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Optical character recognition for historical scripts like Old Turkic runiform script poses 
significant challenges due to the need for abundant annotated data and varying writing styles, materials, 
and degradations. The paper proposes a novel data synthesis pipeline that augments parametric 
generation with 3D rendering to build realistic and diverse training data for Old Turkic runiform script 
grapheme classification. Our approach synthesizes distance field variations of graphemes, applies 
parametric randomization, and renders them in simulated 3D scenes with varying textures, lighting, and 
environments. We train a Vision Transformer model on the synthesized data and evaluate its 
performance on the Kül Tegin inscription photographs. Experimental results demonstrate the 
effectiveness of our approach, with the model achieving high accuracy without seeing any real-world 
data during training. We finally discuss avenues for future research. Our work provides a promising 
direction to overcome data scarcity in Old Turkic runiform script. 

Key Words: optical character recognition, Old Turkic runiform script, data synthesis, vision 
transformer model. 
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1. Introduction 

The earliest Turkic writings in the Old Turkic runiform script appear in two 
variants: Orkhon and Yenisei. The Orkhon script, dating from the 720s, was found 
along the Orkhon River in Mongolia, while the Yenisei script appeared in eighth-
century inscriptions in Khakasia, Tuva, and South Siberia. These scripts, used for 
memorials, grave stelae, border signs, and graffiti, have been discovered in 
regions such as Talas, Kazakhstan, the Altai region, and Xinjiang (Johanson, 2021: 
402-411). 

The Khaganate inscriptions are an important part of the Old Turkic 
runiform corpus, and among them, the Kül Tegin inscription is a stele that, 
alongside Chinese, contains Old Turkic script text, which has been of essential 
importance to understanding Old Turkic script and context surrounding the 
Khaganate inscriptions. 

Optical character recognition (OCR) has made significant strides in recent 
years, enabling the digitization and analysis of vast amounts of textual 
information (AlKendi et al., 2024). However, OCR for historical scripts remains 
an open challenge due to the scarcity of labeled data, including the Old Turkic 
runiform script (Poncelas et al., 2020). Annotated datasets for training OCR 
models are scarce, as manual transcription of texts with Old Turkic runiform 
script is a time-consuming and expertise-intensive process, and the visual 
complexity of the script, with its variations, diverse layouts, and background 
noise, poses difficulties for robust classification of graphemes. 

 

Figure 1. End-to-end pipeline. 
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To address these challenges, we propose a synthetic data generation 
approach for training machine learning models for Old Turkic runiform script. 
We verify the plausibility by evaluating a custom-trained classification model, 
establishing the first application of neural classification models with the 
attention mechanism to Old Turkic runiform script. Our key idea is to leverage 
3D rendering techniquesto create realistic images of Old Turkic runiform script 
with a wide range of variations in appearance, including lighting, texture, 
environment, noise, and artifacts, and then to test a Vision Transformer (ViT) 
model (Dosovitskiy et al., 2020) on real-world data with a focus on the Kül Tegin 
inscription. 

Our main contributions are as follows: 

1. A parametric model for synthesizing realistic Old Turkic glyphs based on 
a small set of prototype distance fields. 

2. A 3D simulation and rendering pipeline that augments the parametric 
data with realistic geometry, textures, and lighting. 

3. An application validating the effectiveness of the proposed approach 
through a ViT-based classification model that achieves high accuracy on 
photographs of the Kül Tegin inscription when trained purely on synthesized 
data. 

2. Background and related work 

Optical character recognition (OCR) has made significant progress in 
digitizing textual information, enabling large-scale analysis and preservation of 
historical documents (Mori et al., 1992; Liang et al., 2005). However, applying OCR 
to historical scripts (Ma et al., 2024; Martıńek Jiřı ́ et al., 2020) like Old Turkic 
runiform remains challenging due to the scarcity of labeled training data and the 
visual complexity of the script (Uçar, 2024). Old Turkic runiform script was used 
across a wide geographical area in Eurasia (Robbeets & Savelyev, 2020). The 
script exhibits significant variations in character shapes, writing styles, and 
materials used, including stone1, paper, and wood, as well as degradations from 

                                                           
1  In 2017, 30 Old Turkic runiform inscriptions in the Altai Mountains were digitalized using 3D 

technology to document their carvings in remote areas. Digital photogrammetry, utilizing affordable 
hardware and free software, provided high-quality results (Nevskaya et al., 2018: 194-216). 
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aging and exposure to the elements (Tekin, 1968). These factors make obtaining 
large annotated datasets needed to train robust OCR models difficult (Derin & 
Harada, 2021). 

Data synthesis has emerged as a promising approach to overcome the data 
scarcity problem in many domains (de Melo et al., 2022). The key idea is to 
generate realistic synthetic data that captures real-world data’s essential 
characteristics and variations, which can be used to train machine learning 
models. For OCR, this typically involves generating images of text with different 
fonts, styles, backgrounds, and degradations (Jaderberg et al., 2014). However, 
most existing OCR data synthesis approaches rely on simple 2D rendering 
techniques and fail to capture the full complexity of historical scripts like Old 
Turkic runiform script, which are often inscribed on 3D surfaces with intricate 
textures and lighting conditions. 

3D rendering and simulation techniques from computer graphics offer a 
powerful way to generate realistic synthetic data that accounts for the 3D nature 
of historical texts. By modeling the text, materials, lighting, and environment in 
3D and simulating the imaging process, one can generate synthetic data that 
more closely resembles real-world images. Such techniques have been 
successfully applied to generate training data for various computer vision tasks, 
including object detection, pose estimation, and segmentation (Tremblay et al. 
2018). However, their application to OCR and historical script recognition has 
been limited. 

Recent advances in generative models, such as Generative Adversarial 
Networks (GANs) (Goodfellow et al., 2020) and diffusion models (Ho et al., 2020), 
have shown impressive results in generating realistic images, including text 
images (Karras et al. 2019). These models learn to generate new images similar 
to a given training set, capturing complex styles and variations. However, 
training these models requires a large dataset of photographs and glyph-level 
annotations, often unavailable for historical scripts. Moreover, these models do 
not provide explicit control over the content and layout of the generated images, 
making it challenging to generate annotated data for downstream tasks. In 
contrast, 3D rendering and simulation approaches can generate realistic images 
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with precise control over the content, style, and degradations, making them 
well-suited for low-resource OCR data synthesis. 

Regarding model architectures for OCR and classification, convolutional 
neural networks (CNNs) have been the dominant approach for the last decade, 
achieving state-of-the-art results on many benchmarks (Shi et al. 2016). However, 
CNNs are known to be sensitive to variations in the input image, such as changes 
in scale, rotation, and distortion. More recently, Vision Transformers (ViTs) have 
emerged as a promising alternative to CNNs for many computer vision tasks, 
including OCR (Ströbel et al. 2023). ViTs are based on the self-attention 
mechanism and can capture long-range dependencies in the input image, 
making them more robust to variations and distortions when enough training 
data is available. 

3. Methodology 

3.1. Overview of the proposed approach 

Our proposed approach consists of two main components: 1. A data 
synthesis pipeline; 2. A grapheme classification model for OCR. The data 
synthesis pipeline takes a set of glyph prototypes and generates a large dataset 
of realistic 3D renderings. The OCR system then trains on grapheme boxes 
extracted from this synthesized dataset and evaluated on a glyph-level image 
dataset from photographs. 

3.2. Data synthesis pipeline 

3.2.1. Signed-distance field representation 

We represent each Old Turkic glyph as a signed distance field (SDF), which 
encodes the distance of each point in a 2D grid to the nearest point on the 
boundary (Osher et al. 2004). SDFs have several advantages over binary masks or 
outlines for representing shapes: 

Smooth interpolation 

SDFs allow smooth interpolation between shapes, enabling continuous 
glyph style and weight variations. 
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Efficient rendering 

SDFs can render efficiently using sphere tracing, a ray marching technique 
that avoids the need for explicit triangulation of the shape boundary (Hart, 1996). 

Compact representation 

SDFs can be stored as low-resolution grids or compressed using truncated 
signed distance fields (TSDFs), reducing memory requirements (Curless & Levoy, 
1996). 

To create the SDF for each Old Turkic glyph, we start with a high-resolution 
glyph outline from upscaled vectorization of an impressional table of Old Turkic 
script grapheme variants. We then compute the signed distance of each pixel to 
the outline. The resulting SDF becomes a 2D grid of floating-point values, where 
negative values indicate points inside the glyph and positive values indicate 
outside. 

3.2.2. Parametric variations 

To increase the diversity of the generated text images, we apply parametric 
variations to the base SDFs of each glyph. Some of the variations we consider 
include: 

Weight 

We vary the weight of the glyph by offsetting the SDF values by a constant 
amount, effectively growing or shrinking the glyph boundary. 

Outline 

We vary between drawing only the outline or with fill. 

A set of random variables drawn from predefined distributions controls the 
parametric variations, allowing us to generate a wide range of glyph styles and 
shapes. 
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Figure 2. This figure displays the parametric variations generated using the data synthesis pipeline. 
From left to right: the glyph <b> variant with angular features, the glyph <A> variant showcasing a 
curved structure, the intricate glyph <G> variant, the bold and glyph <W> variant, and the distinct 

angular glyph <p> variant. 

3.2.3. Random text generation 

To generate completely random Old Turkic script text strings for rendering, 
the algorithm starts with an empty string and iteratively adds characters 
without any preconditions. We apply additional constraints and heuristics 
during sampling to ensure that the generated text covers various characters and 
ligatures. For example, we may require that each generated string contains at 
least one instance of each Old Turkic script grapheme. 

We do not use lexicons or language models to generate Old Turkic script 
text strings, aiming to avoid time-period or region-specific biases. This 
prioritizes recognizing visual features, as research shows that the Old Turkic 
script was used across a wide geographical area over a long period of time, 
attesting to the development of the language, its dialects, and the script (Erdal, 
1979). 

3.2.4. Texture mapping 

To render the generated Old Turkic text strings in a realistic 3D 
environment, we first map them onto 3D surfaces using texture mapping 
(Heckbert, 1986). The surfaces mimic the characteristics of flat faces of stele 
inscriptions. 

To map the text strings onto the 3D surfaces, we use UV mapping, which 
associates each point on the surface with a 2D texture coordinate. We generate 
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the UV coordinates using a parametric mapping function that considers the 
dimensions and orientation of the text string relative to the surface. The 
mapping function may also include random distortions and perspective effects 
to simulate the imperfections of inscriptions. 

3.2.5. Lighting and environment setup 

 

Figure 3. The figure shows a 3D simulation of an Old Turkic surface using Blender. The image on the left 
displays the wireframe view of the scene, highlighting the geometric structure and mesh of the text 

elements. The image on the right shows the shading view, where textures and lighting effects are 
applied to simulate the realistic appearance of the inscription in a natural environment. 

We set up a virtual environment with one or more light sources and a 
background scene to create realistic lighting and shading effects. The design of 
the light sources mimics natural illumination conditions, such as sunlight or 
torchlight, with parameters by their position, intensity, and color (Akenine-
Moller et al., 2019). 

The design of the background scene provides visual context and realism to 
the rendered images (Debevec, 1998). We use a combination of 3D models and 2D 
textures to create backgrounds resembling Old Turkic inscriptions’ natural 
environments, such as deserts, steppes, or mountains. 
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3.2.6. 3D Simulation 

 

Figure 4. Comparison of rendering results using only direct lighting (left) versus a global illumination 
solver (right). The left image shows a flatter and less detailed rendering. In contrast, the right image 

demonstrates enhanced depth and detail. 

We render the 3D scenes using a global illumination solver (Pharr et al. 
2023). The renderer simulates the interaction of light with the scene elements 
using physically based shading models and ray tracing techniques. We set the 
camera parameters, such as focal length and sensor size, to match the full-frame 
digital single-lens reflex (DSLR) cameras used to document Old Turkic 
inscriptions. 

3.2.7. Post-processing 

 

Figure 5. Post-processing starts with a combined render of synthesized text images (Combined Render), 
followed by extracting individual lines of text (Line Extraction). Each line is further decomposed into 
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individual glyphs (Glyph Extraction), which are then processed to prepare them for classification (Post-
processing). This pipeline facilitates the creation of realistic training data by simulating various effects. 

The rendered images are then post-processed to introduce various artifacts 
and degradations that mimic the challenges of original Old Turkic inscription 
images. Some of the post-processing steps we apply include: 

Color distortions 

We apply random color balance, saturation, and contrast adjustments to 
the images to simulate lighting and camera settings variations. 

Compression artifacts 

We compress the images using JPEG or other lossy compression algorithms 
to simulate the degradation caused by image storage and transmission (Xia et al., 
2009). 

Random variables drawn from predefined distributions control the type 
and severity of the post-processing effects, allowing us to generate a wide range 
of realistic degradations (Buslaev et al., 2020). 

3.3. Recognition system 

 

Figure 6. Real-time recognition of Old Turkic runiform script using a Vision Transformer model trained 
on synthetic data. The image shows the model accurately predicting a character from a remote camera 

stream, utilizing OpenCV for video capture and processing. The green bounding box highlights the 
detected character, and the prediction label displays the identified grapheme, demonstrating the 

model’s robustness in dynamic environments. 
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We employ a Vision Transformer (ViT) architecture for the classification 
model, which has shown promising results in various computer vision tasks. The 
ViT model inputs character images and predicts the corresponding class. We 
train the model using a cross-entropy loss function and the Adaptive Moment 
Estimation with Weight Decay (AdamW) (Loshchilov & Hutter 2019) Stochastic 
Gradient Descent (SGD) optimizer. The model architecture and hyperparameters 
are selected based on empirical evaluation and validation from a held-out subset 
of synthesized data. 

4. Experiments 

4.1. Implementation details 

The 2D synthetic data generation pipeline is implemented in Python, using 
the NumPy (Harris et al., 2020) and SciPy libraries for numerical computations 
and the OpenCV library (Bradski et al., 2000) for image processing. This pipeline 
takes the prototype graphemes, converts them to distance field representation, 
and the positions as lines within 512 x 512 images. These images are then 
combined into 4096x4096 larger images to utilize scarce physically-based scan 
materials better. The pipeline then parallelizes using the multiprocessing 
module to take advantage of multiple CPU cores. 

To generate the final training images through simulation, we render the 3D 
scene using the photorealistic global illumination renderer Cycles of Blender 
through the Python scripting API (Blender Foundation, 2024). We use a physics-
based shading model with randomized material properties. The rendering 
parameters are sampled randomly within predefined ranges to generate diverse 
images. We use image-based input for both environment lightning and material 
configuration. The ground-truth label for each rendered image derives from 
keeping track of the 2D character bounding boxes in perspective projection. The 
simulation experiments execute on a system with NVIDIA RTX 4060 Laptop GPU 
and 32 GB of RAM. 

We implement our model and training pipeline using the PyTorch deep 
learning framework (Paszke et al., 2019) and PyTorch Lightning (Falcon & The 
PyTorch Lightning team, 2019). Our ViT model takes a 64x64 grayscale image as 
input and predicts a 40-dimensional output vector corresponding to the 40 Old 
Turkic character classes (39 graphemes and one null class). The number of 
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output classes is a fixed hyperparameter of the model, but adding more classes 
through transfer learning is possible. The image is first split into 4 x 4 patches. 
Then, each patch linearly projects to a 128-dimensional embedding. The patch 
embeddings are concatenated with a learnable class embedding and fed into a 
stack of transformer encoder layers. Each encoder layer consists of multi-head 
self-attention followed by a feed-forward network. The average of slightly 
rotated final encoder outputs corresponding to the class embedding becomes the 
source to predict the character class. We train the model using the AdamW 
optimizer with a batch size 1536 and a learning rate 0.001. We use cross-entropy 
loss as the training objective. The model trains for 16384 steps. During training, 
we monitor the character accuracy on a held-out validation set to avoid 
overfitting. The classifier experiments run on a system with an NVIDIA A100 GPU 
and 64 GB of RAM. 

4.2. Dataset preparation2 

ID 
Seed  

Examples 
Render  

Examples 
Unicode  

Decomposition 
Transliteration 

r00 ∅ ∅ ∅ ∅ 

r03 

  

U+10C00 A 

r04 

  

U+10C03 I 

r05 

  

U+10C06 W 

r07 

  

U+10C06, U+0200D, U+10C03 ẅ  

r11 

  

U+10C0B b 

                                                           
2  D. D. Vasilyev (1946-2021) was a significant figure in the field of Old Turkic runiform script 

palaeography. In his 1983 work, based on his doctoral thesis, he compiled a comprehensive and 
descriptive list of runiform glyphs, indicating the location of the inscriptions where each glyph was 
attested (95-148). We have also greatly benefited from his work in this section. 
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r12 

  

U+10C0F g 

r13 

  

U+10C13 d 

r14 

  

U+10C18 y 

r15 

  

U+10C1A k 

r16 

  

U+10C20 l 

r17 

  

U+10C24 n 

r18 

  

U+10C3C r 

r19 

  

U+10C3E s 

r20 

  

U+10C45 t 

r22 

  

U+10C06, U+0200D, U+10C03, 
U+0200D, U+10C1A 

ẅk 

r26 

  

U+10C09 B 

r27 

  

U+10C0D G 
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r28 

  

U+10C11 D 

r29 

  

U+10C16 Y 

r30 

  

U+10C1E L 

r31 

  

U+10C23 N 

r32 

  

U+10C34 Q 

r33 

  

U+10C3A R 

r34 

  

U+10C3D S 

r35 

  

U+10C43 T 

r37 

  

U+10C06, U+0200D, U+10C34 WQ  

r38 

  

U+10C3D, U+0200D, U+002D9 Ş  

r42 

  

U+10C14 z 

r43 

  

U+10C22 m 
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r44 

  

U+10C2F p 

r45 

  

U+10C32 ç 

r47 

  

U+10C03, U+0200D, U+10C32 iç  

r48 

  

U+10C03, U+0200D, U+10C34 IQ  

r49 

  

U+10C1E, U+0200D, U+10C43 LT  

r50 

  

U+10C23, U+0200D, U+10C16 Ñ  

r51 

  

U+10C23, U+0200D, U+10C32 NÇ  

r52 

  

U+10C23, U+0200D, U+10C43 NT  

r53 

  

U+10C24, U+0200D, U+10C0F ŋ 

r57 

  

U+0003A : 

Table. This table enumerates synthesized graphemes, detailing their ID, seed examples, render 
examples, Unicode decomposition, and transliteration. Although primarily extensional to work with 
larger OCR systems, the null class represents the case where the model is explicitly confident that it 

lacks a glyph it can classify as one of the Old Turkic runiform glyphs. 

To evaluate, we prepare a dataset of 100 graphemes from photographs of 
Kül Tegin inscription captured under different lighting conditions and camera 



 

 293 

angles. We manually annotate the images with character-level bounding boxes. 
All images in this dataset consist of the test set. 

We generate a synthetic dataset of around 1 million grapheme images to 
train our models using the proposed 3D scene synthesis pipeline. The synthetic 
images cover all 39 distinct Old Turkic runiform script character classes in Kül 
Tegin inscription. The synthetic images are split into 95% for the training set and 
5% for the validation set. 

4.3. Evaluation metrics 

We use character-level accuracy as the primary evaluation metric. It is 
defined as the percentage of characters that the system correctly classifies. We 
report the average accuracy across all test images. 

5. Results 

5.1. Quantitative results 

 

Figure 7. The figure shows the training progress of the Vision Transformer model used for Old Turkic 
script recognition. The left graph illustrates the training loss over the steps, while the right graph 

depicts the training accuracy over the same steps. The training loss decreases steadily, indicating that 
the model is learning effectively. Simultaneously, the training accuracy improves and stabilizes at a 
high value, demonstrating the model’s proficiency in recognizing graphemes from the synthesized 

data. 

The figure in this section shows the accuracy of our approach as we train 
the Vision Transformer model. Our model, trained purely on synthesized data, 
achieves an accuracy of 95.6% in synthetic validation and 82% in photographs. 
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5.2. Qualitative analysis 

 

Figure 8. Qualitative analysis of the grapheme classification model on photographs of the Kül Tegin 
inscription. The images depict various styles and conditions: photo of glyph <ẅk>, estampage of glyph 
<D>, photo of glyph <ıQ>, drawing of <A>, and photo of <I>. The bar charts beside each image show the 

class probabilities predicted by the Vision Transformer model for each grapheme. 
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The figure in this section shows some qualitative examples of our model’s 
predictions on photographs. The model accurately recognizes characters with 
various styles, lighting, backgrounds, variations, resolutions, and degradations. 
The qualitative results highlight the robustness and generalization ability of our 
approach. However, the model occasionally struggles with photographs that are 
significantly occluded, rotated, distorted, or taken from angles that do not 
directly face the camera. 

6. Discussion 

6.1. Key Findings and insights 

The novel data synthesis pipeline proposed in this study, combining 
parametric generation of Old Turkic runiform glyphs with 3D scene rendering, 
effectively addresses the challenge of data scarcity in OCR on historical 
documents, focusing on the specific case of Old Turkic script. By generating 
realistic and diverse training data without manual annotation, this approach 
opens up new possibilities for digitizing and analyzing historical texts for which 
annotated data is scarce or unavailable. 

The Vision Transformer model trained solely on the synthesized data 
achieves a high accuracy of 82% in classifying Old Turkic graphemes from real-
world photographs of the Kül Tegin inscription. This result demonstrates the 
effectiveness of the proposed data synthesis approach in capturing the essential 
characteristics and variations of the historical script, enabling the model to 
generalize well to original inscription data. It highlights the potential of this 
approach. 

The qualitative analysis of the model’s predictions on photographs 
showcases its robustness to variations in character styles, lighting conditions, 
backgrounds, and image degradations. This suggests that the data synthesis 
pipeline successfully generates training data representative of the diversity and 
complexity of historical inscriptions. However, the model’s performance on 
extreme cases of occlusion, rotation, distortion, or non-frontal camera angles 
indicates room for further improvement in the realism and comprehensiveness 
of the synthesized data. 
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While the proposed approach achieves promising results, it has several 
limitations that motivate future research directions. These include simplifying 
assumptions made in the data synthesis pipeline, ensuring greater efficiency and 
scalability, extending scene understanding tasks beyond character recognition, 
and evaluating and interpreting the model more comprehensively. Addressing 
these limitations could further enhance the practicality and generalizability of 
the approach for historical manuscript OCR. 

6.2. Limitations and future work 

While our proposed approach demonstrates promising results for Old 
Turkic runiform script recognition using synthesized training data, there are 
several limitations to the current work that motivate future research directions. 

Data synthesis pipeline assumptions and realism 

Our data synthesis pipeline makes several simplifying assumptions that 
may impact the realism and generalizability of the generated images. For 
example, the current system only produces flat surfaces with extrusion in glyphs 
without modeling surface-level degradations or diversities that are common in 
historical inscriptions. Incorporating more sophisticated approximations of 
real-world phenomena, such as modeling second-order distortions over edges or 
simulating weathering effects, could improve the realism of the synthesized data 
and the robustness of models trained on it. The current synthesis system also 
post-processes images to finalize them as monochrome grayscale images. 
Although this simplification is sufficient for the current classification task, 
future work should ensure that the model can handle cases where color is the 
only perceivable distinguishing factor between glyphs. 

Scalability and efficiency 

Future work could explore techniques to optimize the data synthesis 
pipeline, such as using end-to-end GPU execution with ahead-of-time 
compilation (Lattner et al., 2021) through a type-safe language such as Rust with 
emerging compute-centric vector engines (Levien & Uguray, 2024) or leveraging 
transfer learning and domain adaptation techniques to reduce the amount of 
synthesized data needed. The recognition model’s efficiency could be improved 
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through techniques like model compression, quantization, or architecture 
search (Choudhary et al., 2020). 

Extending to scene understanding 

Our current approach focuses on character-level recognition. However, a 
complete OCR system for historical scripts like Old Turkic would also need to 
handle scene understanding tasks such as layout analysis and text line 
segmentation. The recognition model could also be extended to handle these 
additional tasks, potentially using multi-task learning or end-to-end 
architectures (Yousef & Bishop, 2020). 

Evaluation and interpretability 

While our experimental results demonstrate the effectiveness of the 
proposed approach, there are several areas where the evaluation could be 
strengthened. Future work should include confusion matrices to analyze the 
types of errors made by the model and ablation studies to assess the impact of 
different components of the data synthesis pipeline and recognition model. 
Ablation and interpretability studies, including attention maps, could provide 
insights into the model’s decision-making process and help identify potential 
biases or failure modes (Chefer et al., 2021). 

7. Conclusion 

In this paper, we proposed a data synthesis approach based on 3D rendering 
for training OCR models for Old Turkic script recognition. Our pipeline generates 
realistic and diverse training data by decomposing characters, applying 
variations, and rendering them in 3D scenes with simulation of global 
illumination phenomena. We trained a Vision Transformer model on the 
synthesized data. We evaluated it on photographs of Old Turkic inscriptions, 
achieving reasonable accuracy in classifying glyphs without using real-world 
data during training. Our results demonstrate the effectiveness of data synthesis 
for low-resource historical scripts such as Old Turkic runiform and open up 
avenues for future research in this direction. 
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