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ABSTRACT  ARTICLE INFO 

Especially in responding to large fires, the use of unmanned vehicles can reduce 
the risk of people getting hurt or encountering situations where they can get hurt. At 
the same time, the use of unmanned vehicles can increase the efficiency of the 
intervention. In this direction, one of the most important modules for the unmanned 
ground vehicles to be used to achieve the desired results is the fire detection module, 
which will detect the fire and report it to the necessary systems for intervention. In 
this study, certain deep learning networks were examined for fire detection. These 
networks are Faster-RCNN, Mask-RCNN, SSD and YOLO. After these networks 
were trained with the same data sets, they were compared with FPS and mAP data. 
Faster RCNN, YOLO and SSD methods were used in the study. The mAP values 
obtained from these methods are as follows: 0.253, 0.45472, 22.15, respectively. As a 
result, it was seen that the YOLO algorithm gave a more positive result than other 
deep learning networks in terms of both detection and output speed. As a result, 
YOLO was selected and used as the deep learning network to be used for fire 
detection. 
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1. Introduction 

Fires are already a significant problem for humanity, 
but this problem will become more significant with the 
effect of global warming [1]. The effects occurring in the 
northern forests can be given as an example of these 
problems. The fires that occur affect the soil, vegetation 
and the air in the region. As a result, the climate is affected 
[2]. This change can cause a more challenging and 
uncontrolled world for humanity. In order to minimize 
negative situations, it is important to intervene in fires 
effectively. It is an inevitable necessity to use technology 
for effective intervention. In its simplest form, water must 
be delivered to areas where there is no water to fight fires, 
and this is possible with technology. The development of 
technology at every step will increase the effectiveness of 
the intervention. One of these steps is unmanned ground 
vehicles. Unmanned ground vehicles mean the 
replacement of invaluable vehicles that we can always 

replace with a new one. In addition, they offer the 
opportunity to intervene in more challenging conditions. 
Increasing the automation of these vehicles, which will 
increase the efficiency of the intervention, will increase 
efficiency. One of the important modules for this is the fire 
detection module.  

Pincott et al. [8] suggested using computer vision-
based strategies for indoor fire detection. In their work, 
they considered existing models based on Faster R–CNN 
Inception V2 and SSD MobileNet V2 models. They used 
small training and testing datasets consisting of images 
with varying pixel density.  

De Vanencio et al. [10] proposed a CNN-based fire 
detector system suitable for low-power, resource-
constrained devices. Their proposed approach consists of 
training a deep detection network and then removing its 
less important convolutional filters to reduce the 
computational cost while trying to preserve the original 
performance. The results obtained by examining different 
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pruning techniques show that we can reduce the 
computational cost up to 83.60% and the memory 
consumption up to 83.86% without degrading the 
performance of the system.  

Umar et al. [11] presented a comprehensive review 
of the state-of-the-art smoke and fire detection techniques 
using image processing. In their proposed work, they first 
compared smoke detection methods and different types of 
approaches for smoke classification. Maoult et al. [12] 
presented a new system based on a low-cost CCD camera 
to detect fire in the near-infrared spectral band. Diaconu 
[13] presents the state of the art in the field of fire 
detection, prevention and spread modeling with machine 
learning algorithms. In order to understand how an AI 
application has penetrated the fire detection field, a 
quantitative scientific analysis was first performed.  

Sierra et al. [14] provide a comprehensive review of 
the developments in machine learning-driven fire detection 
techniques. They discuss their benefits and challenges and 
outline potential future directions for research and 
development. Ghali et al. [15] review previous work on 
deep learning-based wildfire classification, detection and 
segmentation, including computer vision converters. Then, 
they describe the most popular and publicly available 
datasets used for these tasks. They show that deep learning 
approaches outperform traditional machine learning 
methods and can significantly improve the performance in 
detecting, segmenting and classifying wildfires. Chitram et 
al. [16] provide a comprehensive review of the current 
research in this field. In their analysis, they highlight that 
image-based detection can be more efficient than currently 
used sensors.  

Khan et al. [17] present a multi-attention fire 
network (MAFire-Net) that integrates a modified 
ConvNeXtTiny (ConvNeXt-T) architecture with channel 
attention (CA) and spatial attention (SA) modules. These 
attention modules are integrated after each block of the 
ConvNeXt-T architecture, where the CA module is 
responsible for capturing the dominant channels within the 
features, which leads to highly highlighted feature maps. 
The SA module enhances the spatial details, allowing the 
model to distinguish more accurately between fire and 
non-fire scenarios.  

Deep learning algorithms need to be used to detect 
fire from images. There are many types of algorithms and 
approaches, and experimentation is important in choosing 
them. The limitation of this study is as follows: In this 
study, Faster-RCNN, Mask-RCNN, SSD and YOLO 
architectures are proposed for fire detection from images 
and the results of these architectures are compared.  

The organization of the article is as follows: 
Introduction section where the subject is summarized and 

literature discussion is made, Material and Method section 
where the proposed methods are explained, Results section 
where the results obtained from the methods used are 
shared and interpreted, and finally Conclusions section 
where the study is summarized. 

2. Material and Method 

The flow diagram of the work done in this article is 
shown in Figure 1. 

 
Figure 1. Flow chart of the work done 

2.1. Cleaning the fire visual dataset 

The necessary images were collected from various 
sources. Since the collected images were taken from 
multiple sources, it was normal to encounter duplicate 
images. Since the dataset consisted of thousands of 
images, this could not be noticed at the first stage. 
Duplicate images were eliminated during the labeling 
stage. Since the semantic segmentation and detection 
algorithms required different types of labels for labeling 
the dataset, the labeling process was carried out twice. 
While a quadrilateral area consisting of 4 points was used 
for object detection, labeling was done with a polygon 
structure consisting of at least 3 points for semantic 
segmentation. During the labeling processes, images that 
were thought to have insufficient visual quality and that 
did not contain fire were also deleted. Some of the images 
were damaged for an unknown reason. A small code was 
used to get rid of these damaged images and label files. 
The final labeled and cleaned dataset was 1002 images. 
Later, these images were increased by changing the values 

2. If fire images are deemed insufficient, additions 
from other data sets are made. 

3. Training and testing the Faster R-CNN algorithm 
using the final dataset 

4. Training and testing the YOLO algorithm using the final 
dataset 

 

5. Training and testing the SSD algorithm using the 
final dataset 

6. Determine how to train and test Semantic 
Segmentation algorithms using the final dataset 

1. Cleaning the fire visual dataset 

7. Determine the algorithm to be used for fire detection 
using FPS values and test results. 

8. Using the selected algorithm on the image from the 
camera in the fire detection system 
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such as saturation, noise, exposure and mirroring. The 
final dataset consists of 2805 images. 

2.2. Training and testing the Faster R-CNN algorithm 
using the final dataset 

 
Figure 2. Faster RCNN model architecture 

Faster R-CNN is a 2-part detection algorithm. The 
architecture of a sample Faster RCNN model is shown in 
Figure 2. In the first part, it completes the feature 
extraction from the image and finding possible object 
regions. In the second part, classification and region 
detection are performed. The parts of the architecture in 
Figure 4 are explained as follows: 

Backbone Network: Performs feature extraction from 
the image. 

FPN (Feature Pyramid Network): Transmits the 
features coming from the Backbone in various sizes and in 
an enriched form. 

RPN (Region Proposal Network): Determines 
possible objects and regions in the image. 

Standard ROI Heads: Finally, it outputs regions 
classified in appropriate sizes in the incoming regions. 

Google colab was used throughout the training. The 
libraries where the algorithm was located and where the 

training would be done were downloaded. The relevant 
dataset was uploaded to colab. Then, the labels of the 
relevant images were converted to the format requested by 
the library. The relevant configuration and metadata values 
were given. The training process was performed. Then, the 
model was tested and training data was taken. 

ResNet was used as the backbone. It is basically an 
algorithm created to solve the problem of very small or 
very large numbers occurring during training as the 
network grows. It allows the creation of very deep 
networks.[7] Since a backbone with low depth will be 
positive in terms of FPS performance, ResNet-50 was 
chosen as the backbone. 

2.3. Training and testing the YOLO algorithm using 
the final dataset 

Figure 3 shows the architecture of an example 
YOLO model.  
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Figure 3. YOLO model architecture  

 
In this architecture, EfficientNet Yolov5 aims to 

provide better detection by diversifying the features 
coming from the backbone from the neck section. Finally, 
the detection and classification process is taken as output 

from the head section. This structure is a single-step object 
detection algorithm. Since it performs the entire process in 
a single structure, it provides faster output compared to the 
corresponding 2-step models. 

 
Figure 4. SSD model architecture  

2.4. Training and testing the SSD algorithm using the 
final dataset 

Figure 4 shows the architecture of an example SSD 
model. SSD mobilnet v2 was used as the SSD model. As 
can be understood from the name mobilnet used as the 

backbone, it tries to be more efficient in terms of 
computation. At the same time, it tries to preserve the 
existing detection success. This is suitable for our purpose. 
It is an algorithm that detects objects in a single step. 
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Figure 5. Mask RCNN model architecture 

2.5. Training and testing Semantic Segmentation 
algorithms using the final dataset 

The mask-rcnn algorithm was used as segmentation. 
Figure 5 shows the architecture of a sample Mask RCNN 
model. In addition to the Faster Rcnn algorithm, a separate 
head is added for the mask process, and this algorithm 

performs both object detection and segmentation. This 
add-on further reduces the already low Faster Rcnn FPS 
value. 

3. Result 

The Roboflow labeling method was used to label fire 
images. Figure 5-a shows an image labeled with the 
Roboflow rectangle, while Figure 5-b shows an image 
labeled with the Roboflow multi-point technique. 

  
a)                                                  b) 

Figure 5. a) Roboflow rectangle labeling, b) Roboflow 
multi-point labeling 

Table 1 shows the metrics obtained as a result of the 
Faster RCNN algorithm. 

 
Table 1. Metrics of Faster RCNN algorithm’s result 

mAP0,50 mAP0,50-0,90 cls_loss FPS (GPU T4) 

0,253 0.123 0,1 4,29 

 
As can be seen in the table, we cannot say that it is 

very successful in determining the location of the fire. 
When we examine the small, medium and large values for 
the mAP0.50-0.90 value, one of the reasons affecting this 
is that small objects are almost never detected in the 

correct position. In order to achieve this, detection can be 
done with a larger input image instead of 640x640 as the 
input image. At the same time, detection can be done with 
anchor boxes of different ratios and sizes by changing the 
metadata values used for the anchor box. However, both of 
these situations will negatively affect the real-time 
detection performance of the model. Therefore, these 
changes were not applied in order not to further reduce the 
already low fps value. Figure 6 shows the images of the 
Faster RCNN test output. 

  
Figure 6.  Faster RCNN test output  

When Yolov5s is compared to other Yolov5 models, 
it is a better choice than other options in terms of mAP and 
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ms ratio. It does not have the lowest value in mAP, but in 
terms of ms value, it is approximately 2 times faster than 
the next model. Therefore, the Yolov5s model was 
preferred over other models. Table 2 shows the success 
metrics of the YOLO algorithm. 

Table 2. Metrics of YOLO’s result 
mAP0,50 mAP0,50-0,90 cls_loss FPS (GPU 

T4) 

0.45472 0.2321 0.021823 11,77 

Figure 7 shows images where the YOLO algorithm 
was applied and fire was detected. 

  

   
Figure 7.  YOLO test output  

The SSD algorithm provides a result very close to 
the YOLO algorithm in terms of FPS. However, YOLO 
still provides more output. In terms of detection 
performance, it provides a result closer to the Faster-
RCNN algorithm. Table 3 shows the success metrics of the 
SSD algorithm. 

Table 3. Metrics of SSD’s output 
mAP0,50 mAP0,50-0,90 cls_loss FPS (GPU 

T4) 

22.15 9,66 0.16 9.59 

 
Figure 8 shows images where the SSD algorithm is 

applied and fire detection is performed. 

  

  

Figure 8.  SSD test output  

Similar metadata was tried to be selected in this 
architecture as in the Faster Rcnn architecture, for 
example, ResNet-50 backbone was used in this 
architecture. Table 4 shows the success metrics of the 
Mask RCNN algorithm. 

Table 4. Metrics of Mask RCNN’s result 
Bounding Box  FPS (GPU T4) 

mAP0,50 mAP0,50-0,90 3,77 
0.415 0.247 cls_loss 

Segmentation 0,065 

mAP0,50 mAP0,50-0,90 
0.421 0.227 

 
Figure 9 shows images in which fire detection was 

performed by applying the Mask RCNN algorithm. 

   

    

Figure 9.  Mask RCNN test output  

3.1. Determine the algorithm to be used for fire 
detection using FPS values and test results 

According to the obtained data, using the YOLO 
algorithm will give better results in terms of both the 
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number of outputs and detection accuracy. Figure 10 
shows the FPS values of the methods used. 

 
 

YOLO SSD Faster RCNN Mask RCNN 

    

    

    

    
Figure 10. Outputs of the models 

3.2. Using the selected algorithm on the image from the 
camera in the fire detection system 

Some images where fire detection was performed 
using the final model are shown in Figure 11. 

  

  
Figure 11. Outputs of the final YOLO model 

 
Each deep learning network has its own advantages 

and disadvantages. In our evaluation phase, our purpose of 
use and location play an important role in our deep 
learning network selection. In terms of usage, it was 
observed that one-stage deep learning networks were more 
efficient in terms of FPS when it was desired to be used in 
an area where both mobile and computational constraints 
were present. Again, it was observed that YOLOv5s 

algorithm was more efficient among YOLOv5s and SSD 
algorithms. Therefore, it was observed that YOLOv5s 
algorithm would be a more suitable algorithm for fire 
detection. As a result of the study, we trained four 
different models and then compared these models to obtain 
the most suitable model for our purpose. 

4. Conclusion 

Each deep learning network has its own advantages 
and disadvantages. In our evaluation phase, our purpose of 
use and location play an important role in our deep 
learning network selection. In terms of usage, it was 
observed that one-stage deep learning networks were more 
efficient in terms of FPS when it was desired to be used in 
an area where both mobile and computational constraints 
were present. Again, it was observed that YOLOv5s 
algorithm was more efficient among YOLOv5s and SSD 
algorithms. Therefore, it was observed that YOLOv5s 
algorithm would be a more suitable algorithm for fire 
detection. As a result of the study, we trained four 
different models and then compared these models to obtain 
the most suitable model for our purpose. 
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