introduce a 
brand-new medicinal entity (Paul D., et al., 2021). The potential 
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for polypharmacology—a drug molecule’s propensity to bind 
with many receptors and cause off-target adverse effects—
can also be predicted by drug-protein interactions (Li X., 
et al., 2017). By using polypharmacology logic to design 
novel molecules, artificial intelligence can contribute to the 
production of safer pharmaceutical molecules (Reddy A.S., 
Zhang S., 2014). 

4. ARTIFICIAL INTELLIGENCE ALGORITHMS USED IN 
DRUG DISCOVERY PROCESS 
4.1. MACHINE LEARNING (ML) ALGORITHIMS 
Supervised and unsupervised learning are the two primary 
categories of machine learning algorithms. Unsupervised 
learning detects patterns in a set of instances, frequently 
without labels for the instances, and the data is frequently 
transformed to a lower dimension to recognize patterns 
in high dimensional data using unsupervised learning 
algorithms before recognizing patterns. Supervised learning 
learns by training instances with known labels to determine 
the labels for new instances. Not only is unsupervised learning 
more effective in a low-dimensional space, but dimensionality 
reduction also makes the recognized model easier to 
understand. Semi-experienced and reinforcement learning 
can be created by combining supervised and unsupervised 
learning; both functions can be used to different types of data 
(Rifaioglu A.S., et al., 2019).  

ML algorithms are utilized in the drug development process 
to create a variety of models that forecast the chemical, 
physical, and biological characteristics of substances (Patel 
L., et al., 2020). All phases of the drug discovery process, 
including identifying novel drug uses, forecasting drug-
protein interactions, determining drug efficacy, supplying 
safety biomarkers, and maximizing molecular bioactivity, 
can benefit from the application of machine learning (ML) 
algorithms (Patel L. et al., 2020). 

Figure 2. Commonly used ML algorithms.

RANDOM FOREST (RF) 
RF is a popular method that is specifically made for big 
datasets with plenty of characteristics. It makes things easier 
by eliminating outliers ( Outliers are values that deviate 
significantly from the general trend in the data. They need 
to be taken into account because they can mislead the ML 
model, affect its accuracy and cause poor performance. 
Random forest performs better when predicting variables 
like the Human Development Index (HDI) when techniques 
like winsorizing and random oversampling are used to handle 
outliers and imbalanced data (Notodiputro K.A., Sartono B., 
Zubedi F., 2022)) and categorizes and identifies datasets 
according to the relative features that are classified for a 
certain algorithm. In addition to being trained for accessibility 
using a variety of huge inputs, variables, and data gathering 

from numerous databases, it is helpful in a variety of contexts, 
including referring to missing data, working with outliers 
(For instance, the random forest method can be requested to 
choose the most valuable characteristic out of x attributes. 
If desired, this information can then be utilized in another 
desired model), and predicting features for classification 
(Breiman L., 2001). Many independent decision trees make up 
the mathematical process that underpins RF as a whole; each 
tree determines a forecast, and the tree with the greatest 
number of votes is deemed optimal (Sarica A., et al., 2017). By 
combining numerous predictions instead of concentrating on 
just one, multiple decision trees reduce individual errors (Patel 
L. et al., 2020). Regression, classifiers, and feature selection 
are the three main uses of RFs in drug discovery. Accelerating 
the training process, employing fewer parameters, loading 
missing data, and merging nonparametric data can be 
added to the list of primary factors that go along with RF in 
drug development (Cano G., et al., 2017). Multivariate RFs 
are experts in reducing error by calculating different error 
estimation methods inside the system. By feeding in data 
with combinations of genetic and epigenetic characteristics, 
the computational framework enables the framework to 
predict the mean and confidence interval of medication 
reactions. This is a crucial characteristic needed to analyze 
any medication that will be used in clinical trials (Rahman R., 
et al., 2017). 

NAİVE BAYESİAN (NB) 
A subset of supervised learning techniques known as NB 
algorithms is now a vital tool for classification in predictive 
modeling. Depending on the input features, factor correlation, 
and dimensionality of the data, standard NB algorithms can 
be one of the most effective methods for classifying dataset 
features. These methods increase the accuracy of retrieved 
datasets, which frequently come from large, mixed sources 
(Bielza C., Larrañaga P., 2014; Gilboa E., et al., 2013; Kim S.B., 
et al., 2006; Ratanamahatana C., Gunopulos D., 2010; Sun H., 
2005). 

SUPPORT VECTOR MACHINE (SVM) 
SVMs are supervised learning algorithms that are used in the 
drug discovery process to derive a hyperplane and divide 
classes of compounds according to a feature selector. It 
creates an endless number of hyperplanes by taking use 
of commonalities across classes. It trains on linear data by 
projecting classes of chemicals into chemical feature space, 
based on features that are chosen. A hyperplane used to 
categorize data points by establishing decision boundaries is 
an ideal hyperplane that is obtained by eliminating the largest 
margin between classes in N (number of features) dimensional 
space (Heikamp K., Bajorath J., 2013). SVM’s capacity to 
differentiate between active and inactive compounds and 
rank compounds in each database makes it a crucial tool for 
drug discovery. Regression models are essential for figuring 
out how a medicine and ligand interact since they make 
predictions by running a query against databases. Multiple 
situations can be associated with SVM when multiple active 
compounds of interest are screened against a single protein. 
SVM classification’s primary focus is on binary class prediction, 
which includes a subset that can differentiate between active 
and inactive chemicals and substances (Patel L. et al., 2020).  
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SVM is especially made to incorporate ligands and target 
proteins as an essential part of modeling drug-target 
interaction (Heikamp and Bajorath, 2013). It can rate 
compounds from various databases according to their 
likelihood of being active for any computational screening 
in the drug discovery process. By training the algorithm with 
different descriptors for feature selectors, such as target 
protein and 2D fingerprints, the procedure can be altered. 
Depending on which way a chemical is positioned relative to 
the hyperplane, a negative or positive class label is created, 
resulting in a ranking of compounds from most selective to 
least selective (Wassermann A.M., et al., 2010; Hinselmann 
G., et al., 2011). For non-linear data, kernel functions are 
employed to optimize outcomes. According to Patel L. et al. 
(2020), kernel functions plot data in a higher dimensional 
space that allows for class classification. 

4.2. DL ALGORITHMS AND ARTIFICIAL NEURAL 
NETWORKS 
The goal of artificial neural networks (ANNs) is to simulate 
how neurons behave in the natural world. Several artificial 
neurons arranged in ordered layers make up a common 
artificial neural network architecture (Yang X., et al., 2019). Its 
most basic configuration comprises of three layers of neurons 
that communicate with one another, just like the human 
brain does. Data input occurs on the first layer, information 
processing occurs on the hidden layer, and output is the last 
layer. When every node in one layer of a feed-forward network 
is connected to every other layer, the neurons in an artificial 
neural network (ANN) are said to be dense or fully connected. 
Only these types of networks are referred to as multilayer 
perceptrons (MLPs; multiple hidden layers), dense neural 
networks, or complete neural networks. Stated otherwise, 
a network is deeper the more hidden levels it contains.  
The depth of the model is determined by the length of the 
chain connecting the many functions that make up these 
networks. This idea gives rise to the term “deep learning,” 
which describes learning systems with several information 
processing layers that may simulate high-level abstractions in 
data (Lavecchia A., 2019). 

In practically every scientific and technological discipline, 
deep learning algorithms are acknowledged as one of the most 
advanced areas of development and research. DL algorithms 
have made it possible for computer models to learn how to 
represent multidimensional data through abstraction and 
have helped ML algorithms overcome a number of obstacles 
(Patel L. et al., 2020).  

DL algorithms are now the standard approach for lead 
molecule, target, and drug activity prediction in the drug 
discovery process. Neural network systems, which are used to 
construct systems capable of complicated data recognition, 
interpretation, and production, are frequently the foundation 
of deep learning. Deep neural networks (DNNs), recurrent 
neural networks (RNNs), and convolutional neural networks 
(CNNs) are the primary subsets of neural networks that are 
being utilized in drug discovery (Dana D. et al., 2018; Korotcov 
A., et al., 2017; Ekins S., 2016). 

 

Figure 3. Commonly used DL algorithms.  

DEEP NEURAL NETWORKS (DNN) 
From the input layer to the hidden layer and finally to the 
output layer, DNNs operate on a single path data stream. 
Typically, supervised learning algorithms that have been 
trained are used to identify the outputs. A DNN may be trained 
to accomplish complicated tasks using guided reinforcement 
learning and supervised learning techniques. While a 
predictive DNN can forecast the chemical characteristics 
of novel compounds, a generative DNN may create new 
chemical compounds from preexisting libraries and training 
sets (D’Souza S., et al., 2020; Baskin I.I., et al., 2016).  The 
correlation between these substances’ chemical structure 
and activity is ascertained by the utilization of QSAR models. 
One of the most sophisticated applications of deep learning 
(DL)-based artificial intelligence (AI) in drug discovery 
and development today is QSAR analysis, which gives 
scientists access to two-dimensional chemical structures and 
physicochemical characteristics that are associated with a 
molecule’s activity. Additional research into the geometric 
structure influencing ligand-target interactions has been 
made possible by 3D-QSAR (Chen R., et al., 2018; Ghasemi F., 
et al., 2018). 

RECIPIENT NEURAL NETWORKS (RNN) 
Sequence prediction was the original purpose of RNN 
creation. These networks only accept an input stream 
with varying lengths (Askr R., et al., 2023). Self-iterative or 
feedback connections between neurons in various levels 
are what distinguish them. such loops in a network, they 
feature feedback components to reuse internal information 
and function especially well with sequential data, such text, 
phrases, and protein sequence data. To get around the 
challenges of storing long-term data, they are additionally 
outfitted with an internal memory.  

The chemical synthesis and characterisation phase becomes 
significant after the initial work on target discovery has been 
finished and a more effective technique for target-molecule 
interaction has been created. The majority of algorithms for 
new drug design and discovery use the descriptive simplified 
molecular input line input system (SMILES) nomenclature, 
which is a crucial aspect at this time. The lengthy short-
term memory subset of the RNN type has evolved into a 
dependable, standardized technique for constructing novel 
chemical structures. When it comes to utilizing neurons 
connected to the same hidden layer to create an inputoutput 
processing loop, RNNs are far more beneficial algorithms 
than DNNs and feed-forward neural networks (Patel L. et al., 
2020). 

CONVOLUTIONARY NEURAL NETWORKS (CNN) 
Developed to handle growing levels of complexity as well as 
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data preparation and aggregation, CNNs are a high-potential 
type of artificial neural network (ANN) that receives inputs, 
weights some of the inputs, and then enhances the ability to 
distinguish data (Yamashita R. et al., 2018). A convolutional 
layer with parameters made up of a collection of filters, or 
kernels, is what distinguishes convolutional neural networks 
(CNNs) from other types of neural networks. CNNs are 
designed to resemble the receptive field of the human visual 
cortex, where neurons react to stimuli. Local filters are what 
these cells do throughout the input space.  

CNNs may process data in four steps and are among the most 
versatile algorithms for handling both image and non-image 
data (Askr H., et al., 2023):  

Figure 4. Stages of processing CNNs.  

This idea of a network may make it easier to retrieve pertinent 
visual data in smaller, more manageable pieces. Neurons in a 
CNN are in charge of the preceding layer’s group of neurons 
(Askr H., et al., 2023).  

Four steps are involved in building the CNN when the input 
data is integrated into the convolutional model (Askr H., et 
al., 2023): 

Convolution: Using the given data, a feature map is created 
and then put through an objective. 

Maximum Pooling: Based on the supplied modifications, this 
aids CNN in identifying an image. 

Flattening: At this point, the data is standardized for CNN’s 
analysis. 

Complete Linking: The process of generating a model’s loss 
function is frequently referred to as the “hidden layer”. 
Image recognition, image analysis, video analysis, picture 
segmentation (splitting an image into regions with distinct 
features), and natural language processing (NLP) are among 
the tasks performed by CNNs (Chauhan et al. 2018; Tajbakhsh 
et al. 2016; Mohamed et al. 2020).  

CNNs are among the most useful tools in the drug 
development process for target and lead identification and 
characterisation, protein-ligand scoring, and in silico target-
lead interaction screening. Furthermore, CNNs have been 
utilized in the development of motility models that depict 

how cancer cells respond to various forms of therapy (Dana 
D., et al., 2018; Mencattini A., et al. 2020; Ragoza M., et al. 
2017; Rathi P.C., et al. 2020; Reher R., et al., 2020). 

5. In Silico APPROACH 
These days, with the aid of modern computers and information 
technology, the procedures involved in medication 
development, optimization, and discovery have changed due 
to the rapid evolution of technology. In the biomedical field, 
the optimization process from hit detection and hit to routing 
has been facilitated and accelerated by the use of computer-
aided or in silico design utilizing computational tools (Ekins 
S., et al., 2009). 

To find hit and lead compounds, the drug discovery industry 
often employs one of two models: the phenotype- or 
target-based method. These vary in ways that help identify 
therapeutic targets and choose or optimize small molecules 
(Dodd F.S., 2005; Swinney D.C. and Anthony J., 2011). The 
phrase “therapeutic target” refers to the location of the 
substance’s binding that will facilitate the substance’s 
biological activity (Andrade E.L. et al., 2016). 

The phenotype screening strategy, also known as advanced 
or classical pharmacology, uses better disease-relevant tests 
(such as isolated tissue or animal models of the disease, 
cell-based phenotypic analysis) to identify drugs based on 
their physiological effects. Through the interaction of several 
targets (receptors, transcription factors, enzymes, etc.) of 
a previously undisclosed target, this strategy may lead to 
the identification of a molecule that modifies the illness 
phenotype (Dodd F.S., 2005; Swinney D.C., 2012). 

The two broad categories of approaches utilized in computer-
aided drug design (CADD) are ligand-based and structure-
based. Structure-based CADD is recommended when the 
target protein’s structure is known, particularly for soluble 
proteins that crystallize readily. In the event that target 
structure information is lacking, ligand-based CADD is 
utilized by building predictive, quantitative structure-activity 
relationship (QSAR) models and using the knowledge of 
known active and inactive compounds through chemical 
similarity searches (Kapetanovic I.M., 2008; Katsila T., et al., 
2016). Drug productivity, speed, and costeffectiveness can all 
be rationalized and enhanced by using ligand- and structure-
based steps in the discovery process, such as compound 
generation by virtual screening, predicting the binding free 
energy between a ligand and a receptor, and optimizing high 
affinities (Sliwoski G., et al., 2014). 

5.1. TARGET IDENTIFICATION AND VALIDATION FOR 
THERAPEUTICS  
In target-based drug development, targets are found through 
a range of molecular techniques and instruments, such as the 
evaluation of the genome and proteins (proteomics) linked 
to a disease in humans. Targets related to human pathology 
can be found by utilizing a variety of molecular techniques, 
including RNA interference, zinc finger proteins, antisense 
oligonucleotides, tissue and cell microarrays, nucleic acid 
microarrays, and protein microarrays (Terstappen G.C., et al., 
2007; Wang S., et al., 2004).  The target is identified first in the 
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phenotypic-based approach, which observes the substance’s 
activity beforehand. 

Reverse convolution is another term for the target 
identification procedure in this method. Chemical proteomics-
based methods (affinity chromatography, activity-based 
protein profiling, label-free techniques), expression cloning 
methods, in silico methods, and others can be used to identify 
targets (Terstappen G.C., et al., 2007; Lee J., Bogyo M., 2013). 
Validation of the treatment target is necessary after 
identification. Here, the objective is to determine whether 
altering the therapeutic target will result in a believable 
biological response. To this end, validation methods include 
altering the target in disease-affected humans as well as 
using whole animal models and in vitro tools (Hughes J.P., et 
al., 2010; Terstappen G.C., Reggiani A., 2001). 

Three categories comprise the most commonly recognized 
standards for target validation in drug discovery (Andrade 
E.L., 2016):
1-Expression of the target protein or mRNA in appropriate cell 
types, animal models, or patient target tissues 
2-Target modulation produces the intended functional effect 
in cell systems. 
3-Prove that the target is responsible for the disease 
phenotype in patients or animal models. 

Typically, in vivo or in vitro experiments are used to get 
the first steps of therapeutic target validation. These are 
then followed by the use of immunohistochemistry or in 
situ hybridization techniques to express messenger RNA or 
proteins in human samples, respectively. Though the first 
method that springs to mind is protein characterization, this 
approach may be hampered by the absence of particular 
antibodies directed against a particular target; additionally, 
target validation is rarely, if ever, thought to be achieved 
solely by the target protein’s association with diseased or 
target tissue (Lindsay M.A., 2003). It’s also necessary for the 
target to have functional significance to disease modification. 
Using small molecule inhibitors, antisense oligonucleotides, 
and siRNA, target validation can also be studied in transgenic 
and gene knockout animals; however, it should be noted that 
animal models frequently do not exhibit the exact disease 
phenotype or share the same pathophysiology as observed 
in patients. Targets frequently result in differing tissue 
expression and distribution in animal models than in human 
models. Moreover, pathogenic pathways in humans can have 
a distinct mechanism of action and differ evolutionarily from 
those in animal models. It is best to confirm a target using at 
least two distinct methods before moving on to the rigorous 
clinical stage of drug development in order to prevent all of 
these issues (Andrade E.L., 2016). 

Like the more widely used biological phrases in vivo and 
in vitro, the term “in silico” refers to investigations carried 
out by computers. It explains how data is utilized to build 
computational models or simulations that can be used to 
forecast outcomes, put forth theories, and eventually result 
in new medical discoveries or advancements in therapy. The 
benefits of in silico investigations are their low cost, quick 
implementation, and capacity to minimize animal exploitation. 

This technique has been employed as a means of expediting 
the identification of promising novel therapeutics. Toxicology 
and pharmacokinetic research, as well as the investigation 
of structure-activity connections, are all included in the 
construction of in silico drug prototypes (Ekins S., et al., 
2009). To effectively direct the development of new drugs 
through the execution of in vitro and in vivo research, in silico 
studies are crucial. 

Homology modeling in the context of in silico 
pharmacodynamics is predicated on amino acid sequence 
homology, which offers details on structural and functional 
similarities. Therapeutic target structures are mapped using 
this technique, which also covers the three-dimensional 
structure of the targets (Ekins S., et al., 2009). 

Molecular docking, which predicts the bioactive conformation 
of a small molecule at the binding site of a macromolecule, is 
another technique frequently employed for pharmacodynamic 
evaluation. This approach determines the relevant binding 
affinity after providing a good approximation of the predicted 
shape and fit of the ligand in the protein cavity (Lengauer T., 
Rarey M., 1996). 

Via the use of three-dimensional macromolecular data on 
the topological arrangement of biological information as a 
prerequisite for detailed information, ligand-based virtual 
screening is based on virtual screening. Target-based 
virtual screening, which is based on receptor structure, 
selects compounds for biochemical or biological testing by 
analyzing vast compound databases using molecular docking 
techniques to establish an ideal chemical and biological space 
(Andrade E.L., 2016). 

5.3. COMPUTER AIDED DRUG DESIGN (CADD) 
Using a variety of computer tools, CADD integrates 
computational chemistry, molecular modeling, molecular 
design, and rational drug design to find and create a 
therapeutic development lead (Muegge et al., 2017). CADD 
employs two distinct methodologies, namely structure-based 
drug design (SBDD) and ligand-based drug design (LBDD), 
contingent upon the accessibility of three-dimensional 
protein or ligand structures (Vemula D., et al., 2023).  

Structure-Based Drug Design (SBDD): Characterizing the 
binding site cavity and having access to the therapeutic 
target protein’s three-dimensional structure are the two 
primary components of structure-based drug design (Kawato 
et al., 2015). SBDD has surfaced as a potential method in the 
pharmaceutical sector for ligand generation and optimization 
(Gurung et al., 2021; Jorgensen W.L., 2004; Park H., et al., 
2012). 

Ligand-Based Drug Design (LBDD): This approach is 
employed in situations where three-dimensional receptor data 
is unavailable. Understanding the chemicals that attach to the 
desired biological target is the foundation of the technique. 
By using a known ligand as a target, LBDD techniques 
establish a structure-activity relationship (SAR) between 
the ligand’s activities and physicochemical characteristics. 
This information can be used to guide the creation of novel 
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medications with increased activity or to improve currently 
available ones (Yu and MacKerell, 2017). 

6. ARTIFICIAL INTELLIGENCE IN DRUG DOSAGE FORM 
DESIGN 
For biological compartments in the human body system to 
comprehend the impact of drug delivery, physicochemical 
barriers are essential. Depending on the route of 
administration, one of the most crucial parameters for 
keeping an eye on a successful drug delivery system is the 
penetration rate. For instance, after entering the stomach, 
the medication taken orally needs to pass through the 
intestinal or gastric epithelium. This step is crucial for the 
drug’s continued bloodstream dissemination. The process 
of delivery involves moving the medication through the 
bloodstream to a specified tissue or site (Bhhatarai B., et 
al., 2019; Chavda V.P., 2019; Siepmann J., Siepmann F., 2012; 
Das P.J., et al., 2016; Colombo S., 2020). The way a medicine 
interacts with biological components greatly affects how the 
drug behaves in the body at the end. The drug’s molecular 
characteristics control the process up to the final state. 
Drugs can either actively or passively aid in their penetration. 
Drug distribution is predicted via computational analysis 
using in silico models, which are based on the molecular 
characteristics of the drug. Passive permeation is ineffective 
for small, physiologically active compounds and necessitates 
a specific delivery method. Membrane transport drives the 
process of active permeation, which is dependent on intricate 
biological interactions. The pharmacokinetic properties 
of the drug delivery system can be studied with the aid of 
numerous specific parameters employed in this intricate 
process. Research units can be better understood and multi-
layered data can be thoroughly analyzed thanks to artificial 
intelligence. In order to discover the best outcomes with 
parameter evaluation, the model to be applied methodically 
is based on a number of criteria, including simulation, scoring, 
and refinement at each stage of the inquiry. Moreover, AI is 
used to investigate how a drug delivery method affects the 
drug’s pharmacokinetics in order to improve data prediction 
for continuous improvement, precise comprehension of 
the medication’s interaction with biology, and efficient 
comprehension of toxicity and distribution. AI gathers data 
from many sources and creates indicators according to the 
chosen drug delivery system’s performance. The efficacy of 
treatment is contingent upon the precision with which AI 
selects drug delivery devices. The goal of artificial intelligence 
is to apply current treatments to newly discovered diseases. 
It is helpful in the drug discovery process in addition to the 
drug reuse approach. Formulation, pharmacokinetics, and 
medication development are influenced by the needs of the 
patient and the condition of the illness (Vora K.L., et al., 2023).
 
7. ARTIFICIAL INTELLIGENCE IN MEDICINE DISTRIBUTION  
7.1. ARTIFICIAL INTELLIGENCE TO DEVELOP ORAL 
SOLID DOSAGE FORM 
Since solid dosage forms are the most convenient to use and 
promote disease compliance, individuals choose to take them 
in the form of tablets, granules, and powdered medications 
(Jiang J. et al., 2022). In the pharmaceutical industry, tablets 
are one of the most popular formats. Preparing tablets for use 

entails a number of aspects. The formulator has established 
these characteristics to fulfill the unique demands of the 
target patient population. A variety of excipients are put into 
tablets to manage the intended product outcome, such as 
tablet disintegration, dissolution, and drug release. Artificial 
intelligence can be used to forecast drug release in the setting 
of systemic drug administration and assist in examining 
the desirable relevant aspects of improved medication 
formulations. For the purpose of developing solid dosage 
forms, artificial neural networks and their subfields, such as 
neural networks and genetic algorithms, are used to improve 
comprehension of inputs and outputs. Genetic algorithms 
are employed to forecast outcomes from the usage of input 
parameters, however artificial neural networks offer superior 
prediction skills for solid dosage forms (Galata D.L. et al., 
2021, Ghourichay M.P. et al., 2021; Navya K. et al., 2022). 

7.1.1. Drug Release Prediction Through Formulations  
The release of drugs from oral solid dosage forms advances 
our knowledge of important material characteristics and 
processing variables. Compression parameters, such as the 
pressure applied to regulate tablet hardness, the geometric 
orientation of the tablets, and drug loading properties, are 
factors that influence drug release.  In the formulation of 
drugs, artificial intelligence is used to predict drug release. As a 
result, only a small number of runs are needed to optimize the 
batch, which further reduces labor and expenses during the 
manufacturing and pilot batch scale-up processes. Artificial 
intelligence can also be used to predict drug release profiles 
and dissolution profiles, as well as investigate disintegration 
time to effectively select the best batch for subsequent scale-
up (Vora K.L. et al., 2023). 

7.1.2.Applications of Artificial Intelligence for Formulation 
of Tablet Defects 
Tablet photos are analyzed using artificial intelligence 
algorithms and computer vision techniques, which makes 
it possible to automatically and effectively detect flaws 
like cracks, discolorations, or variations in size and shape. 
The method gains a high degree of accuracy by accurately 
classifying and identifying various sorts of errors through 
the training of AI models on massive datasets of annotated 
photos. The interior structure of tablets has been studied using 
conventional techniques like Xray computed tomography, 
however these techniques still take time and interfere with the 
need for quick tablet production. To find tablet flaws, deep 
learning and X-ray tomography are combined. Not only does 
this AI-powered detection increase problem identification 
speed and accuracy, but it also minimizes human mistake 
and subjective judgment by reducing the need for manual 
inspection. AI systems’ real-time monitoring capabilities 
allow for the prompt identification of flaws, which allows for 
prompt response and can stop faulty tablets from being sold. 
In the end, incorporating AI into tablet defect detection raises 
productivity and enhances product quality while guaranteeing 
the security and effectiveness of pharmaceuticals (Vora K.L. 
et al., 2023). 

7.1.3.Artificial Intelligence for Prediction of 
Physicochemical Stability 
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AI can predict the stability of oral formulations by analyzing 
and interpreting large datasets containing drug properties, 
formulation parameters, and environmental conditions. AI 
models can assess factors like drug degradation, interactions 
with excipients, and environmental influences on formulation 
stability. These capabilities are achieved by utilizing machine 
learning algorithms and computational models. With 
the use of AI’s predictive skills, researchers may improve 
formulation designs, spot any stability problems early in 
the development process, and make wise decisions that will 
extend the shelf life and effectiveness of oral dosage forms. 
Artificial intelligence (AI) integration in stability prediction 
leads to more economical and effective drug development 
procedures, which in turn provides patients with safe and 
effective medications (Vora K.L. et al., 2023). 

7.1.4. Contribution of Artificial Intelligence to Dissolution 
Rate Predictions 
The term “dissolution rate” describes how quickly a medicine 
dissolves in a biological fluid. The drug’s bioavailability 
and therapeutic efficacy are determined by this feature. 
Because artificial intelligence models can identify important 
physicochemical properties and molecular characteristics 
that influence the dissolution process through the analysis 
of large amounts of experimental data, they have greatly 
aided in the optimization of drug formulations and dosage 
forms and helped predict dissolution rates. These models 
achieve great prediction accuracy by using machine learning 
algorithms to identify intricate patterns and correlations 
between drug characteristics and dissolution rates. Artificial 
intelligence offers valuable insights into the dissolving 
behavior of various drug formulations. These insights can 
be utilized to build more efficient drug delivery systems 
and pick the best formulation techniques for enhanced drug 
absorption and solubility. Scientists now have useful tools 
to expedite medication development, improve formulation 
techniques, and ultimately enhance patient outcomes thanks 
to artificial intelligence’s help for dissolution rate prediction 
advancements (Mukhamediev R.L. et al., 2022). 

CONCLUSION AND DISCUSSION 
Technology known as artificial intelligence has been 
incorporated into pharmaceutical R&D to expedite and 
lower the cost of the medication development and discovery 
processes. Owing to the advancement of machine learning 
theory and the synthesis of pharmacological data, artificial 
intelligence technology now functions as a potent data 
mining instrument in several drug design domains, including 
activity prediction, virtual screening, QSAR analysis, and in 
silico assessment of absorption, distribution, metabolism, 
excretion, and toxicity (ADME/T) properties (Çelik İ.N. et 
al. 2021). It can forecast proteomes, genomes, and patient-
specific dosage formulations in addition to enhancing 
currently available medications. The development of novel 
compounds with target binding qualities that improve 
therapeutic efficacy and decrease adverse effects is made 
possible by systems created in partnership with scientists 
and artificial intelligence specialists. In order to improve 
compliance, AI-enabled systems will continuously gather 
data from wearables, sensors, and remote patient monitoring. 
They will also use genetic profiles, biomarkers, and electronic 

health records to identify eligible patients, lower the cost of 
trials, and expedite approval. However, this presents ethical 
questions regarding patient consent. It has a number of 
benefits over conventional experimental techniques, including 
lower clinical trial attrition rates, fewer animal studies due 
to less frequent use of in vivo assays, process and expense 
control, and labor cost savings. Artificial intelligence (AI) is 
at the core of cutting-edge technologies because it has the 
unmatched ability to find novel candidate therapies that can 
be swiftly made available for clinical trials and, if authorized, 
integrated into healthcare. Accordingly, AI has promise for 
the creation of new medications and the repurposing of those 
already in use to treat human diseases, particularly those 
that are emerging like Coronavirus Disease 2019 (COVID-19) 
(Zhou Y., et al. 2016). Despite all of these benefits, artificial 
intelligence is still viewed as a mystery because it cannot 
be explained. Features are not well defined throughout the 
training phase, and the network designer might not know 
what is being looked at in the intermediate steps or why the 
model has reached a certain conclusion. Because of this, a lot 
of work has been done to speed up the drug discovery process 
and integrate AI tools into the system. However, before the 
full potential of AI in drug discovery and development can be 
realized, more successful applications of these tools will be 
needed (Chan H.C.S., et al. 2019). 
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