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ABSTRACT: 

In this paper, we introduce some ideal convergent double interval valued numbers sequence 
spaces defined by Orlicz function and study different properties of these spaces like 
completeness, solidity, etc. We establish some inclusion relations among them. 

Keywords: Paranorm; completeness; ideal-convergence; interval numbers; Orlicz function. 

 

1. INTRODUCTION 

The notion of ܫ-convergence was initially introduced by Kostyrko, et. al [10] as a 
generalization of statistical convergence (see [8],[21] ) which is based on the structure of the 
ideal ܫ of subset of natural numbers ℕ. Kostyrko, et. al [11] gave some of basic properties of ܫ-
convergence and dealt with extremal ܫ-limit points. Although an ideal is defined as a hereditary 
and additive family of subsets of a non-empty arbitrary set ܺ, here in our study it suffices to take 
ܫ .as a family of subsets of ℕ, positive integers, i.e ܫ ⊂ 2ℕ, such that ܣ ∪ ܤ ∈ ,ܣ for each ܫ ܤ ∈  ,ܫ
and each subset of an element of ܫ is an element of ܫ. 

A non-empty family of sets ܨ ⊂ 2ℕ is a filter on ℕ if and only if Φ ∉ ܣ ,ܨ ∩ ܤ ∈  for ܨ
each ܣ, ܤ ∈ ܫ is called non-trivial if ܫ An ideal .ܨ is in ܨ and any subset of an element of ,ܨ ≠ Φ 
and ℕ ∉ ܨ is a non-trivial ideal if and only if ܫ Clearly .ܫ = (ܫ)ܨ = {ℕ − :ܣ ܣ ∈  is a filter in {ܫ
ℕ, called the filter associated with the ideal ܫ. A non-trivial ideal ܫ is called admissible if and 
only if {{݊}: ݊ ∈ ℕ} ⊂  is maximal if there cannot exist any non-trivial ܫ A non-trivial ideal .ܫ
ideal ܬ ≠  as a subset. Further details on ideals can be found in Kostyrko, et.al (see ܫ containing ܫ
[10]). Recall that a sequence ݔ =  convergent to a real number-ܫ of points in ℝ is said to be (௞ݔ)
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ℓ if {݇ ∈ ℕ: ௞ݔ| − ℓ| ≥ {ߝ ∈ ߝ for every ܫ > 0 ([10]). In this case we write ܫ − limݔ௞ = ℓ. 
Further details on ideal convergence can be found in [20], [25]. The notion of ܫ-convergence 
double sequence was initially introduced by Tripathy and Tripathy (see [24]). 

Interval arithmetic was first suggested by Dwyer [2] in 1951. Development of interval 
arithmetic as a formal system and evidence of its value as a computational device was provided 
by Moore [14] in 1959 and Moore and Yang [15] in 1962. Further works on interval numbers 
can be found in Dwyer [3], Fischer [9] , Markov [13]. Furthermore, Moore and Yang [16], have 
developed applications to differential equations. 

Chiao in [1] introduced sequence of interval numbers and defined usual convergence of 
sequences of interval number. Ideal of ۼ and the corresponding convergence coincides with the 
usual convergence. If we take ܫ = ఋܫ = ܣ} ⊆ ℕ: (ܣ)ߜ = 0} where (ܣ)ߜ denote the asymptotic 
density of the set ܣ. Then ܫఋ  is a non-trivial admissible ideal of ℕ and the corresponding 
convergence coincides with the statistical convergence. 

Sengönül and Eryilmaz in [22] introduced and studied bounded and convergent sequence 
spaces of interval numbers and showed that these spaces are complete metric space. Esi in [4], 
[5] introduced and studied strongly almost ߣ −convergence and statistically almost 
ߣ −convergence of interval numbers and lacunary sequence spaces of interval numbers, 
respectively. In [7], Esi and Hazarika introduced the difference classes of interval numbers. 
Recently Esi [6] has studied double sequences of interval numbers. 

A set consisting of a closed interval of real numbers x such that ܽ ≤ ݔ ≤ ܾ is called an 
interval number. A real interval can also be considered as a set. Thus we can investigate some 
properties of interval numbers, for instance arithmetic properties or analysis properties.We 
denote the set of all real valued closed intervals by Iℝ. Any elements of Iℝ is called closed 
interval and denoted by ݔ. That is ݔ = ݔ} ∈ ℝ: ܽ ≤ ݔ ≤ ܾ}. An interval number ݔ is a closed 
subset of real numbers [1]. Let ݔ௟ and ݔ௥ be first and last points of ݔ interval number, 
respectively. For ݔଵ, ଶݔ ∈Iℝ, we have ݔଵ = ଶݔ ⇔ .ଶೝݔ=ଵೝݔ,ଶ೗ݔ=ଵ೗ݔ ଵݔ + ଶݔ = ൛ݔ ∈ ℝ: ଵ೗ݔ +
 then ,0>ߙ and if ݎ1ݔߙ≥ݔ≥1݈ݔߙ:ℝ∋ݔ=ݔߙ then ,0≤ߙ and if,ݎ2ݔ+ݎ1ݔ≥ݔ≥2݈ݔ
ݔߙ = ൛ݔ ∈ ℝ: ଵೝݔߙ ≤ ݔ ≤  ,ଵ೗ൟݔߙ

.ଵݔ  ଶݔ = ቊ
ݔ ∈ ℝ: min൛ݔଵ೗ . ଶ೗ݔ , ଵ೗ݔ . ,ଶೝݔ ଵೝݔ . ଶ೗ݔ , ଵೝݔ . ଶೝൟݔ ≤ ݔ
≤ max൛ݔଵ೗. ଶ೗ݔ , ଵ೗ݔ . ,ଶೝݔ .ଵೝݔ ,ଶ೗ݔ .ଵೝݔ ଶೝൟݔ

ቋ. 

In [14], Moore proved that the set of all interval numbers Iℝ is a complete metric space defined 
by 
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,ଵݔ)݀  (ଶݔ = max൛หݔଵ೗ − ,ଶ೗หݔ หݔଵೝ −  .ଶೝหൟݔ

In the special case ݔଵ = [ܽ, ܽ] and ݔଶ = [ܾ, ܾ], we obtain usual metric of ℝ. 

Let us define transformation ݂: ℕ → ℝ by ݇ → ݂(݇) = ,ݔ ݔ = ݔ Then .(௞ݔ) =  is (௞ݔ)
called sequence of interval numbers. The ݔ௞ is called ݇௧௛ term of sequence ݔ = .(௞ݔ) ௜ݓ  denotes 
the set of all interval numbers with real terms and the algebraic properties of ݓ௜ can be found in 
[1]. 

Now we give the definition of convergence of interval numbers: 

A sequence ݔ =  of interval numbers is said to be convergent to the interval number (௞ݔ)
ߝ ௢ if for eachݔ > 0 there exists a positive integer ݇௢ such that ݀(ݔ௞ , (௢ݔ < ݇ for all ߝ ≥ ݇௢  and 
we denote it by lim௞ݔ௞ =  . ௢ [1]ݔ

Thus, lim௞ݔ௞ = ௢ݔ ⇔ lim௞ݔ௞೗ = ௞ೝݔ௢೗ and lim௞ݔ =  .௢ೝݔ

Recall in [17],[12] that an Orlicz function ܯ is continuous, convex, nondecreasing 
function define for ݔ > 0 such that (0)ܯ = 0 and (ݔ)ܯ > 0. If convexity of Orlicz function is 
replaced by ݔ)ܯ + (ݕ ≤ (ݔ)ܯ +  then this function is called the modulus function and (ݕ)ܯ
characterized by Ruckle [19]. An Orlicz function ܯ is said to satisfy Δଶ −  for all ݊݋݅ݐ݅݀݊݋ܿ
values u, if there exists ܭ > 0 such that (ݑ2)ܯ ≤ ,(ݑ)ܯܭ ݑ ≥ 0. Subsequently, the notion of 
Orlicz function was used to defined sequence spaces by Tripathy et al [23], Tripathy and 
Hazarika[26] and many others. 

An interval valued double sequence ݔ = ൫ݔ௞,௟൯ is said to be convergent in the 
Pringsheim’s sense or ܲ-convergent to an interval number ݔ௢, if for every ߝ > 0, there exists 
ܰ ∈ ℕ such that 

 ݀൫ݔ௞,௟ , ௢൯ݔ < ,for݇ߝ ݈ >  (ℎ݁݅݉ݏ݃݊݅ݎܲ ݁݁ݏ)    ܰ

and we denote it by ܲ − limݔ௞,௟ = ݀ ௢ , whereݔ ቀݔ௞,௟ ,  ௞,௟ቁ is the Hausdorff distance betweenݕ

ݔ = ൫ݔ௞,௟൯ and ݕ = ቀݕ௞,௟ቁ. The interval number ݔ௢ is called the Pringsheim limit of ݔ = ൫ݔ௞,௟൯. 

More exactly, we say that a double sequence of interval numbers ݔ = ൫ݔ௞,௟൯ converges to a finite 
interval number ݔ௢ if ݔ௞,௟ tends to ݔ௢ as both ݇ and ݈ tend to infinity independently of each 
another. We denote by ܿଶ the set of all double convergent interval numbers of double interval 
numbers. 
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The interval number double sequence ݔ = ൫ݔ௞,௟൯ is bounded if and only if there exists a 
positive number ܤ such that ݀(ݔ௞,௟ , 0) <  for all ݇ and ݈. We shall denote all bounded interval ܤ

number double sequences by ݈ஶ
ଶ

. Let ݓଶ denote the set of all double sequences of interval 
numbers. 

Let ݌ = ൫݌௜,௝൯ be a double sequence of positive real numbers. If 0 < ௜,௝݌ ≤ sup௜,௝݌௜,௝ =
ܪ < ∞ and ܦ = max(1, 2ுିଵ), then for ܽ௜,௝ , ௜ܾ ,௝ ∈ ℝ for all ݅, ݆ ∈ ℕ, we have 

หܽ௜,௝ + ௜ܾ ,௝ห
௣೔,ೕ ≤ ൫หܽ௜,௝หܦ

௣೔,ೕ + หܾ௜,௝ห
௣೔,ೕ൯. 

 

2. MAIN RESULTS 
In this paper, we define new double sequence spaces for interval sequences as follows. 

Let ℐ be an admissible ideal of ℕ × ℕ. Let ܯ be an Orlicz function and ݌ = ൫݌௜,௝൯ be a 
double sequence of strictly positive real numbers. We introduce the following sequence spaces: 

 ଶݓℐ(ܯ, (݌ =

ቐݔ = ൫ݔ௜,௝൯: ൜(݉, ݊) ∈ ℕ × ℕ: ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯ ቀௗ൫௫೔,ೕ,௫೚൯
ఘ

ቁ൨
௣೔,ೕ

≥ ൠߝ ∈ ℐ,

ߩ݁݉݋ݏ ݎ݋݂ > 0, ௢ݔ݀݊ܽ ∈ ܀۷
ቑ, 

 ଶݓ௢
ℐ ,ܯ) (݌ =

ቐݔ = ൫ݔ௜,௝൯: ൜(݉, ݊) ∈ ℕ × ℕ: ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯ ൬ௗ൫௫೔,ೕ,଴൯
ఘ

൰൨
௣೔,ೕ

≥ ൠߝ ∈ ℐ,

ߩ݁݉݋ݏ ݎ݋݂ > 0
ቑ 

 ଶݓஶ
ℐ ,ܯ) (݌ =

ቐݔ = ൫ݔ௜,௝൯: ܭ∃ > .ݏ0 .ݐ ൜(݉, ݊) ∈ ℕ × ℕ: ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯ ൬ௗ൫௫೔,ೕ,଴൯

ఘ
൰൨

௣೔,ೕ
≥ ൠܭ ∈ ℐ,

ߩ݁݉݋ݏ ݎ݋݂ > 0
ቑ. 

and 

 ଶݓஶ(ܯ, (݌ = ቐݔ = ൫ݔ௜,௝൯: sup
௠,௡

ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯ ൬ௗ൫௫೔,ೕ,଴൯

ఘ
൰൨

௣೔,ೕ
< ∞,

ߩ݁݉݋ݏ ݎ݋݂ > 0
ቑ. 



 
Journal of Scientific Perspectives 

E-ISSN: 2587-3008 /DOI: 10.26900/jsp.2017.4 
Year: 2017 Volume: 1 Issue: 1 

 

 
47 

 

Theorem 2.1. Let ݌ = ൫݌௜,௝൯ be bounded. Then the double sequence spaces 

ଶݓℐ(ܯ, ,(݌ ଶݓ௢
ℐ ,ܯ) ஶݓand ଶ (݌

ℐ ,ܯ)  .are linear spaces (݌

Proof. It is easy, so omitted it. 

Theorem 2.2.The double sequence spaces ଶݓℐ(ܯ, ,(݌ ଶݓ௢
ℐ ,ܯ) ஶݓand ଶ (݌

ℐ ,ܯ)  are (݌
paranormed sequence spaces paranormed by 

(ݔ)݃  = inf ቊߩ
೛೔,ೕ

ಹ : sup
௜,௝

ܯ ൬ௗ൫௫೔,ೕ,଴൯
ఘ

൰ ≤ 1ቋ 

whereܪ = ,൫1ݔܽ݉ sup௜,௝݌௜,௝ < ∞൯. 

Proof. Clearly ݃൫0൯ = 0, (ݔ)݃ = ݔ Let .(ݔ−)݃ = ൫ݔ௜,௝൯, ݕ = ቀݕ௜,௝ቁ ∈ ଶݓℐ(ܯ,  Then there .(݌
exist some ߩଵ > 0 and ߩଶ > 0 such that 

 sup
௜,௝

ܯ ൬ௗ൫௫೔,ೕ ,଴൯
ఘభ

൰ ≤ 1andsup
௜,௝

ܯ ቆ
ௗቀ௬೔,ೕ,଴ቁ

ఘమ
ቇ ≤ 1. 

Let ߩ = ଵߩ +  ଶ, then we haveߩ

 sup
௜,௝

ܯ ቆ
ௗቀ௫೔,ೕା௬೔,ೕ,଴ቁ

ఘ
ቇ 

 ≤ ఘభ
ఘభାఘమ

sup
௜,௝

ܯ ൬ௗ൫௫೔,ೕ ,଴൯

ఘభ
൰ + ఘమ

ఘభାఘమ
sup

௜,௝
ܯ ቆ

ௗቀ௬೔,ೕ,଴ቁ

ఘమ
ቇ 

 ≤ 1. 

Now 

ݔ)݃  + (ݕ = inf ቊ(ߩଵ + (ଶߩ
೛೔,ೕ

ಹ : sup
௜,௝

ܯ ቆ
ௗቀ௫೔,ೕା௬೔,ೕ,଴ቁ

ఘ
ቇ ≤ 1ቋ 

 ≤ inf ቊߩଵ

೛೔,ೕ
ಹ : sup

௜,௝
ܯ ൬ௗ൫௫೔,ೕ ,଴൯

ఘభ
൰ ≤ 1ቋ 

 +inf ቊߩଶ

೛೔,ೕ
ಹ : sup

௜,௝
ܯ ቆ

ௗቀ௬೔,ೕ,଴ቁ

ఘమ
ቇ ≤ 1ቋ 
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 = (ݔ)݃ +  .(ݕ)݃

Let ߚ ∈ ℝ, then the continuity of the product follows from the following inequality: 

(ݔߚ)݃  = inf ቊߩ
೛೔,ೕ

ಹ : sup
௜,௝

ܯ ൬ௗ൫ఉ௫೔,ೕ ,଴൯
ఘ

൰ ≤ 1ቋ 

 = inf ቊ(|ݎ|ߚ)
೛೔,ೕ

ಹ : sup
௜,௝

ܯ ൬ௗ൫௫೔,ೕ,଴൯
௥

൰ ≤ 1ቋ 

where ଵ
௥

= |ఉ|
ఘ

. This completes the proof. 

Theorem 2.3.The double sequence spaces ଶݓℐ(ܯ, ,(݌ ଶݓ௢
ℐ ,ܯ) ,(݌ ଶݓஶ

ℐ ,ܯ)  and (݌
ଶݓஶ(ܯ,  .are complete paranormed spaces, paranormed by ݃ defined by Theorem 2.2 (݌

Proof. Let ൫ݔ௜,௝
௦ ൯ be a Cauchy sequence in ଶݓஶ(ܯ, ݃ Then .(݌ ቀ൫ݔ௜,௝

௦ ൯ − ൫ݔ௜,௝
௧ ൯ቁ → 0 as 

,ݏ ݐ → ∞. For given ߝ > 0, choose ݎ > 0 and ݔ௢ > 0 be such that ఌ
௥௫೚

> 0 and ܯ ቀ௥௫೚
ଶ

ቁ ≥ 1. Now 

݃ ቀ൫ݔ௜,௝
௦ ൯ − ൫ݔ௜,௝

௧ ൯ቁ → 0 as ݏ, ݐ → ∞ implies that there exists ݊ ௢ ∈ ℕ such that 

 ݃ ቀ൫ݔ௜,௝
௦ ൯ − ൫ݔ௜,௝

௧ ൯ቁ < ఌ
௥௫೚

forallݏ, ݐ ≥ ݊௢. 

Then 

 inf ቊߩ
೛೔,ೕ

ಹ : sup
௜,௝

ܯ ቆ
ௗቀ௫೔,ೕ

ೞ ି௫೔,ೕ
೟ ,଴ቁ

ఘ
ቇ ≤ 1ቋ < ఌ

௥௫೚
. (2.1) 

 Now from (2.1), we have 

ܯ  ቆ
ௗቀ௫೔,ೕ

ೞ ି௫೔,ೕ
೟ ,଴ቁ

ఘ
ቇ ≤ 1 ≤ ܯ ቀ௥௫೚

ଶ
ቁ 

 ⇒
ௗቀ௫೔,ೕ

ೞ ି௫೔,ೕ
೟ ,଴ቁ

௚൬൫௫೔,ೕ
ೞ ൯ିቀ௫೔,ೕ

೟ ቁ൰
< ௥௫೚

ଶ
. ఌ

௥௫೚
= ఌ

ଶ
. 

This implies that ൫ݔ௜,௝
௦ ൯ is a Cauchy sequence of real numbers. Let lim௦→ஶݔ௜,௝

௦ =  ௜,௝ . Usingݔ
continuity of ܯ, we have 
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 lim
௧→ஶ

sup
௜,௝

ܯ ቆ
ௗቀ௫೔,ೕ

ೞ ି௫೔,ೕ
೟ ,଴ቁ

ఘ
ቇ ≤ 1 

 ⇒ sup
௜,௝

ܯ ൬ௗ൫௫೔,ೕ
ೞ ି௫೔,ೕ,଴൯

ఘ
൰ ≤ 1. 

Let ݏ ≥ ݊௢ , then taking infimum of such ߩᇱݏ, we have ݃ ቀ൫ݔ௜,௝
௦ ൯ − ൫ݔ௜,௝൯ቁ < ௜,௝ݔThus ൫ .ߝ

௦ ൯ −

൫ݔ௜,௝൯ ∈ଶ ,ܯ)ஶݓ ,ܯ)ஶݓBy linearity of the double space ଶ .(݌  we have ,(݌
൫ݔ௜,௝൯ ∈ଶ ,ܯ)ஶݓ ,ܯ)ஶݓHence ଶ .(݌  .is complete. This completes the proof (݌

Theorem 2.4. (a) ଶݓℐ(ܯ, (݌ ⊂ ଶݓஶ(ܯ,  ,(݌

(b) ଶݓ௢
ℐ ,ܯ) (݌ ⊂ ଶݓஶ(ܯ,  .(݌

Proof. It is easy, so omitted. 

Theorem 2.5.The double sequence spaces ଶݓℐ(ܯ, ௢ݓand ଶ (݌
ℐ ,ܯ)  are nowhere dense (݌

subsets of ଶݓஶ(ܯ,  .(݌

Proof. The proof is obvious in view of Theorem 2.3 and Theorem 2.4. 

Theorem 2.6. (a)If 0 < ݅݊ ௜݂,௝݌௜,௝ ≤ ௜,௝݌ < 1, then ଶݓℐ(ܯ, (݌ ⊂ ଶݓℐ(ܯ), 

(b)If 1 < ௜,௝݌ < ௜,௝݌௜,௝݌ݑݏ < ∞, then ଶݓℐ(ܯ) ⊂ ଶݓℐ(ܯ,  ,(݌

(c)If 0 < ௜,௝݌ ≤ ௜,௝ݍ < ∞ and ൬௤೔,ೕ

௣೔,ೕ
൰ is bounded, then ଶݓℐ(ܯ, (݌ ⊂ ଶݓℐ(ܯ,  .(ݍ

Proof. The first part of the result follows from the relation 

 ൜(݉, ݊) ∈ ℕ × ℕ: ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ܯ ቀௗ൫௫೔,ೕ,௫೚൯
ఘ

ቁ ≥  ൠߝ

 ⊆ ൜(݉, ݊) ∈ ℕ × ℕ: ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯ ቀௗ൫௫೔,ೕ,௫೚൯

ఘ
ቁ൨

௣೔,ೕ
≥  ൠߝ

and the second part of the result follows from the relation 

 ൜(݉, ݊) ∈ ℕ × ℕ: ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯ ቀௗ൫௫೔,ೕ,௫೚൯
ఘ

ቁ൨
௣೔,ೕ

≥  ൠߝ
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 ⊆ ൜(݉, ݊) ∈ ℕ × ℕ ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ܯ ቀௗ൫௫೔,ೕ,௫೚൯
ఘ

ቁ ≥  .ൠߝ

This completes the proof. 

The proof of the part three is easy, so omitted. 

Theorem 2.7.(a)If 0 < ݅݊ ௜݂,௝݌௜,௝ ≤ ௜,௝݌ < 1, then ଶݓ଴
ℐ(ܯ, (݌ ⊂ ଶݓ଴

ℐ(ܯ), 

(b)If 1 < ௜,௝݌ < ௜,௝݌௜,௝݌ݑݏ < ∞, then ଶݓ଴
ℐ(ܯ) ⊂ ଶݓ଴

ℐ ,ܯ)  ,(݌

(c)If 0 < ௜,௝݌ ≤ ௜,௝ݍ < ∞ and ൬௤೔,ೕ

௣೔,ೕ
൰ is bounded, then ଶݓ଴

ℐ(ܯ, (݌ ⊂ ଶݓ଴
ℐ(ܯ,  .(ݍ

Proof of the result follows from the Theorem 2.6. 

Theorem 2.8.Let ܯଵ and ܯଶ be two Orlicz functions. Then 

 ଶݓℐ(ܯଵ, (݌ ∩ଶ ,ଶܯ)ℐݓ (݌ ⊂ଶ ଵܯ)ℐݓ + ଶܯ ,  .(݌

Proof. Let ൫ݔ௜,௝൯ ∈ଶ ଵܯ)ℐݓ , (݌ ∩ଶ ,ଶܯ)ℐݓ ߝ Then for every .(݌ > 0 we have  

 ൜(݉, ݊) ∈ ℕ × ℕ: ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯଵ ቀௗ൫௫೔,ೕ,௫೚൯
ఘభ

ቁ൨
௣೔,ೕ

≥ ൠߝ ∈ ℐ,   ݂ߩ݁݉݋ݏݎ݋ଵ > 0 

and 

 ൜(݉, ݊) ∈ ℕ × ℕ: ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯଶ ቀௗ൫௫೔,ೕ,௫೚൯

ఘమ
ቁ൨

௣೔,ೕ
≥ ൠߝ ∈ ℐ,   ݂ߩ݁݉݋ݏݎ݋ଶ > 0. 

Let ߩ = max{ߩଵ,  ଶ}. The result follows from the following inequalityߩ

 ∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤(ܯଵ + (ଶܯ ቀௗ൫௫೔,ೕ,௫೚൯
ఘ

ቁ൨
௣೔,ೕ

 

 

 ≤ ܦ ൬∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯଵ ቀௗ൫௫೔,ೕ ,௫೚൯
ఘభ

ቁ൨
௣೔,ೕ

+ ∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯଶ ቀௗ൫௫೔,ೕ,௫೚൯
ఘమ

ቁ൨
௣೔,ೕ

൰. 

This completes the proof. 

  



 
Journal of Scientific Perspectives 

E-ISSN: 2587-3008 /DOI: 10.26900/jsp.2017.4 
Year: 2017 Volume: 1 Issue: 1 

 

 
51 

 

Theorem 2.9.Let ܯଵ and ܯଶ be two Orlicz functions. Then 

 ଶݓℐ(ܯଵ, (݌ ⊂ଶ ଶܯ)ℐݓ ∘ ଵܯ ,  .(݌

Proof. Let inf݌௜,௝ = ߝ ଴. For givenܪ > 0, we first choose ߝ଴ > 0 such that max{ߝ଴
ு, ଴ߝ

ுబ} <  .ߝ
Now using the continuity of ܯଶ choose 0 < ߜ < 1 such that 0 < ݐ < (ݐ)ଶܯ implies ߜ < ଴ߝ . Let 
൫ݔ௜,௝൯ ∈ଶ ଵܯ)ℐݓ , ଵܯ)ℐݓNow from the definition of ଶ .(݌ , ߩ for some ,(݌ > 0 

(ߜ)ܣ  = ൜(݉, ݊) ∈ ℕ × ℕ: ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯଵ ቀௗ൫௫೔,ೕ ,௫೚൯

ఘ
ቁ൨

௣೔,ೕ
≥ ுൠߜ ∈ ℐ. 

Thus if (݉, ݊) ∉   then we have (ߜ)ܣ

 ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯଵ ቀௗ൫௫೔,ೕ,௫೚൯
ఘ

ቁ൨
௣೔,ೕ

<  ுߜ

 ⇒ ∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯଵ ቀௗ൫௫೔,ೕ,௫೚൯

ఘ
ቁ൨

௣೔,ೕ
<  ுߜ݊݉

 ⇒ ൤ܯଵ ቀௗ൫௫೔,ೕ,௫೚൯

ఘ
ቁ൨

௣೔,ೕ
< ுߜ , ,݈݈݅ܽݎ݋݂ ݆ = 1,2,3 … 

 ⇒ ଵܯ ቀௗ൫௫೔,ೕ,௫೚൯
ఘ

ቁ < ,ߜ ,݈݈݅ܽݎ݋݂ ݆ = 1,2,3 …. 

Hence from above inequality and using continuity of ܯଶ, we must have  

ଶܯ  ቆܯଵ ቀௗ൫௫೔,ೕ,௫೚൯

ఘ
ቁቇ < ,଴ߝ ,݈݈݅ܽݎ݋݂ ݆ = 1,2,3 …. 

which consequently implies that  

 ∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ቈܯଶ ቆܯଵ ቀௗ൫௫೔,ೕ ,௫೚൯

ఘ
ቁቇ቉

௣೔,ೕ

< ݉݊max{ߝ଴
ு , ଴ߝ

ுబ} <  ߝ݊݉

 ⇒ ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ቈܯଶ ቆܯଵ ቀௗ൫௫೔,ೕ ,௫೚൯

ఘ
ቁቇ቉

௣೔,ೕ

<  .ߝ

This shows that  

 ቊ(݉, ݊) ∈ ℕ × ℕ: ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ቈܯଶ ቆܯଵ ቀௗ൫௫೔,ೕ,௫೚൯

ఘ
ቁቇ቉

௣೔,ೕ

≥ ቋߝ ⊂  (ߜ)ܣ
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and so belongs to ℐ. This completes the proof. 

Theorem 2.10.Let ܯଵ and ܯଶ be two Orlicz functions. Then 

(a) ଶݓ଴
ℐ ,ଵܯ) (݌ ∩ଶ ଴ݓ

ℐ(ܯଶ, (݌ ⊂ଶ ଴ݓ
ℐ(ܯଵ + ଶܯ ,  ;(݌

(b) ଶݓ଴
ℐ ଵܯ) , (݌ ⊂ଶ ଴ݓ

ℐ ଶܯ) ∘ ଵܯ ,  .(݌

The proof of the theorem follows from the Theorems 2.8 and 2.9. 

Theorem 2.11.Let ܯଵ and ܯଶ be two Orlicz functions satisfying ߂ଶ-condition. If ߚ =
݈݅݉௧→ஶ

ெమ(௧)
௧

≥ 1, then  

(a) ଶݓ଴
ℐ ,ଵܯ) (݌ =ଶ ଴ݓ

ℐ ଶܯ) ∘ ଵܯ ,  ,(݌

(b) ଶݓℐ(ܯଵ, (݌ =ଶ ଶܯ)ℐݓ ∘ ଵܯ ,  .(݌

Proof. It is easy, so omitted. 

Theorem 2.12.The double sequence space ଶݓℐ(ܯ, ,(݌ ଶݓ௢
ℐ ,ܯ) ,(݌ ଶݓஶ

ℐ ,ܯ)  and (݌
ଶݓஶ(ܯ,  .are solid as well as monotone (݌

Proof. We give the proof for only ଶݓ௢
ℐ ,ܯ)  The others can be proved similarly. Let .(݌

ݔ = ൫ݔ௜,௝൯ ∈ଶ ௢ݓ
ℐ ,ܯ) ௜,௝หߙ௜,௝൯ be a scalar sequence such that หߙand ൫ (݌ ≤ 1 for all ݅, ݆ ∈ ℕ. Then 

for every ߝ > 0 we have  

 ൜(݉, ݊) ∈ ℕ × ℕ: ଵ
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯ ൬ௗ൫ఈ೔,ೕ௫೔,ೕ,଴൯
ఘ

൰൨
௣೔,ೕ

≥  ൠߝ

 ⊆ ൜(݉, ݊) ∈ ℕ × ℕ: ா
௠௡

∑  ௠
௜ୀଵ ∑  ௡

௝ୀଵ ൤ܯ ൬ௗ൫௫೔,ೕ ,଴൯

ఘ
൰൨

௣೔,ೕ
≥ ൠߝ ∈ ℐ, 

where ܧ = max{1, (ݔߙ) ௞,௟|ு}. Henceߙ| ∈ଶ ௢ݓ
ℐ ,ܯ)  .This completes the proof .(݌
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