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Abstract

In this article, a generalizations of the Pentanacci sequence, which is generated by the fifth-order recurrence relation Vn
(
a j, p j

)
=

5
∑

j=1
p jVn− j ,

n > 5, with the initial terms V j = a j, where a j, p j, j = 1,2,3,4,5 are any non–zero real numbers is studied. Generating function and
Binet’s formula are established for this sequence in the denotative form. Noted sequences generated by the recurrence relations of lower
orders are contained implicitly in this generalization and are discussed as special cases. A graphical representation is presented to exhibit
the relations how the terms of these sequences are related and varies with different a j, p j. Pentanacci constant are also studied and rep-
resented in the tabular form, it is shown that it depends on the coefficients of the recurrence relations only and has no effect of the initial terms.

Keywords: Pentanacci sequence; Generating function; Binet formula; Pentanacci constant; Pentanacci Identity
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1. Introduction

In recursive sequence, terms are obtained by a recurrence process where a term is the sum of preceding terms. This process requires the
computation of all of its predecessors to get any term, so require a lot of computation. the generating functions and the Binet’s formulas are
the alternative definitions of any term of a recursive sequence in the indexical form. Since generating functions are normally used with
constant coefficients of linear recurrence relations, so to study the sequences generated, employng linear homogeneous recurrence relations
such functions are the appropriate technique. In this article, we have considered both the recurrence relations and initial conditions for the
pentanacci sequences in the most generalized form and the generating function, Binet’s formula are also obtained in the general form. A
generalized Pentanacci sequences, Vn(a1,a2,a3,a4,a5, p1, p2, p3, p4, p5), are the consequences of the linear recurrence relations with five
arbitrary constant coefficients p j, and the first five terms V j = a j, where p j, j = 1,2,3,4,5 are any non–zero real numbers. Grpahical and
tabular representations are displayed to support the pentanacci sequences progression and comparison. Pentanacci numbers mentioned in [1]
using 5th order recurrence relation and relation between sequence and matrices is studied. Yüksel Soykan et al [6] established the generating
functions, Binet’s and summation formulas for the generalized Pentanacci quaternions. Generalization of Pentanacci sequences have been
considered and examined by many authors (see literature [2, 3, 4, 7]).

Definition 1.1. We define the Generalized Pentanacci Sequence {Vn} by the following linear recurrence relation:

Vn(a1,a2,a3,a4,a5, p1, p2, p3, p4, p5) = p1Vn−1 + p2Vn−2 + p3Vn−3 + p4Vn−4 + p5Vn−5,n > 5, (1.1)

with the initial terms V j = a j, where a j and p j ( j = 1,2,3,4,5) are any non–zero real numbers.

1.1. Terms of the Generalized Pentanacci Sequence

The first few terms of the Pentanacci sequence defined in (1.1) are:

Vn =



a1,a2,a3,a4,a5, p1a5, p2a4, p3a3, p4a2, p5a1,(
p2

1 + p2

)
a5 +(p1 p2 + p3)a4 +(p1 p3 + p4)a3 +(p1 p4 + p5)a2 + p1 p5a1,[

p1

(
p2

1 + p2

)
+ p1 p2 + p3

]
a5 +

(
p1 (p1 p2 + p3)+ p4 + p2

2

)
a4

+(p2 p3 + p1 (p1 p3 + p4)+ p5)a3 +
(

p2 p5 + p5 p2
1

)
a1, · · ·


.
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1.2. Pentanacci Sequences pictorial representations

Some of Pentanacci sequences [5, 8]are taken as representative in the following figure.

Figure 1.1: Pentanacci sequences progression and comparison

1.3. Special Cases

Remark 1.2. With initial conditions V1 = 0, V2 = 1, V3 = 1, V4 = 1, V5 = 2 and p1 = p2 = p3 = p4 = p5 = 1, see [4], recurrence relation
(1.1) is known as the Pentanacci sequences. The first few terms of this sequence deduced from the above generalization are:

{Vn}n≥0 = 0,1,1,1,2,5,10,19,37,73,144,283,556,1093,2149,4225, · · · .

Remark 1.3. If we substitute the initial conditions V1 = 0, V2 = 1, V3 = 1, V4 = 3,V5 = 8,and p1 = 2, p2 = p3 = p4 = p5 = 1 in (1.1) , it
reduces to Pentanacci sequence which is also discussed in [4].The first few terms of the sequence are:

{Vn}n≥0 = 0,1,1,3,8,21,55,143,373,973,2538,6620,17267,45038,117474, · · · .

Remark 1.4. If we substitute the initial conditions V1 = 0,V2 = 0, V3 = 0,V4 = 1,V5 = 1,and p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11 in
(1.1) , it reduces to Pentanacci sequence which is also discussed in [5].The first few terms of the sequence are:

{Vn}n≥0 = 0,0,0,1,1,5,18,63,223,771,2707,9481,33192,116212,406835, · · · .

2. Generating function

The explicit generalized generating function for the Pentanacci sequence

Theorem 2.1. Generating Function
The generalized generating function of the sequence satisfies the recursion in (1.1) is V (x), then

V (x) =
f (x)

1− p1x− p2x2− p3x3− p4x4− p5x5

where

f (x) =V1 +(V2− p1V1)x+(V3− p1V2− p2V1)x2 +(V4− p1V3− p2V2− p3V1)x3 +(V5− p1V4− p2V3− p3V2− p4V1)x4.

Proof. If the generating function of (1.1) is V (x), then we have

V (x) =
∞

∑
n=0

Vnxn, (2.1)

and

p jx jV (x) = p j

∞

∑
n= j

Vn− jx j, j = 1,2,3,4.5. (2.2)
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Now employing (2.1) and (2.2), we obtain generating function V (x)
[
1− p1x− p2x2− p3x3− p4x4− p5x5]= f (x) for Pentanacci sequence

in the rational form:

V (x) =
f (x)

1− p1x− p2x2− p3x3− p4x4− p5x5 , (2.3)

where f (x) =V1 +(V2− p1V1)x+(V3− p1V2− p2V1)x2 +(V4− p1V3− p2V2− p3V1)x3 +(V5− p1V4− p2V3− p3V2− p4V1)x4 is a poly-
nomial.
Hence V (x) is the generating function of the sequence {Vn}.

2.1. Special cases

Remark 2.2. If we substitute V1 = 0, V2 = 1, V3 = 1, V4 = 2, V5 = 4 and p1 = p2 = p3 = p4 = p5 = 1 in the result obtained in (2.3), it
reduces to the generating function

V (x) =
x

1− x− x2− x3− x4− x5 .

Remark 2.3. If we substitute V1 = 0, V2 = 1, V3 = 2, V4 = 5, V5 = 13 and p1 = 2, p2 = 1, p3 = 1, p4 = 1, p5 = 1 in the result obtained
in (2.3), it reduces to the generating function

V (x) =
x

1−2x− x2− x3− x4− x5 .

Remark 2.4. If we substitute V1 = 0, V2 = 1, V3 = 1, V4 = 2, V5 = 4, and p1 = 1, p2 = 1, p3 = 1, p4 = 1, p5 = 2 in the result obtained
in (2.3), it reduces to the generating function

V (x) =
x2 + x3 + x4

1− x− x2− x3− x4−2x5 .

Remark 2.5. If we substitute V1 = 0, V2 = 0, V3 = 0, V4 = 1, V5 = 1 and p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11 in the result obtained
in (2.3), it reduces to the generating function

V (x) =
x3− x4

1−2x−3x2−5x3−7x4−11x5 .

2.2. Even and odd terms of Generating Functions

Theorem 2.6. The generating functions of even V2n(x) and odd V2n+1(x) terms of the generalized pentanacci Sequence are

V2n(x) =
N1

D1
(2.4)

and

V2n+1(x) =
N2

D1
(2.5)

where

N1 =V1 +
(

V3−
(

p2
1 +2p2

)
V1

)
x+
(

V5−
(

p2
1 +2p2

)
V3 +

(
p2

2−2p4−2p1 p3

)
V1

)
x2

+
(
−p2V5 +(p1 p2 + p3)V4 +

(
p2

2− p4− p1 p3

)
V3 +(p5 + p1 p4)V2 +

(
2p2 p4− p1 p5− p2

3

)
V1

)
x3

+
(
−p4V5 +(p1 p4 + p5)V4 +(p2 p− p1 p5)V3 +(p3 p4− p2 p5)V2 +

(
p2

4− p3 p5

)
V1

)
x4

,

N2 =V2 +
(

V4−
(

p2
1 +2p2

)
V2

)
x+
(

p1V5−
(

p2
1 + p2

)
V2 + p3V3 +

(
p2

2− p4−2p1 p3

)
V2 + p5V1

)
x2

+
(

p3V5− (p1 p3 + p4)V4 +(p5 + p1 p4− p2 p3)V3 +
(

p2 p4− p1 p5− p2
3

)
V2− p2 p5V1

)
x3

+(p5V5− p1 p5V4− p2 p5V3− p3 p5V2− p4 p5V1)x4

and
D1 = 1− (p2

1 +2p2)x− (2p1 p3− p2
2 +2p4)x2−

(
p2

3 +2p1 p5−2p2 p4

)
x3 +

(
p2

4−2p3 p5

)
x4.

Proof. Using the definition of generating functions of the even V2n(x) =
Vn(
√

x)+Vn(−
√

x)
2 and odd V2n+1(x) =

Vn(
√

x)−Vn(−
√

x)
2
√

x sequences and
generalized generating function of entanacci sequence obtained in the above theorem.
On simplification we obtained the Ggneralized generating function of even and odd terms of Pentanacci sequence

V2n(x) =
V1−

[
(2p2 + p2

1)V1−V3
]

x−
[
(p1 p3− p2

2)V1− (p1 p2 + p3)V2 + p2V3
]

x2

1− (p2
1 +2p2)x− (2p1 p3− p2

2)x
2− p2

3x3 , (2.6)

and

V2n+1(x) =
V2−

[
V1 p3− (p2

1 + p2)V2− p1V3
]

x− [p3V3− p1 p3V2− p2 p3V1]x2

1− (p2
1 +2p2)x− (2p1 p3− p2

2)x
2− p2

3x3 . (2.7)
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3. Binet’s formula

Theorem 3.1. Generalized form of the Binet’s formula for the generalized sequence defined (1.1) is If the sequence {Vn} satisfies the
recursion Vn = p1Vn−1 + p2Vn−2 + p3Vn−3 + p4Vn−4 + p5Vn−5 is

Vn =
5

∑
j=1

A1α4
j +A2α3

j +A3α2
j +A4α j +A5

∏
1≤i≤k

i6= j

(
α j−αi

)
α

n
j .

Proof. Consider partial fraction decomposition of the right-hand side of the generating function (2.3) of the sequence we have

V (x) =
A1 +A2x+A3x2 +A4x3 +A5x4

1− p1x− p2x2− p3x3− p4x4− p5x5

=
A1 +A2x+A3x2 +A4x3 +A5x4

(1−α1x)(1−α2x)(1−α3x)(1−α4x)(1−α5x)

,

A1 =V1, A2 =V2− p1V1, A3 =V3− p1V2− p2V1, A4 =V4− p1V3− p2V2− p3V1,

A5 =V5− p1V4− p2V3− p3V2− p4V1
, (3.1)

where αi, i = 1,2,3,4,5. are roots of the equation 1− p1x− p2x2− p3x3− p4x4− p5x5 = 0. The equation (3.1) simplifies and generalize,
we obtained the following formula

Vn =
5

∑
j=1

A1α4
j +A2α3

j +A3α2
j +A4α j +A5

∏
1≤i≤k

i 6= j

(
α j−αi

)
α

n
j . (3.2)

Since the generalized Pentanacci sequence is a fifth-order recurrence relation, the generalized Binet’s formula may also be written alternately
as in the following theorem.
Alternate Generalized Binet’s formula for the Tetranacci sequence

Theorem 3.2 (Alternate Generalized Binet’s formula for the Tetranacci sequence). Generalized form of the Binet’s formula for the
generalized sequence defined (1.1) is If the sequence {Vn} satisfies the recursion The Generalized Binet’s formula for the Tetranacci sequence
may written as

Vn =
n

∑
j=1

Pjα
n
j , j = 1,2,3,4,5,

Pj and α j are constants and are roots of the polynomial equation .

Vn(x) =
5

∑
j=1


[
α3

j a2 +(a3− p1a2)α2
j +(a4− p1a3− p2a2)α j +(a5− p1a4− p2a3− p3a2 + p5a1)

]
4
∏
i=1
i 6= j

(
α j−αi

)
α

n
j .

Proof. Solving the five expression

Vn =
n

∑
j=1

Pjα
n
j , j = 1,2,3,4,5

for Pj, we obtain Pj as

Pj =

[
α3

j a2 +(a3− p1a2)α2
j +(a4− p1a3− p2a2)α j +(a5− p1a4− p2a3− p3a2 + p5a1)

]
4
∏
i=1
i6= j

(
α j−αi

) .

Substituting these Pj in the first relation we obtain

4

∑
j=0


p4V1 +

(
α2

j − p1α j− p2

)
α jV2 +

(
α j− p1

)
α jV3 +α jV4

∏
1≤ j≤4

i 6= j

(
α j−αi

)
α

n−1
j . (3.3)
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3.1. Special cases

Remark 3.3. If we consider V1 = 0, V2 = 1, V3 = 1, V4 = 2, V5 = 4 and p1 = 1, p2 = 1, p3 = 1, p4 = 1, p5 = 1 in the result obtained in
the above Theorem and (2.2), it reduces to

Vn(x) =
5

∑
j=1

 α
n+3
j

∏
1≤i≤5

i 6= j

(
α j−αi

)
. (3.4)

which is the same as obtained by [2, 3, 4]..

Remark 3.4. If we consider V1 = 0, V2 = 0, V3 = 1, V4 = 2, V5 = 4 and p1 = 1, p2 = 1, p3 = 1, p4 = 1, p5 = 2 in the result obtained in
the above Theorem and (2.2), it reduces to

Vn(x) =
5

∑
j=1

α
n+2
j +α

n+1
j +αn

j

∏
1≤i≤5

i 6= j

(
α j−αi

)
. (3.5)

which is the same as obtained by [2, 3, 4].

Remark 3.5. If we consider V1 = 0, V2 = 0, V3 = 0, V4 = 1, V5 = 1 and p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11 in the result obtained
in the above Theorem and (2.2), it reduces to

Vn(x) =
5

∑
j=1

 α
n+1
j −αn

j

∏
1≤i≤5

i 6= j

(
α j−αi

)
 (3.6)

which is the same as obtained by [2, 3, 4].

3.2. Pentanacci Constant pictorial representations

A few values [5] of Pentanacci sequences represented in the following figure.

Figure 3.1: Pentanacci sequences progression and comparison

Pentanacci Constant
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Theorem 3.6.

lim
n→∞

Vn+1(a1,a2,a3,a4,a5, p1, p2, p3, p4, p5)

Vn(a1,a2,a3,a4,a5, p1, p2, p3, p4, p5)
→



α , largest root among the real roots f (x) = x5− p1x4− p2x3− p3x2− p4x− p5 = 0, pi > 0

3.713, if pi = 2,3,5,7and 11 ( j = 1,2,3,4,5) and a j are any real numbers.

1.966, if pi = 1,1,1,1 and 1(or2) ( j = 1,2,3,4,5) and a j are any real numbers.

1, if pi = 2,1,1,1 and 1 ( j = 1,2,3,4,5) and a j are any real numbers.

β , largest root among the real roots f (x) = x4− p1x3− p2x2− p3x− p4 = 0, pi > 0,

1.928, if pi = 1 and a j ( j = 1,2,3) are any real numbers.

1.618, if p2 = p3 = 0,a2= a3 = 0, and p j , a j, ( j = 1,2) are are any real numbers.

(3.7)

Pentanacci constant satisfies the identity

Theorem 3.7. If

Tn(p1, p2, p3, p4, p5) =
Vn+1(a1,a2,a3,a4,a5, p1, p2, p3, p4, p5)

Vn(a1,a2,a3,a4,a5, p1, p2, p3, p4, p5)
,

then

Tn(p1, p2, p3, p4, p5)+Tn(p1, p2, p3, p4, p5)
−5 = β (p1, p2, p3, p4, p5) a constant. (3.8)

Sr. No.
5th order Sequences

OEIS ([8])
Order of recurrence relations

Pentanacci Sequences
4th order recurrence Initial terms

(a1, a2, a3, a4,a5)
(p1, p2, p3, p4, p5)

Pentanacci Identity
T +T−5

Ratio of adjacent numbers
as n→ ∞

Fibonacci A000045, 2nd (0,1,0,0,0) (1,1,0,0,0) 1.927 1.839
Tribonacci A000073,3rd (0,0,1,0,0) (1,1,1,0,0) 1.764 1.618
Tetranacci A000078, 4th (0,1,1,2,0) (1,1,1,1,0) 1 1.928
Pentanacci A001591,5th (0,1,1,2,4) (1,1,1,1,1) 2 1.966
Pent-Lucas A074048 (5,1,3,7,15) (1,1,1,1,1) 2 1.966

Pell A141448 (0,1,2,5,13) (2,1,1,1,1) 2 1
Pell-Lucas (5,2,6,17,46) (2,1,1,1,1) 2 1
Mod. Pell (0,1,1,3,8) (2,1,1,1,1) 2 1
Jacobsthal A226310 (0,1,1,1,1) (1,1,1,1,2) 2.031 1.966

Jacobsthal-Lucas A226311 (2,1,5,10,20) (1,1,1,1,2) 2.031 1.966
M. Jacobsthal (3,1,3,10,20) (1,1,1,1,2)) 2.031 1.966

J-Perrin (3,0,2,8,16) (1,1,1,1,2) 2.031 1.966
A. Jacobsthal (0,1,1,2,4) (1,1,1,1,2) 2.031 1.966

M. Jacobsthal-Lucas (5,1,3,3,7) (1,1,1,1,2) 2.031 1.966
5-primes (0,0,0,1,2) (2,3,5,7,11) 3.714 3.713

Lucas-5 primes (5,2,10,41) (2,3,5,7,11) 3.714 3.713
M. 5-primes (0,0,0,1,1) (2,3,5,7,11) 3.714 3.713

Table 1: Fibonacci,Tribonacci Tetranacci, Pentanacci constants of Generalized sequence (see [8, 4])

4. Conclusion

Pentanacci sequence, a fifth-order recurrence relation in the most generalized form is considered and investigated. Foremost some terms of
the sequence in general form are explored and the terms of the known sequences are written. A pictorial representation is presented (see
Figure (1.1)) for Pentanacci numbers are displayed using the known Pentanacci sequences. Generating functions and the Binet formula are
derived in the comprehensive form which include sequences of lower orders recurrence relations as special cases.The generating functions of
even and odd terms for are also obtained explicitly. The ratio of (n+1)th term to nth when n→∞, is also exhibited in Figure (3.1). Employing
the obtained results, 2nd to 4th orders recurrence relations become the special cases of this generalization. Pentanacci constant and identity
are also discussed and is represented in the Table (1), varying both the coefficients of the recurrence relations and initial terms of the available
sequences in the literature. It is observed that both vary only with the coefficients of the recurrence relations and has no influence of initial
terms. In future kth order (k ≥ 6) generalized sequence could obviously be considered for more thoroughly and the study can further be
extended considering alternate approaches of number theory to have added identities and theorems.
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[6] Yüksel Soykan, Nejla Özmen and Melih Gööcen, On generalized Pentanacci quaternions, Tbilisi Math. J. Vol 13(4), (2020) 169-181.
[7] B. Sivakumar and V. James, A Notes on Matrix Sequence of Pentanacci Numbers and Pentanacci Cubes,Vol. 13(2),(2022),603–611.DOI: 10.32513/tbil-

isi/1608606056
[8] N. Sloane, The Encyclopedia of Integer Sequences, Elsevier Science Publishing Co., Inc.(1995).


	Introduction
	Terms of the Generalized Pentanacci Sequence
	Pentanacci Sequences pictorial representations
	Special Cases

	Generating function
	Generalized Pentanacci Sequences
	Even and odd terms of Generating Functions

	Pentanacci sequence
	Special cases
	Pentanacci Constant pictorial representations

	Conclusion

