

 278

Received 15.06.2024
Research Article

JOTS
8/2

2024: 278-301
Accepted 14.07.2024
Published 20.07.2024

Augmenting parametric data synthesis with 3D
simulation for OCR on Old Turkic runiform inscriptions:

A case study of the Kül Tegin inscription

Eski Türk Runik Yazıtlarında OCR için Parametrik Veri Sentezini 3D Simülasyon ile Arttırma:
Kül Tégin Yazıtı Üzerinde Bir Örnekleme

Свeтой памяти Д. Д. Васильева (1946-2021)

M e h m e t O g u z D E R İ N *
(S e o u l / R e p u b l i c o f K o r e a)

E - m a i l : m e h m e t o g u z d e r i n @ m e h m e t o g u z d e r i n . c o m

E r d e m U Ç A R *
J e n a U n i v e r s i t y (J e n a / G e r m a n y)
E - m a i l : e r d e m . u c a r @ u n i - j e n a . d e

Optical character recognition for historical scripts like Old Turkic runiform script poses
significant challenges due to the need for abundant annotated data and varying writing styles, materials,
and degradations. The paper proposes a novel data synthesis pipeline that augments parametric
generation with 3D rendering to build realistic and diverse training data for Old Turkic runiform script
grapheme classification. Our approach synthesizes distance field variations of graphemes, applies
parametric randomization, and renders them in simulated 3D scenes with varying textures, lighting, and
environments. We train a Vision Transformer model on the synthesized data and evaluate its
performance on the Kül Tegin inscription photographs. Experimental results demonstrate the
effectiveness of our approach, with the model achieving high accuracy without seeing any real-world
data during training. We finally discuss avenues for future research. Our work provides a promising
direction to overcome data scarcity in Old Turkic runiform script.

Key Words: optical character recognition, Old Turkic runiform script, data synthesis, vision
transformer model.

* ORCID ID: 0000-0002-6264-3509.
* ORCID ID: 0000-0002-0039-9619.

 279

1. Introduction

The earliest Turkic writings in the Old Turkic runiform script appear in two
variants: Orkhon and Yenisei. The Orkhon script, dating from the 720s, was found
along the Orkhon River in Mongolia, while the Yenisei script appeared in eighth-
century inscriptions in Khakasia, Tuva, and South Siberia. These scripts, used for
memorials, grave stelae, border signs, and graffiti, have been discovered in
regions such as Talas, Kazakhstan, the Altai region, and Xinjiang (Johanson, 2021:
402-411).

The Khaganate inscriptions are an important part of the Old Turkic
runiform corpus, and among them, the Kül Tegin inscription is a stele that,
alongside Chinese, contains Old Turkic script text, which has been of essential
importance to understanding Old Turkic script and context surrounding the
Khaganate inscriptions.

Optical character recognition (OCR) has made significant strides in recent
years, enabling the digitization and analysis of vast amounts of textual
information (AlKendi et al., 2024). However, OCR for historical scripts remains
an open challenge due to the scarcity of labeled data, including the Old Turkic
runiform script (Poncelas et al., 2020). Annotated datasets for training OCR
models are scarce, as manual transcription of texts with Old Turkic runiform
script is a time-consuming and expertise-intensive process, and the visual
complexity of the script, with its variations, diverse layouts, and background
noise, poses difficulties for robust classification of graphemes.

Figure 1. End-to-end pipeline.

 280

To address these challenges, we propose a synthetic data generation
approach for training machine learning models for Old Turkic runiform script.
We verify the plausibility by evaluating a custom-trained classification model,
establishing the first application of neural classification models with the
attention mechanism to Old Turkic runiform script. Our key idea is to leverage
3D rendering techniquesto create realistic images of Old Turkic runiform script
with a wide range of variations in appearance, including lighting, texture,
environment, noise, and artifacts, and then to test a Vision Transformer (ViT)
model (Dosovitskiy et al., 2020) on real-world data with a focus on the Kül Tegin
inscription.

Our main contributions are as follows:

1. A parametric model for synthesizing realistic Old Turkic glyphs based on
a small set of prototype distance fields.

2. A 3D simulation and rendering pipeline that augments the parametric
data with realistic geometry, textures, and lighting.

3. An application validating the effectiveness of the proposed approach
through a ViT-based classification model that achieves high accuracy on
photographs of the Kül Tegin inscription when trained purely on synthesized
data.

2. Background and related work

Optical character recognition (OCR) has made significant progress in
digitizing textual information, enabling large-scale analysis and preservation of
historical documents (Mori et al., 1992; Liang et al., 2005). However, applying OCR
to historical scripts (Ma et al., 2024; Martıńek Jiřı ́ et al., 2020) like Old Turkic
runiform remains challenging due to the scarcity of labeled training data and the
visual complexity of the script (Uçar, 2024). Old Turkic runiform script was used
across a wide geographical area in Eurasia (Robbeets & Savelyev, 2020). The
script exhibits significant variations in character shapes, writing styles, and
materials used, including stone1, paper, and wood, as well as degradations from

1 In 2017, 30 Old Turkic runiform inscriptions in the Altai Mountains were digitalized using 3D

technology to document their carvings in remote areas. Digital photogrammetry, utilizing affordable
hardware and free software, provided high-quality results (Nevskaya et al., 2018: 194-216).

 281

aging and exposure to the elements (Tekin, 1968). These factors make obtaining
large annotated datasets needed to train robust OCR models difficult (Derin &
Harada, 2021).

Data synthesis has emerged as a promising approach to overcome the data
scarcity problem in many domains (de Melo et al., 2022). The key idea is to
generate realistic synthetic data that captures real-world data’s essential
characteristics and variations, which can be used to train machine learning
models. For OCR, this typically involves generating images of text with different
fonts, styles, backgrounds, and degradations (Jaderberg et al., 2014). However,
most existing OCR data synthesis approaches rely on simple 2D rendering
techniques and fail to capture the full complexity of historical scripts like Old
Turkic runiform script, which are often inscribed on 3D surfaces with intricate
textures and lighting conditions.

3D rendering and simulation techniques from computer graphics offer a
powerful way to generate realistic synthetic data that accounts for the 3D nature
of historical texts. By modeling the text, materials, lighting, and environment in
3D and simulating the imaging process, one can generate synthetic data that
more closely resembles real-world images. Such techniques have been
successfully applied to generate training data for various computer vision tasks,
including object detection, pose estimation, and segmentation (Tremblay et al.
2018). However, their application to OCR and historical script recognition has
been limited.

Recent advances in generative models, such as Generative Adversarial
Networks (GANs) (Goodfellow et al., 2020) and diffusion models (Ho et al., 2020),
have shown impressive results in generating realistic images, including text
images (Karras et al. 2019). These models learn to generate new images similar
to a given training set, capturing complex styles and variations. However,
training these models requires a large dataset of photographs and glyph-level
annotations, often unavailable for historical scripts. Moreover, these models do
not provide explicit control over the content and layout of the generated images,
making it challenging to generate annotated data for downstream tasks. In
contrast, 3D rendering and simulation approaches can generate realistic images

 282

with precise control over the content, style, and degradations, making them
well-suited for low-resource OCR data synthesis.

Regarding model architectures for OCR and classification, convolutional
neural networks (CNNs) have been the dominant approach for the last decade,
achieving state-of-the-art results on many benchmarks (Shi et al. 2016). However,
CNNs are known to be sensitive to variations in the input image, such as changes
in scale, rotation, and distortion. More recently, Vision Transformers (ViTs) have
emerged as a promising alternative to CNNs for many computer vision tasks,
including OCR (Ströbel et al. 2023). ViTs are based on the self-attention
mechanism and can capture long-range dependencies in the input image,
making them more robust to variations and distortions when enough training
data is available.

3. Methodology

3.1. Overview of the proposed approach

Our proposed approach consists of two main components: 1. A data
synthesis pipeline; 2. A grapheme classification model for OCR. The data
synthesis pipeline takes a set of glyph prototypes and generates a large dataset
of realistic 3D renderings. The OCR system then trains on grapheme boxes
extracted from this synthesized dataset and evaluated on a glyph-level image
dataset from photographs.

3.2. Data synthesis pipeline

3.2.1. Signed-distance field representation

We represent each Old Turkic glyph as a signed distance field (SDF), which
encodes the distance of each point in a 2D grid to the nearest point on the
boundary (Osher et al. 2004). SDFs have several advantages over binary masks or
outlines for representing shapes:

Smooth interpolation

SDFs allow smooth interpolation between shapes, enabling continuous
glyph style and weight variations.

 283

Efficient rendering

SDFs can render efficiently using sphere tracing, a ray marching technique
that avoids the need for explicit triangulation of the shape boundary (Hart, 1996).

Compact representation

SDFs can be stored as low-resolution grids or compressed using truncated
signed distance fields (TSDFs), reducing memory requirements (Curless & Levoy,
1996).

To create the SDF for each Old Turkic glyph, we start with a high-resolution
glyph outline from upscaled vectorization of an impressional table of Old Turkic
script grapheme variants. We then compute the signed distance of each pixel to
the outline. The resulting SDF becomes a 2D grid of floating-point values, where
negative values indicate points inside the glyph and positive values indicate
outside.

3.2.2. Parametric variations

To increase the diversity of the generated text images, we apply parametric
variations to the base SDFs of each glyph. Some of the variations we consider
include:

Weight

We vary the weight of the glyph by offsetting the SDF values by a constant
amount, effectively growing or shrinking the glyph boundary.

Outline

We vary between drawing only the outline or with fill.

A set of random variables drawn from predefined distributions controls the
parametric variations, allowing us to generate a wide range of glyph styles and
shapes.

 284

Figure 2. This figure displays the parametric variations generated using the data synthesis pipeline.
From left to right: the glyph variant with angular features, the glyph <A> variant showcasing a
curved structure, the intricate glyph <G> variant, the bold and glyph <W> variant, and the distinct

angular glyph <p> variant.

3.2.3. Random text generation

To generate completely random Old Turkic script text strings for rendering,
the algorithm starts with an empty string and iteratively adds characters
without any preconditions. We apply additional constraints and heuristics
during sampling to ensure that the generated text covers various characters and
ligatures. For example, we may require that each generated string contains at
least one instance of each Old Turkic script grapheme.

We do not use lexicons or language models to generate Old Turkic script
text strings, aiming to avoid time-period or region-specific biases. This
prioritizes recognizing visual features, as research shows that the Old Turkic
script was used across a wide geographical area over a long period of time,
attesting to the development of the language, its dialects, and the script (Erdal,
1979).

3.2.4. Texture mapping

To render the generated Old Turkic text strings in a realistic 3D
environment, we first map them onto 3D surfaces using texture mapping
(Heckbert, 1986). The surfaces mimic the characteristics of flat faces of stele
inscriptions.

To map the text strings onto the 3D surfaces, we use UV mapping, which
associates each point on the surface with a 2D texture coordinate. We generate

 285

the UV coordinates using a parametric mapping function that considers the
dimensions and orientation of the text string relative to the surface. The
mapping function may also include random distortions and perspective effects
to simulate the imperfections of inscriptions.

3.2.5. Lighting and environment setup

Figure 3. The figure shows a 3D simulation of an Old Turkic surface using Blender. The image on the left
displays the wireframe view of the scene, highlighting the geometric structure and mesh of the text

elements. The image on the right shows the shading view, where textures and lighting effects are
applied to simulate the realistic appearance of the inscription in a natural environment.

We set up a virtual environment with one or more light sources and a
background scene to create realistic lighting and shading effects. The design of
the light sources mimics natural illumination conditions, such as sunlight or
torchlight, with parameters by their position, intensity, and color (Akenine-
Moller et al., 2019).

The design of the background scene provides visual context and realism to
the rendered images (Debevec, 1998). We use a combination of 3D models and 2D
textures to create backgrounds resembling Old Turkic inscriptions’ natural
environments, such as deserts, steppes, or mountains.

 286

3.2.6. 3D Simulation

Figure 4. Comparison of rendering results using only direct lighting (left) versus a global illumination
solver (right). The left image shows a flatter and less detailed rendering. In contrast, the right image

demonstrates enhanced depth and detail.

We render the 3D scenes using a global illumination solver (Pharr et al.
2023). The renderer simulates the interaction of light with the scene elements
using physically based shading models and ray tracing techniques. We set the
camera parameters, such as focal length and sensor size, to match the full-frame
digital single-lens reflex (DSLR) cameras used to document Old Turkic
inscriptions.

3.2.7. Post-processing

Figure 5. Post-processing starts with a combined render of synthesized text images (Combined Render),
followed by extracting individual lines of text (Line Extraction). Each line is further decomposed into

 287

individual glyphs (Glyph Extraction), which are then processed to prepare them for classification (Post-
processing). This pipeline facilitates the creation of realistic training data by simulating various effects.

The rendered images are then post-processed to introduce various artifacts
and degradations that mimic the challenges of original Old Turkic inscription
images. Some of the post-processing steps we apply include:

Color distortions

We apply random color balance, saturation, and contrast adjustments to
the images to simulate lighting and camera settings variations.

Compression artifacts

We compress the images using JPEG or other lossy compression algorithms
to simulate the degradation caused by image storage and transmission (Xia et al.,
2009).

Random variables drawn from predefined distributions control the type
and severity of the post-processing effects, allowing us to generate a wide range
of realistic degradations (Buslaev et al., 2020).

3.3. Recognition system

Figure 6. Real-time recognition of Old Turkic runiform script using a Vision Transformer model trained
on synthetic data. The image shows the model accurately predicting a character from a remote camera

stream, utilizing OpenCV for video capture and processing. The green bounding box highlights the
detected character, and the prediction label displays the identified grapheme, demonstrating the

model’s robustness in dynamic environments.

 288

We employ a Vision Transformer (ViT) architecture for the classification
model, which has shown promising results in various computer vision tasks. The
ViT model inputs character images and predicts the corresponding class. We
train the model using a cross-entropy loss function and the Adaptive Moment
Estimation with Weight Decay (AdamW) (Loshchilov & Hutter 2019) Stochastic
Gradient Descent (SGD) optimizer. The model architecture and hyperparameters
are selected based on empirical evaluation and validation from a held-out subset
of synthesized data.

4. Experiments

4.1. Implementation details

The 2D synthetic data generation pipeline is implemented in Python, using
the NumPy (Harris et al., 2020) and SciPy libraries for numerical computations
and the OpenCV library (Bradski et al., 2000) for image processing. This pipeline
takes the prototype graphemes, converts them to distance field representation,
and the positions as lines within 512 x 512 images. These images are then
combined into 4096x4096 larger images to utilize scarce physically-based scan
materials better. The pipeline then parallelizes using the multiprocessing
module to take advantage of multiple CPU cores.

To generate the final training images through simulation, we render the 3D
scene using the photorealistic global illumination renderer Cycles of Blender
through the Python scripting API (Blender Foundation, 2024). We use a physics-
based shading model with randomized material properties. The rendering
parameters are sampled randomly within predefined ranges to generate diverse
images. We use image-based input for both environment lightning and material
configuration. The ground-truth label for each rendered image derives from
keeping track of the 2D character bounding boxes in perspective projection. The
simulation experiments execute on a system with NVIDIA RTX 4060 Laptop GPU
and 32 GB of RAM.

We implement our model and training pipeline using the PyTorch deep
learning framework (Paszke et al., 2019) and PyTorch Lightning (Falcon & The
PyTorch Lightning team, 2019). Our ViT model takes a 64x64 grayscale image as
input and predicts a 40-dimensional output vector corresponding to the 40 Old
Turkic character classes (39 graphemes and one null class). The number of

 289

output classes is a fixed hyperparameter of the model, but adding more classes
through transfer learning is possible. The image is first split into 4 x 4 patches.
Then, each patch linearly projects to a 128-dimensional embedding. The patch
embeddings are concatenated with a learnable class embedding and fed into a
stack of transformer encoder layers. Each encoder layer consists of multi-head
self-attention followed by a feed-forward network. The average of slightly
rotated final encoder outputs corresponding to the class embedding becomes the
source to predict the character class. We train the model using the AdamW
optimizer with a batch size 1536 and a learning rate 0.001. We use cross-entropy
loss as the training objective. The model trains for 16384 steps. During training,
we monitor the character accuracy on a held-out validation set to avoid
overfitting. The classifier experiments run on a system with an NVIDIA A100 GPU
and 64 GB of RAM.

4.2. Dataset preparation2

ID
Seed

Examples
Render

Examples
Unicode

Decomposition
Transliteration

r00 ∅ ∅ ∅ ∅

r03

U+10C00 A

r04

U+10C03 I

r05

U+10C06 W

r07

U+10C06, U+0200D, U+10C03 ẅ

r11

U+10C0B b

2 D. D. Vasilyev (1946-2021) was a significant figure in the field of Old Turkic runiform script

palaeography. In his 1983 work, based on his doctoral thesis, he compiled a comprehensive and
descriptive list of runiform glyphs, indicating the location of the inscriptions where each glyph was
attested (95-148). We have also greatly benefited from his work in this section.

 290

r12

U+10C0F g

r13

U+10C13 d

r14

U+10C18 y

r15

U+10C1A k

r16

U+10C20 l

r17

U+10C24 n

r18

U+10C3C r

r19

U+10C3E s

r20

U+10C45 t

r22

U+10C06, U+0200D, U+10C03,
U+0200D, U+10C1A

ẅk

r26

U+10C09 B

r27

U+10C0D G

 291

r28

U+10C11 D

r29

U+10C16 Y

r30

U+10C1E L

r31

U+10C23 N

r32

U+10C34 Q

r33

U+10C3A R

r34

U+10C3D S

r35

U+10C43 T

r37

U+10C06, U+0200D, U+10C34 WQ

r38

U+10C3D, U+0200D, U+002D9 Ş

r42

U+10C14 z

r43

U+10C22 m

 292

r44

U+10C2F p

r45

U+10C32 ç

r47

U+10C03, U+0200D, U+10C32 iç

r48

U+10C03, U+0200D, U+10C34 IQ

r49

U+10C1E, U+0200D, U+10C43 LT

r50

U+10C23, U+0200D, U+10C16 Ñ

r51

U+10C23, U+0200D, U+10C32 NÇ

r52

U+10C23, U+0200D, U+10C43 NT

r53

U+10C24, U+0200D, U+10C0F ŋ

r57

U+0003A :

Table. This table enumerates synthesized graphemes, detailing their ID, seed examples, render
examples, Unicode decomposition, and transliteration. Although primarily extensional to work with
larger OCR systems, the null class represents the case where the model is explicitly confident that it

lacks a glyph it can classify as one of the Old Turkic runiform glyphs.

To evaluate, we prepare a dataset of 100 graphemes from photographs of
Kül Tegin inscription captured under different lighting conditions and camera

 293

angles. We manually annotate the images with character-level bounding boxes.
All images in this dataset consist of the test set.

We generate a synthetic dataset of around 1 million grapheme images to
train our models using the proposed 3D scene synthesis pipeline. The synthetic
images cover all 39 distinct Old Turkic runiform script character classes in Kül
Tegin inscription. The synthetic images are split into 95% for the training set and
5% for the validation set.

4.3. Evaluation metrics

We use character-level accuracy as the primary evaluation metric. It is
defined as the percentage of characters that the system correctly classifies. We
report the average accuracy across all test images.

5. Results

5.1. Quantitative results

Figure 7. The figure shows the training progress of the Vision Transformer model used for Old Turkic
script recognition. The left graph illustrates the training loss over the steps, while the right graph

depicts the training accuracy over the same steps. The training loss decreases steadily, indicating that
the model is learning effectively. Simultaneously, the training accuracy improves and stabilizes at a
high value, demonstrating the model’s proficiency in recognizing graphemes from the synthesized

data.

The figure in this section shows the accuracy of our approach as we train
the Vision Transformer model. Our model, trained purely on synthesized data,
achieves an accuracy of 95.6% in synthetic validation and 82% in photographs.

 294

5.2. Qualitative analysis

Figure 8. Qualitative analysis of the grapheme classification model on photographs of the Kül Tegin
inscription. The images depict various styles and conditions: photo of glyph <ẅk>, estampage of glyph
<D>, photo of glyph <ıQ>, drawing of <A>, and photo of <I>. The bar charts beside each image show the

class probabilities predicted by the Vision Transformer model for each grapheme.

 295

The figure in this section shows some qualitative examples of our model’s
predictions on photographs. The model accurately recognizes characters with
various styles, lighting, backgrounds, variations, resolutions, and degradations.
The qualitative results highlight the robustness and generalization ability of our
approach. However, the model occasionally struggles with photographs that are
significantly occluded, rotated, distorted, or taken from angles that do not
directly face the camera.

6. Discussion

6.1. Key Findings and insights

The novel data synthesis pipeline proposed in this study, combining
parametric generation of Old Turkic runiform glyphs with 3D scene rendering,
effectively addresses the challenge of data scarcity in OCR on historical
documents, focusing on the specific case of Old Turkic script. By generating
realistic and diverse training data without manual annotation, this approach
opens up new possibilities for digitizing and analyzing historical texts for which
annotated data is scarce or unavailable.

The Vision Transformer model trained solely on the synthesized data
achieves a high accuracy of 82% in classifying Old Turkic graphemes from real-
world photographs of the Kül Tegin inscription. This result demonstrates the
effectiveness of the proposed data synthesis approach in capturing the essential
characteristics and variations of the historical script, enabling the model to
generalize well to original inscription data. It highlights the potential of this
approach.

The qualitative analysis of the model’s predictions on photographs
showcases its robustness to variations in character styles, lighting conditions,
backgrounds, and image degradations. This suggests that the data synthesis
pipeline successfully generates training data representative of the diversity and
complexity of historical inscriptions. However, the model’s performance on
extreme cases of occlusion, rotation, distortion, or non-frontal camera angles
indicates room for further improvement in the realism and comprehensiveness
of the synthesized data.

 296

While the proposed approach achieves promising results, it has several
limitations that motivate future research directions. These include simplifying
assumptions made in the data synthesis pipeline, ensuring greater efficiency and
scalability, extending scene understanding tasks beyond character recognition,
and evaluating and interpreting the model more comprehensively. Addressing
these limitations could further enhance the practicality and generalizability of
the approach for historical manuscript OCR.

6.2. Limitations and future work

While our proposed approach demonstrates promising results for Old
Turkic runiform script recognition using synthesized training data, there are
several limitations to the current work that motivate future research directions.

Data synthesis pipeline assumptions and realism

Our data synthesis pipeline makes several simplifying assumptions that
may impact the realism and generalizability of the generated images. For
example, the current system only produces flat surfaces with extrusion in glyphs
without modeling surface-level degradations or diversities that are common in
historical inscriptions. Incorporating more sophisticated approximations of
real-world phenomena, such as modeling second-order distortions over edges or
simulating weathering effects, could improve the realism of the synthesized data
and the robustness of models trained on it. The current synthesis system also
post-processes images to finalize them as monochrome grayscale images.
Although this simplification is sufficient for the current classification task,
future work should ensure that the model can handle cases where color is the
only perceivable distinguishing factor between glyphs.

Scalability and efficiency

Future work could explore techniques to optimize the data synthesis
pipeline, such as using end-to-end GPU execution with ahead-of-time
compilation (Lattner et al., 2021) through a type-safe language such as Rust with
emerging compute-centric vector engines (Levien & Uguray, 2024) or leveraging
transfer learning and domain adaptation techniques to reduce the amount of
synthesized data needed. The recognition model’s efficiency could be improved

 297

through techniques like model compression, quantization, or architecture
search (Choudhary et al., 2020).

Extending to scene understanding

Our current approach focuses on character-level recognition. However, a
complete OCR system for historical scripts like Old Turkic would also need to
handle scene understanding tasks such as layout analysis and text line
segmentation. The recognition model could also be extended to handle these
additional tasks, potentially using multi-task learning or end-to-end
architectures (Yousef & Bishop, 2020).

Evaluation and interpretability

While our experimental results demonstrate the effectiveness of the
proposed approach, there are several areas where the evaluation could be
strengthened. Future work should include confusion matrices to analyze the
types of errors made by the model and ablation studies to assess the impact of
different components of the data synthesis pipeline and recognition model.
Ablation and interpretability studies, including attention maps, could provide
insights into the model’s decision-making process and help identify potential
biases or failure modes (Chefer et al., 2021).

7. Conclusion

In this paper, we proposed a data synthesis approach based on 3D rendering
for training OCR models for Old Turkic script recognition. Our pipeline generates
realistic and diverse training data by decomposing characters, applying
variations, and rendering them in 3D scenes with simulation of global
illumination phenomena. We trained a Vision Transformer model on the
synthesized data. We evaluated it on photographs of Old Turkic inscriptions,
achieving reasonable accuracy in classifying glyphs without using real-world
data during training. Our results demonstrate the effectiveness of data synthesis
for low-resource historical scripts such as Old Turkic runiform and open up
avenues for future research in this direction.

8. Acknowledgments

We are grateful to the teams creating and developing Blender, PyTorch,
PyTorch Lightning, NumPy, OpenCV, SciPy, Poly Haven, Mermaid, and Penrose

 298

for maintaining open-access and open-source tools and resources with
permissive licenses that have been instrumental in our research.

We are also grateful to the first author’s mother, Nazmiye Derin, for
manually rebooting render server after unexpected power outages with remote
instructions.

 References

Akenine-Moller, T. et al. (2019). Real-time rendering. London-New York: AK
Peters/CRC Press.

AlKendi, W. et al. (2024). Advancements and Challenges in Handwritten Text
Recognition: A Comprehensive Survey. Journal of Imaging, 10(1), 18.

Blender Foundation. (2024). Blender - A 3D modelling and rendering package.
(Retrieved from www.blender.org)

Bradski, G. et al. (2000). OpenCV. Dr. Dobb’s Journal of Software Tools, 3(2).

Buslaev, A. et al. (2020). Albumentations: fast and flexible image augmentations.
Information, 11(2), 125.

Celso M. de Melo et al. (2022). Next-generation deep learning based on simulators
and synthetic data. Trends in Cognitive Sciences, 26(2), 174–187.

Chefer, H. et al. (2021). Transformer interpretability beyond attention
visualization. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 782–791.

Choudhary, T. et al. (2020). A comprehensive survey on model compression and
acceleration. Artificial Intelligence Review, 53, 5113–5155.

Curless, B. & Levoy, M. (1996). A volumetric method for building complex models
from range images. Proceedings of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques (pp. 303–312). New York: Association for Computing Machinery.

Debevec, P. (1998). Rendering synthetic objects into real scenes: bridging
traditional and image-based graphics with global illumination and high dynamic range
photography. Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques (pp. 189-198). New York: Association for Computing Machinery.

Derin, M. O. & Harada, T. (2021). Universal Dependencies for Old Turkish.
Proceedings of the Fifth Workshop on Universal Dependencies (UDW, SyntaxFest 2021) (pp. 129–
141). Sofia: Association for Computational Linguistics.

 299

Dosovitskiy, A. et al. (2020). An image is worth 16x16 words: Transformers for
image recognition at scale. ArXiv Preprint ArXiv:2010.11929.

Erdal, M. (1979). The Chronological Classification of Old Turkish Texts. Central
Asiatic Journal, 23(3), 151-175.

Falcon, W. & The PyTorch Lightning team. (2019). PyTorch Lightning (Version 1.4).

Goodfellow, I. et al. (2020). Generative adversarial networks. Communications of the
ACM, 63(11), 139–144.

Harris, C. R. et al. (2020). Array programming with NumPy. Nature, 585(7825), 357–
362.

Hart, J. C. (1996). Sphere tracing: A geometric method for the antialiased ray
tracing of implicit surfaces. The Visual Computer, 12(10), 527–545.

Heckbert, P. S. (1986). Survey of texture mapping. IEEE Computer Graphics and
Applications, 6(11), 56–67.

Ho, J. et al. (2020). Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33, 6840–6851.

Jaderberg, M. et al. (2014). Synthetic data and artificial neural networks for
natural scene text recognition. ArXiv Preprint ArXiv: 1406.2227.

Johanson, L. (2021). Turkic. Cambridge: Cambridge University Press.

Karras, T. et al. (2019). A style-based generator architecture for generative
adversarial networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 4401–4410). Long Beach, CA, USA.

Lattner, C. et al. (2021). MLIR: Scaling compiler infrastructure for domain specific
computation. 2021 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO) (pp. 2–14). Curran Associates.

Levien, R. & Uguray, A. (2024). GPU-friendly Stroke Expansion (v2). ArXiv Preprint
ArXiv: 2405.00127v2.

Liang, J. et al. (2005). Camera-based analysis of text and documents: a survey.
International Journal of Document Analysis and Recognition (IJDAR), 7, 84–104.

Loshchilov, I. & Hutter, F. (2019). Decoupled Weight Decay Regularization. ArXiv
Preprint ArXiv: 1711.05101.

 300

Ma, H.-Y. et al. (2024). Reading between the Lines: Image-Based Order Detection
in OCR for Chinese Historical Documents. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(21), 23808–23810.

Martıńek, J. et al. (2020). Building an efficient OCR system for historical
documents with little training data. Neural Comput. Appl., 32(23), 17209–17227.

Mori, S. et al. (1992). Historical review of OCR research and development.
Proceedings of the IEEE, 80(7), 1029–1058.

Nevskaya, I. et al. (2018). 3D documentation of Old Turkic Altai runiform
inscriptions and revised readings of the inscriptions Tuekta-V and Bichiktu-Boom-III.
Turkic Languages, 22(2), 194-216.

Osher, S. et al. (2004). Level set methods and dynamic implicit surfaces. Appl. Mech.
Rev., 57(3), B15–B15.

Paszke, A. et al. (2019). PyTorch: An imperative style, high-performance deep
learning library. ArXiv Preprint ArXiv: 1912.01703.

Pharr, M. et al. (2023). Physically based rendering: From theory to implementation. San
Francisko: Morgan Kaufmann.

Poncelas, A. et al. (2020). A Tool for Facilitating OCR Postediting in Historical
Documents. Proceedings of LT4HALA 2020 - 1st Workshop on Language Technologies for
Historical and Ancient Languages (pp. 47-51). Marseille: European Language Resources
Association (ELRA).

Robbeets, M. & Savelyev, A. (2020). The Oxford guide to the Transeurasian languages.
Oxford: Oxford University Press.

Shi, B. et al. (2016). An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(11), 2298–2304.

Ströbel, P. B. et al. (2023). The Adaptability of a Transformer-Based OCR Model for
Historical Documents. In M. Coustaty & A. Fornés (Eds.), Document Analysis and
Recognition – ICDAR 2023 Workshops (pp. 34–48). Springer Nature Switzerland.

Tekin, T. (1968). A Grammar of Orkhon Turkic. Bloomingron: Indiana University.

Tremblay, J. et al. (2018). Deep object pose estimation for semantic robotic
grasping of household objects. ArXiv Preprint ArXiv: 1809.10790.

Uçar, E. (2024). A New Interpretation of Line 17 (I/South 10) of the Tuñuquq
Inscriptions. Zeitschrift Der Deutschen Morgenländischen Gesellschaft, 174(1), 161-172.

 301

Vasilyev, D. D. (1983). Grafiçeskiy fond pamyatnikov Tyurkskoy runiçeskoy pis’mennosti
Aziatskogo areala (opıt sistematizatsii). Moskva: İzdatel’stvo “Nauka” Glavnaya Redaktsiya
Vostoçnoy Literaturı.

Xia, J. et al. (2009). Perceivable artifacts in compressed video and their relation to
video quality. Signal Processing: Image Communication, 24(7), 548–556.

Yousef, M. & Bishop, T. E. (2020). OrigamiNet: weakly-supervised, segmentation-
free, one-step, full page text recognition by learning to unfold. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 14710–14719). Seattle.

