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Abstract
Spacelike intrinsic rotational surfaces with constant mean curvature in the Lorentz-
Minkowski space E3

1 have been recently investigated by Brander et al., extending the
known Smyth’s surfaces in Euclidean space. Assuming that the surface is intrinsic rota-
tional with coordinates (u, v) and conformal factor ρ(u)2, we replace the constancy of the
mean curvature with the property that the Weingarten endomorphism A can be expressed

as Φ−α(v)

(
λ1(u) 0
0 λ2(u)

)
Φα(v), where Φα(v) is the (Euclidean or hyperbolic) rotation

of angle α(v) at each tangent plane and λi are the principal curvatures. Under these
conditions, it is proved that the mean curvature is constant and α is a linear function.
This result also covers the case that the surface is timelike. If the mean curvature is zero,
we determine all spacelike and timelike intrinsic rotational surfaces with rotational angle
α. This family of surfaces includes the spacelike and timelike Enneper surfaces.
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1. Introduction and motivation
An intrinsic rotational surface in Euclidean space is a surface that can be parametrized

in local coordinates (u, v) such that the metric is ρ(u)2(du2 + dv2) for some function
ρ(u) > 0. Surfaces of revolution are trivial examples of intrinsic rotational surfaces.
In 1993, Smyth classified all intrinsic rotational surfaces with nonzero constant mean
curvature [31], extending the Delaunay surfaces: see also [5, Appendix] and [34]. Later, in
2010, Brander, Rossman and Schmitt generalized the Smyth’s surfaces to spacelike intrinsic
rotational surfaces with nonzero constant mean curvature in the Lorentz-Minkowski space
[6]. They constructed these surfaces using the DPW method and studied some of their
properties: see also [29,30] when the ambient space is de Sitter and anti-de Sitter spaces.

More recently, Freese and Weber gave a new approach to the Smyth’s surfaces in the
class of intrinsic rotational surfaces [12]. They were motivated by the Enneper surface,
∗Corresponding Author.
Email addresses: Seher.Kaya@ankara.edu.tr (S. Kaya), rcamino@ugr.es (R. López)
Received: 16.06.2024; Accepted: 13.11.2024

https://orcid.org/0000-0002-7393-0458
https://orcid.org/0000-0003-3108-7009


2 S. Kaya, R. López

a well known minimal surface, which is an intrinsic rotational surface. With the above
coordinates (u, v), they replace the constancy of the mean curvature with the property
that the principal curvatures only depend on u and the principal directions only depend
on the angle of rotation v. Then it is proved that the surface has constant mean curvature
and the rotational speed of the principal curvature directions is constant [12].

The purpose of this paper is to extend the approach of Freese and Weber to the Lorentz-
Minkowski space E3

1. We will also investigate timelike intrinsic rotational surfaces, which
were not considered in [6]. The Lorentz-Minkowski space E3

1 is the vector space R3 endowed
with the Lorentzian metric 〈, 〉 = dx2

1 + dx2
2 − dx2

3 where (x1, x2, x3) are the canonical
coordinates of R3. The induced metric of a non-degenerate surface Σ in E3

1 is Riemannian
(the surface is called spacelike) or Lorentzian (the surface is called timelike).

Definition 1.1. A non-degenerate surface Σ of E3
1 is said to be an intrinsic rotational

surface if there is a local coordinate system (u, v) on Σ such that the first fundamental
form can be expressed as

I = ρ(u)2
(

δ 0
0 ϵ

)
, (1.1)

where δ, ϵ ∈ {−1, 1}.

Notice that δ and ϵ cannot be simultaneously −1 in (1.1). The first examples of intrinsic
rotational surfaces are the surfaces of revolution. The family of surfaces of revolution in
E3

1 is richer than in Euclidean space because the rotational axis can be of three different
causal characters.

Proposition 1.2. Any non-degenerate surface of revolution in E3
1 is intrinsic rotational.

Proof. We distinguish the three cases according to the causal character of their rotation
axis [23].

(1) Timelike rotation axis. Without loss of generality, we can assume that the rotation
axis is the x3-axis. The surface is parametrized by

X(r, v) = (r cos v, r sin v, f(r)), r ∈ I ⊂ R, v ∈ R,

for some function f . Let us change r by a function r(u) to determine. The first
fundamental form is I = (1−f ′2)r′2du2+r2dv2. Solving the ODE (1−f ′2)r′2 = δr2,
δ = ±1, let ρ2 = r2. Then I = ρ(u)2(δdu2 + dv2).

(2) Spacelike rotation axis. Without loss of generality, we can assume that the rotation
axis is the x1-axis. There are two types of parametrizations.
(a) Subcase 1. The parametrization of the surface is

X(r, v) = (r, f(r) cosh v, f(r) sinh v), r ∈ I ⊂ R, v ∈ R,

for some function f . Let us replace r by a function r = r(u) to determine.
The first fundamental form is I = (1 + f ′2)r′2du2 − f2dv2, in particular, the
surface is timelike. Solving the ODE (1 + f ′2)r′2 = f2 and taking ρ2 = f2,
the first fundamental form is I = ρ(u)2(du2 − dv2).

(b) Subcase 2. The surface is parametrized by
X(r, v) = (r, f(r) sinh v, f(r) cosh v), r ∈ I ⊂ R, v ∈ R,

for some function f . Again, let r = r(u) be a function to determine. The first
fundamental form is I = (1−f ′2)r′2du2+f2dv2. Solving the ODE (1−f ′2)r′2 =
δf2, δ = ±1, and reparametrizing the surface, the first fundamental form is
I = ρ(u)2(δdu2 + dv2).

(3) Lighlike axis. We can assume that the rotation axis is spanned by the vector
(1, 0, 1). The surface is parametrized by

X(r, v) =
(
f(r) + r(1 − v2), −2vr, f(r) − r(1 + v2)

)
, r ∈ I ⊂ R, v ∈ R,
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for some function f . Changing r by r(u), the first fundamental form is I =
f ′r′2du2 + r2dv2. Solving the ODE f ′r′2 = δr2, δ = ±1, and taking ρ2 = r2,
the first fundamental form is I = ρ(u)2(δdu2 + dv2).

□

Another example of intrinsic rotational surfaces without being a surface of revolution
is the Enneper surface. In the Lorentz-Minkowski space, there are two Enneper surfaces
according to their causal character. Both surfaces have zero mean curvature and both
have special expressions for the Weingarten endomorphism which are now described.

(1) The spacelike Enneper surface [19]. A parametrization of this surface is

(u, v) 7−→ (u − uv2 + u3

3
, −v + u2v − v3

3
, v2 − u2), u, v ∈ R.

With the change of variables u → eu cos v and v → eu sin v, a new parametrization
is

X(u, v) = eu

 1
3
(
e2u cos(3v) + 3 cos(v)

)
1
3
(
e2u sin(3v) − 3 sin(v)

)
−eu cos(2v)

 , u 6= 0. (1.2)

At the point (0, v), X is not an immersion. The first fundamental form in coordi-
nates with respect to X is

I = e2u(e2u − 1)2
(

1 0
0 1

)
.

Thus the surface is intrinsic rotational with δ = ϵ = 1 in (1.1). To describe the
Weingarten endomorphism A, we calculate its matrix expression with respect to
the basis {Xu, Xv}. Using that A = I−1II, where II is the second fundamental
form, a computation gives

A = 2
(1 − e2u)2

(
cos(2v) − sin(2v)
− sin(2v) − cos(2v)

)
.

This matrix A can be rewritten as

A = R−v

( 2
(e2u−1)2 0

0 − 2
(e2u−1)2

)
Rv, (1.3)

where
Rv =

(
cos(v) − sin(v)
sin(v) cos(v)

)
represents the Euclidean rotation of angle v in each tangent plane of the surface.
Thus (1.3) can be expressed as

A = 2
(e2u − 1)2 R−v

(
1 0
0 −1

)
Rv,

being ±2/(e2u − 1)2 are the principal curvatures of the surface.
(2) The timelike Enneper surface [20]. A parametrization of this surface is

(u, v) 7−→ (u2 + v2, u − u3

3
− uv2, v + v3

3
+ vu2), u, v ∈ R.

With the change u → eu cosh v and v → eu sinh v, a new parametrization of the
surface is

X(u, v) = eu

 eu cosh(2v)
1
3
(
3 cosh(v) − e2u cosh(3v)

)
1
3
(
3 sinh(v) + e2u sinh(3v)

)
 , u, v ∈ R. (1.4)



4 S. Kaya, R. López

The first fundamental form is

I = e2u(1 + e2u)2
(

1 0
0 −1

)
,

which shows that the surface is intrinsic rotational with δ = −ϵ = 1 in (1.1). The
matrix expression of A with respect to {Xu, Xv} is

A = 2
(1 + e2u)2

(
cosh(2v) sinh(2v)
− sinh(2v) − cosh(2v)

)
.

We can also write A as

A = G−v

( 2
(e2u+1)2 0

0 − 2
(e2u+1)2

)
Gv, (1.5)

where
Gv =

(
cosh(v) sinh(v)
sinh(v) cosh(v)

)
is the hyperbolic rotation of angle v in each tangent plane. Then (1.5) is

A = 2
(e2u + 1)2 G−v

(
1 0
0 −1

)
Gv.

Here ±2/(e2u + 1)2 are the principal curvatures of the surface.
This particular form of the Weingarten endomorphism in both surfaces also holds for

the Euclidean Enneper surface. This fact was well observed by Freese and Weber [12] and
inspires the following definition in Lorentz-Minkowski space, where the angle v in Rv and
Gv is replaced by a more general function α = α(v).

Definition 1.3. Let Σ ⊂ E3
1 be an intrinsic rotational surface with coordinates (u, v) as in

(1.1). Let α : R → R be a smooth function. Assume that the Weingarten endomorphism
A is diagonalizable and let λi denote the principal curvatures, i = 1, 2. We say that Σ has
twist α if one of the following two conditions holds:

(1) Σ is spacelike and A is of the form

A = R−α(v)

(
λ1(u) 0

0 λ2(u)

)
Rα(v). (1.6)

(2) Σ is timelike and A is of the form

A = G−α(v)

(
λ1(u) 0

0 λ2(u)

)
Gα(v). (1.7)

We make the following observations.
(1) In general, the Weingarten endomorphism of a timelike surface could not be di-

agonalizable. However, in Definition 1.3 it is required that A is diagonalizable for
timelike surfaces.

(2) The rotations Rθ and Gθ are isometries in each tangent plane. In the first case, Σ
is spacelike, the tangent planes are Riemannian and Rθ are Euclidean rotations. If
Σ is timelike, the tangent planes are Lorentzian and Gθ are hyperbolic rotations.

(3) Definition 1.3 was motivated by the spacelike and timelike Enneper surfaces. No-
tice that for the timelike Enneper surface, we have δ = −ϵ = 1. One can consider
timelike surfaces satisfying (1.6) and likewise, the condition (1.7) can be extended
for spacelike surfaces. This makes a remarkable difference between the Lorentzian
and the Euclidean contexts. See this discussion in the final part of Section 2.

We shall characterize the intrinsic rotational surfaces with twist α in terms of the mean
curvature. This is given in the following result.
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Theorem 1.4. Let Σ be an intrinsic rotational surface of E3
1 with twist α 6= 0. Assume

that Σ has no open sets of umbilic points. If Σ is spacelike we also assume that α is not
an integer multiple of π

2 on any open interval. Then Σ has constant mean curvature and
the twist is α(v) = av + c, a, c ∈ R.

The proof is done in Section 2. As a consequence of this theorem, for nonzero constant
mean curvature cases, a spacelike intrinsic rotational surface with twist α is one of the
surfaces that appeared in [6]. Theorem 1.4 also covers the case that the surface is timelike
which does not appear in [6]. Examples of timelike ZMC surfaces appear in Subsection 4.2.
Notice that in timelike surfaces with constant mean curvature the set of umbilic points
can contain open sets because we cannot use that this set is the zeroes of a holomorphic
function. However, in the statement of Theorem 1.4 we have imposed the condition that
umbilic points are isolated.

Section 3 is devoted to studying the case of intrinsic rotational ZMC surfaces with
twist α obtaining a full classification in Theorems 3.6, 3.8 and 3.9. This complements the
work initiated in [6] for spacelike surfaces and covering also the case that the surfaces are
timelike. These surfaces generalize the two Enneper surfaces of E3

1, hence that Theorem
1.4, in the ZMC case, provides a characterization of the Enneper surfaces within the class
of intrinsic rotational surfaces. A goal of this paper is that we provide new examples
of timelike ZMC surfaces. This is due to the fact that in (1.1) we have two choices for
the metrics, namely, ρ(u)2(du2 − dv2) and ρ(u)2(−du2 + dv2). In Subsection 3.3, it will
be proved that the intrinsic rotational ZMC surfaces with constant twist α are associate
surfaces of surfaces of revolution (Theorem 3.11). The computations of the Weierstrass
representation of the intrinsic rotational minimal surfaces together with some examples
appear in Section 4.

As a last remark, in this paper, we only consider that all surfaces are non-degenerate,
in particular ρ 6= 0 in (1.1). In particular, it will be assumed that the domains of the
parametrizations of all surfaces do not include degenerate points. However, it is natural
to investigate if the surface can be extended to points where the metric is lightlike. In fact,
given a parametrization of a surface in E3

1, the surface will contain points of spacelike,
lightlike and timelike character. Recently, there has been considerable interest in studying
surfaces with ZMC having more than one causal character. The literature is abundant in
this matter: see to cite a few [11,14,36]. As an anonymous referee has kindly pointed out
to us, it is an interesting problem to ask for the existence of intrinsic rotational surfaces
with lightlike parts, which will include mixed-type surfaces.

2. Proof of Theorem 1.4
Let Σ be a spacelike or timelike surface in E3

1. If N is a unit normal vector field on Σ,
then 〈N, N〉 = −σ, where σ = 1 if Σ is spacelike and σ = −1 if Σ is timelike. If X(Σ)
denotes the space of tangent vector fields of Σ, ∇0 the Levi-Civita connection of E3

1 and
∇ the induced connection on Σ, then the Gauss formula is

∇0
XY = ∇XY + II(X, Y ), X, Y ∈ X(Σ). (2.1)

Since ∇0
XN only has a tangent part, the Weingarten endomorphism A is defined by AX =

−(∇0
XN)>, where the superscript > denotes the tangent part. From (2.1)

〈AX, Y 〉 = 〈II(X, Y ), N〉. (2.2)

The mean curvature vector field H⃗ is defined as H⃗ = 1
2 trace(II) and the mean curvature

function H by the relation H⃗ = HN [23]. Since II(X, Y ) is proportional to N , from (2.1)
and (2.2) we deduce

II(X, Y ) = −σ〈II(X, Y ), N〉N = −σ〈AX, Y 〉N. (2.3)
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Because II is symmetric, A is a self-adjoint endomorphism with respect to the induced
metric of Σ. If A is (real) diagonalizable, the eigenvalues λ1 and λ2 are called the principal
curvatures of Σ. To be precise, if Σ is spacelike, then A is always diagonalizable because
the induced metric is Riemannian, but if Σ is timelike, A may be not diagonalizable. From
now on, we will assume that A is diagonalizable if Σ is timelike. Therefore

H = σ〈H⃗, N〉 = −σ
λ1 + λ2

2
.

A surface Σ ⊂ E3
1 is said to be a minimal surface if the mean curvature is H = 0 on

Σ. In the literature, spacelike minimal surfaces are called maximal surfaces because they
locally maximize the area functional. However, we will employ the terminology zero mean
curvature (ZMC in short) surface independently if Σ is spacelike or timelike.

The Gauss curvature K of a non-degenerate surface in E3
1 is K = −σdet(A), which

writes in terms of the principal curvatures as K = −σλ1λ2.
The proof of Theorem 1.4 is done in several steps by means of preliminary lemmas.

Let Σ be an intrinsic rotational surface of E3
1 with coordinates (u, v) determined by (1.1).

Introduce the unitary tangent vector fields

U = 1
ρ(u)

∂u and V = 1
ρ(u)

∂v,

where {∂u, ∂v} are the canonical tangent vector fields. In particular, 〈U, U〉 = δ and
〈V, V 〉 = ϵ.

Lemma 2.1. The Levi-Civita connection of the first fundamental form I is given by

∇U U = 0, ∇U V = 0, ∇V U = ρ′

ρ2 V, ∇V V = −δϵ
ρ′

ρ2 U. (2.4)

Proof. Any tangent vector field W ∈ X(Σ) writes as W = δ〈W, U〉U + ϵ〈W, V 〉V . This
identity will be used for the computations of the Levi-Civita connection. We begin with
∇U U . Since U is unitary, 〈∇U U, U〉 = 0. We also have,

〈∇U U, V 〉 = 1
ρ3 〈∇∂u∂u, ∂v〉 = − 1

ρ3 〈∇∂v ∂u, ∂u〉 = − 1
2ρ3 ∂v(δρ2) = 0

because ρ depends only on u. This proves ∇U U = 0. In fact, this means that U is a
Killing vector field on Σ.

We now compute ∇U V . Note that 〈∇U V, U〉 = −〈∇U U, V 〉 = 0. Also, 〈∇U V, V 〉 =
1
2U〈V, V 〉 = 0. Hence, ∇U V = 0.

For the calculation of ∇V U , we have 〈∇V U, U〉 = 1
2V 〈U, U〉 = 0. On the other hand,

〈∇V U, V 〉 = 1
ρ3 〈∇∂v ∂u, ∂v〉 = 1

2ρ3 ∂u(ϵρ2) = ϵρ′

ρ2 .

Thus ∇V U = ϵ〈∇V U, V 〉V = ρ′/ρ2V .
The computation of vector field ∇V V is similar. Since V is unitary, we have 〈∇V V, V 〉 =

0. Furthermore,

〈∇V V, U〉 = −〈V, ∇V U〉 = −ϵ
ρ′

ρ2 .

□

Lemma 2.2. The Gauss equation is equivalent to

λ1λ2 = ϵ
ρρ′′ − ρ′2

ρ4 . (2.5)
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Proof. The curvature tensor R is R(U, V )V = ∇U ∇V V − ∇V ∇U V − ∇[U,V ]V . By using
the identities (2.4) and also [U, V ] = −∇V U = − ρ′

ρ2 V , we have

R(U, V )V = ∇U

(
−δϵ

ρ′

ρ2 U

)
+ ρ′

ρ2 ∇V V = − δϵ

ρ4 (ρρ′′ − ρ′2)U.

Thus
〈R(U, V )V, U〉 = − ϵ

ρ4 (ρρ′′ − ρ′2).

On the other hand, 〈U, U〉〈V, V 〉 − 〈U, V 〉2 = δϵ. Then

K = 〈R(U, V )V, U〉
〈U, U〉〈V, V 〉 − 〈U, V 〉2 = − δ

ρ4 (ρρ′′ − ρ′2).

Taking into account that σ = δϵ, the above identity in combination with K = −σλ1λ2
yields (2.5). □

Lemma 2.3. Let Σ be an intrinsic rotational surface in E3
1 with twist α. Then the Codazzi

equations are equivalent to:
(1) If Σ is spacelike, then

sin(2α)ρ(λ′
1 + λ′

2) = 0

−λ′
1 sin2(α) + λ′

2 cos2(α) + 1
ρ

(λ1 − λ2)(ρα′ − ρ′) = 0.
(2.6)

(2) If Σ is timelike, then
sinh(2α)ρ(λ′

1 + λ′
2) = 0

sinh2(α)λ′
1 + cosh2(α)λ′

2 + 1
ρ

(λ1 − λ2)(ρα′ − ρ′) = 0.
(2.7)

Proof. The Codazzi equations are obtained by the identity (∇U A)V = (∇V A)U . Let
A = (aij) be the matrix expression of A with respect to {∂u, ∂v}. Since {U, V } are
proportional to ∂u and ∂v, we have

AU = a11U + a21V, AV = a12U + a22V. (2.8)
Using (2.4) and (2.8), we have

(∇U A)V = ∇U (AV ) − A(∇U V ) = ∇U (a12U + a22V ) = U(a12)U + U(a22)V

= 1
ρ

((a12)uU + (a22)uV ) .

(∇V A)U = ∇V (AU) − A(∇V U) = V (a11)U + V (a21)V + a11∇V U + a21∇V V − A(∇V U)

= 1
ρ

((a11)vU + (a21)vV ) + a11∇V U + a21∇V V − A(∇V U)

=
((a11)v

ρ
− ρ′

ρ2 (δϵa21 + a12)
)

U +
((a21)v

ρ
+ ρ′

ρ2 (a11 − a22)
)

V.

Equating coordinate-by-coordinate, the Codazzi equations are{
ρ ((a12)u − (a11)v) + ρ′(δϵa21 + a12) =0

ρ ((a22)u − (a21)v) − ρ′(a11 − a22) =0.
(2.9)

We particularize both equations for spacelike and timelike surfaces.
(1) If Σ is spacelike, then the matrix A in (1.6) is

A =
(

cos2(α)λ1 + sin2(α)λ2 sin(2α)λ2−λ1
2

sin(2α)λ2−λ1
2 cos2(α)λ2 + sin2(α)λ1

)
.
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Using this expression for A, together (2.9) with δ = ϵ = 1, the Codazzi equations
are sin(α) cos(α)

(
ρ
(
2α′(λ1 − λ2) − λ′

1 + λ′
2
)

− 2ρ′(λ1 − λ2)
)

= 0

ρ
(
(λ1 − λ2)α′ cos(2α) + λ′

1 sin2(α) + λ′
2 cos2(α)

)
+ (λ2 − λ1)ρ′ cos(2α) = 0.

A linear combination of both equations gives (2.6).
(2) If Σ is timelike, then the matrix A in (1.7) is

A =
(

cosh2(α)λ1 − sinh2(α)λ2 − sinh(2α)λ2−λ1
2

sinh(2α)λ2−λ1
2 cosh2(α)λ2 − sinh2(α)λ1

)
.

Using these values for aij in the Codazzi equations (2.9), and taking into account
that σ = −1, we obtain (2.7).

□
After all these preliminaries, we prove Theorem 1.4.

Proof. (of Theorem 1.4.)
We distinguish the cases when Σ is spacelike or timelike.
(1) Σ is spacelike. Since α is not an integer multiple of π/2, sin(2α) 6= 0, the first

equation of (2.6) implies that H is constant. In particular, λ′
2 = −λ′

1. Now the
second equation of (2.6) is

ρλ′
1 = (λ1 − λ2)(ρα′ − ρ′).

Since α depends only on v, and ρ and λi depend on u, we deduce that α′ is constant
or λ1 − λ2 = 0 on Σ. The latter case is not possible because there are no open sets
of umbilic points. This proves that α′ is constant, so α is linear.

(2) Σ is timelike. The first equation of (2.7) implies that H is constant. A similar
discussion as in the above case (1) using the second equation of (2.7) concludes
that the function α is linear.

□
Remark 2.4. The hypothesis α 6= 0 in Theorem 1.4 has been employed to deduce from
the first equation in the Codazzi equation that the mean curvature is constant. In Section
3.3, we will study the case α = 0 for ZMC surfaces, obtaining that the surface is a surface
of revolution (Theorem 3.11).

Corollary 2.5. Assume that Σ has the same hypothesis of Theorem 1.4, with α(v) = av+c,
a, c ∈ R. Then the principal curvature λ1 is

λ1 = −σH + b

ρ2 e2au, b ∈ R, (2.10)

and the function ρ satisfies
ρρ′′ − ρ′2 = ϵ(H2ρ4 − b2e4au). (2.11)

In addition, the constant b cannot be 0.

Proof. Using that the mean curvature is constant, that is, λ′
2 = −λ′

1, the second Codazzi
equations in (2.6) and (2.7) write in both cases as −ρλ′

1 + 2(λ1 + σH)(aρ − ρ′) = 0. Then
λ′

1
λ1 + σH

= 2
(

a − ρ′

ρ

)
.

A straightforward integration of this equation yields (2.10). Equation (2.11) is immediate
from (2.5) and (2.10).

If b = 0, then λ1 = −σH by (2.10). Thus λ2 = −σH by the definition of H. This is a
contradiction because there are no open sets of umbilic points. □
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Remark 2.6. Following a suggestion of one of the anonymous referees, if we admit to
define intrinsic rotational surfaces with lightlike parts, and assuming that the mean cur-
vature is constant, then we can admit ρ(u0) = 0 because the solution of (2.11) sometimes
become ρ(u0) = 0 real analytically.

As we have observed in Section 1, the conditions (1.6) and (1.7) can be extended for
timelike and spacelike surfaces respectively. We study this situation which has no coun-
terpart in the Euclidean space. First, we recall that the skew curvature of a surface is
defined as

√
H2 + σK: see [8] in the Lorentzian context and [27,33] in the Euclidean one.

If A is diagonalizable, the skew curvature is, up to a change of sign, the difference λ2 − λ1
between the principal curvatures.

Theorem 2.7. Let Σ be an intrinsic rotational surface in E3
1 which has no open sets of

umbilic points. Assume that Σ is a timelike surface and satisfies (1.6) where α is not an
integer multiple of π/2 or that Σ is spacelike and satisfies (1.7) with α 6= 0. Then the
function α is constant. Furthermore, Σ has constant skew curvature or Σ is a cylinder.

Proof. (1) Suppose that Σ is a timelike intrinsic rotational surface satisfying (1.6).
We have two cases to discuss, namely, δ = −ϵ = 1 and δ = −ϵ = −1. The
arguments are similar in both cases, so without loss of generality, we will assume
δ = −ϵ = 1. Computing again the Codazzi equations (2.9), we obtain

sin(2α)ρ
(
λ′

2 − λ′
1 + 2α′(λ1 − λ2)

)
= 0

λ′
1 sin2(α) + λ′

2 cos2(α) + λ1 − λ2
ρ

cos(2α)(ρα′ − ρ′) = 0.
(2.12)

Since sin(2α) 6= 0, the first equation of (2.12) gives 2α′(λ1 − λ2) = λ′
1 − λ′

2.
Substituting into the second one,

λ′
1 + λ′

2 − 2 cos(2α)(λ1 − λ2)ρ′

ρ
= 0.

Because α depends on v and λi and ρ depend on u, this equation implies that α
is constant or ρ′ = 0.
(a) Case α is constant. The first equation of (2.12) gives λ2 − λ1 = a, a ∈ R,

a 6= 0. Thus the skew curvature is constant.
(b) Case ρ′ = 0. From (2.5), λ1λ2 = 0. Without loss of generality, suppose

λ1 = 0 on Σ. Now the second equation of (2.12) is λ′
2 = 0, proving that

λ2 is constant. Since both principal curvatures are constant, the surface is
isoparametric with K = 0. Because Σ has no open sets of umbilic points,
then Σ is a cylinder [24]. In particular, λ2 6= 0. Finally the first equation of
(2.12) gives α′ = 0, hence α is constant.

(2) Suppose that Σ is a spacelike intrinsic rotational surface satisfying (1.7). The
Codazzi equations (2.9) are now{

cosh(α) sinh(α)ρ
(
2α′(λ2 − λ1) + λ′

1 − λ′
2
)

= 0
ρ(− sinh2(α)λ′

1 + cosh2(α)λ′
2) + cosh(2α)(λ1 − λ2)(ρα′ − ρ′) = 0.

(2.13)

From the first equation of (2.13), we have 2α′(λ1 − λ2) = λ′
1 − λ′

2. Substituting
into the second equation,

λ′
1 + λ′

2 − 2 cosh(2α)(λ1 − λ2)ρ′

ρ
= 0.

Since α only depends on v and λi and ρ depend on u, we deduce that α is constant
or ρ′ = 0 because there are no open sets of umbilic points. The discussion is now
similar to the previous case when Σ is timelike, obtaining the result.

□
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3. Intrinsic rotational surfaces with zero mean curvature
In this section, we investigate the intrinsic rotational surfaces with twist α and zero

mean curvature. By Theorem 1.4, the twist is α(v) = av + c, a, c ∈ R. A first step
consists in proving that the study can be reduced to the case c = 0. This is a consequence
of a more general result of spacelike and timelike ZMC surfaces involving the notion of
associate surfaces. We distinguish if the surface is spacelike or timelike.

Suppose that X : Σ → E3
1 is a conformal spacelike ZMC immersion. Since X is con-

formal and H = 0, X is harmonic. As in the Euclidean space ([9, Ch. 3]), the associate
ZMC surface Xθ, θ ∈ R, is defined by Xθ = cos θX + sin θX∗, where X∗ is the conjugate
surface of X. The surface X∗ is defined by the property that X + iX∗ is holomorphic.
In particular, X∗

u = Xv and X∗
v = −Xu, hence the tangent planes of X and Xθ coincide

at corresponding points. Moreover, the conjugate surface X∗ is just Xπ/2. The associate
surface Xθ is isometric to X and shares the same Gauss map, N θ ◦ Xθ = N ◦ X. The
following result gives the relation of the corresponding endomorphisms, which is known as
the Bonnet-Lie transformation [4, §394] and [1].

Proposition 3.1. If X : Σ → E3
1 is a conformal spacelike ZMC immersion, then the

relation between the Weingarten endomorphisms A and Aθ of X and Xθ, respectively, is

Aθ ◦ Xθ = RθAR−θ ◦ X. (3.1)

This proposition has an analog for timelike surfaces. In the theory of timelike ZMC
surfaces, the complex analysis is replaced by the paracomplex analysis [10,20]. In particu-
lar, it is possible to define associate surfaces for a given timelike ZMC surface in a similar
way with spacelike surfaces. Although this concept is expectable, as far as the authors
know, it is not clearly explicit in the literature. We include a short review for sake of
completeness. Let L be the algebra of paracomplex numbers, z = u + τv, where τ is the
pure paracomplex number with τ2 = 1. Introduce the operators

∂

∂z
= 1

2

(
∂

∂u
+ τ

∂

∂v

)
,

∂

∂z̄
= 1

2

(
∂

∂u
− τ

∂

∂v

)
.

Let X : Σ → E3
1 be a paraconformal timelike surface, X = X(u, v), where the metric is

ρ(z)2(du2 −dv2) and ρ(z) is a paraholomorphic function. Then X has zero mean curvature
if and only if ∂X

∂z is paraholomorphic, that is, ∂
∂z̄ (∂X

∂z ) = 0. As in the Euclidean case, there is
a paraconjugate map X∗ : Σ → E3

1 such that X+τX∗ is paraholomorphic. In consequence,
Xu = X∗

v and Xv = X∗
u. The associate surface of X with angle θ is the immersion Xθ

defined by
Xθ = cosh θX + sinh θX∗,

where θ ∈ R. It is immediate the following result.

Proposition 3.2. Let X be a paraconformal timelike ZMC surface of E3
1. Then:

(1) The tangent planes of X and Xθ coincide at corresponding points and also X and
Xθ are isometric.

(2) The associate surface Xθ is a timelike ZMC surface.
(3) The Gauss maps of X and Xθ coincide, N θ ◦ Xθ = N ◦ X.

Similarly as in Proposition 3.1, we have the relation between the Weingarten endomor-
phisms [16,28,37].

Proposition 3.3. If X : Σ → E3
1 is a paraconformal timelike ZMC surface, then the

relation between the Weingarten endomorphisms A and Aθ of X and Xθ, respectively, is

Aθ ◦ Xθ = GθAG−θ ◦ X. (3.2)
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We go back to Theorem 1.4. Let Σ be an intrinsic rotational surface with twist α(v) =
av + c. If Σ has zero mean curvature, and thanks to Propositions 3.1 and 3.3, we can
assume, up to associate surfaces, that the constant c is 0. From (2.11), the conformal
factor ρ satisfies

ρρ′′ − ρ′2 + ϵb2e4au = 0. (3.3)
Furthermore, by Corollary 2.5, the constant b cannot be 0. Let us replace ρ with a
homothetic metric λρ, λ > 0, which it does not change the property of being intrinsic
rotational surface with twist. Then equation (3.3) is

ρρ′′ − ρ′2 + ϵ
b2

λ2 e4au = 0.

By taking λ2 = b2, without loss of generality we can assume b = 1.

Lemma 3.4. All positive solutions of the differential equation

ρρ′′ − ρ′2 + ϵe4au = 0 (3.4)

are given by

ρ(u) = e2au

2B

(
−ϵAeBu + 1

A
e−Bu

)
(3.5)

for arbitrary A, B > 0.

Proof. The ODE (3.4) is similar with Equation (6) in [12] and the proof follows the same
steps. □

We will obtain the explicit parametrizations X = X(u, v) of all intrinsic rotational
ZMC surfaces. The methods we use are moving frames and the Frobenius integrability
theorem. From (3.5) we have explicitly the metric ρ2I and the second fundamental form
is determined in (2.10). Then we can start to derive the parametrization X = X(u, v) of
the surface directly from the proof of the Bonnet’s theorem: see [21,32].

A first step in the integration process consists in obtaining an explicit curve c(u) on the
surface and an orthogonal frame of vector fields along c(u), where one of the vector fields
is tangent along c(u). The final part of the derivation of X(u, v) will use the solution of
the Björling problem for spacelike and timelike ZMC surfaces [3, 7].

Let {E1(u, v), E2(u, v), E3(u, v)} be an orthonormal basis determined by the conditions

E1 = 1
ρ

Xu, E2 = 1
ρ

Xv, E3 = E1 × E2,

where × is the cross product in E3
1. Evaluating at (u, 0), we have

E1(u, 0) = dX(u,0)U(u, 0) = 1
ρ

Xu(u, 0)

E2(u, 0) = dX(u,0)V (u, 0) = 1
ρ

Xv(u, 0)

E3(u, 0) = E1(u, 0) × E2(u, 0).

Let F(u, v) = (E1(u, v), E2(u, v), E3(u, v)). Then the Gauss-Codazzi equations are written
as {

Fu(u, 0) = F(u, 0)P
Fv(u, 0) = F(u, 0)Q,

(3.6)

where P and Q are two matrices of order 3. More precisely, if P = (pij) and Q = (qij),
then pij and qij are determined by

pij = 〈(Ej)u, Ei〉, qij = 〈(Ej)v, Ei〉.
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3.1. Spacelike case
We know that E3 is timelike. Since {E1(u, 0), E2(u, 0), E3(u, 0)} is an orthonormal basis

and ρ depends only on the variable u, the matrices P and Q are

P =

 0 0 − e
ρ

0 0 −f
ρ

− e
ρ −f

ρ 0

 , Q =


0 −ρ′

ρ −f
ρ

ρ′

ρ 0 −g
ρ

−f
ρ −g

ρ 0

 , (3.7)

which all are evaluated at (u, 0). Notice that in the Euclidean case, both matrices are
skew symmetric which here it is not possible because E3 is timelike. To calculate the
coefficients e, f and g of the second fundamental form, we use A = I−1II and (1.6). Then(

e f
f g

)
= ρ2

(
λ1 cos2(av) + λ2 sin2(av) (λ2 − λ1) sin(av) cos(av)
(λ2 − λ1) sin(av) cos(av) λ1 sin2(av) + λ2 cos2(av)

)
.

Evaluating at (u, 0), (
e f
f g

)
(u, 0) = ρ2

(
λ1 0
0 λ2

)
(u, 0).

From (3.6) and (3.7), 
(E1)u(u, 0) = −ρλ1E3(u, 0)
(E2)u(u, 0) = 0
(E3)u(u, 0) = −ρλ1E1(u, 0).

We are able to integrate these equations. From now on, we drop the notation ()u and
(u, 0) employing (′) and (u), respectively. Using (2.10) and (3.5), we have

E′
1(u) = −e2au

ρ
E3(u) = − 2ABeBu

1 − A2e2Bu
E3(u)

E′
2(u) = 0

E′
3(u) = −e2au

ρ
E1(u) = − 2ABeBu

1 − A2e2Bu
E1(u).

(3.8)

In particular, E2 is constant. With respect to a fixed orthonormal basis of E3
1, we can

write E1(u) = (a(u), 0, b(u)), E2(u) = (0, 1, 0) and E3(u) = (−b(u), 0, −a(u)). Letting

h(u) = 2ABeBu

1 − A2e2Bu
,

the two differential equations (3.8) involving E1 and E3 are now

(a′, 0, b′) = h(b, 0, a)
(b′, 0, a′) = h(a, 0, b).

Using that |E1|2 = −|E3|2 = 1, we have a′2 − b′2 = −h2. Hence the function h satisfies
a′

√
a2 − 1

= h.

The solution a(u) of this equation is

a(u) = 1 + A2e2Bu

1 − A2e2Bu
+ d, d ∈ R.

For b, we use that b = a′/h, to obtain

b(u) = 2AeBu

1 − A2e2Bu
.
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With the functions a and b, the frame {E1(u), E2(u), E3(u)} is completely determined,
E1(u) = 1

1 − A2e2Bu

(
1 + A2e2Bu, 0, 2AeBu

)
E2(u) = (0, 1, 0)

E3(u) = − 1
1 − A2e2Bu

(
2AeBu, 0, 1 + A2e2Bu

)
.

(3.9)

The curve c(u) = X(u, 0) is obtained from c′(u) = ρ(u)E1(u). This equation can be solved
by using (3.5) and the value E1(u) in (3.9), to obtain an explicit parametrization of c(u).

Lemma 3.5. The space curve c(u) = X(u, 0) is given by

c(u) = e2au

2B

(
AeBu

2a + B
+ e−Bu

A(2a − B)
, 0,

1
a

)
, B 6= ±2a

c(u) = e2au

4a2

(
Ae2au

4
, 0, 1

)
+ u

4Aa
(1, 0, 0) , B = 2a

c(u) = − e2au

4a2A

(
e2au

4
, 0, 1

)
− Au

4a
(1, 0, 0) , B = −2a.

Until here, we have a curve c(u) on the surface X(u, v) with X(u, 0) = c(u) and an
orthonormal frame {E1(u), E2(u), E3(u)} along c given in (3.9). Instead of following with
the Frobenius theorem to get the parametrization X(u, v) of the surface, we apply the
Björling formula. From (3.9), the unit normal vector field of the surface along the curve
c(u) is the vector field E3(u). Recall that the Björling formula requires that the initial
data c(u) and E3(u) have analytic extensions which is clear from (3.9) and Lemma 3.5.
Then the parametrization of the surface is given by the Björling formula

X(u, v) = Re
(

c(z) + i

∫ z

E3(w) × c′(w) dw

)
. (3.10)

See [3]. A computation of the integral and real part gives the explicit parametrization of
the surface. We give the first fundamental form and the domain of the surface.

Theorem 3.6. Any spacelike intrinsic rotational ZMC surface of E3
1 with twist α(v) = av

is parametrized by
(1) Case B 6= ±2a,

X(u, v) =


e(2a−B)u(A2(2a−B)e2Bu cos((2a+B)v)+(2a+B) cos((2a−B)v))

2AB(4a2−B2)
e(2a−B)u((2a+B) sin((2a−B)v)−A2(2a−B)e2Bu sin((2a+B)v))

2AB(4a2−B2)
e2au cos(2av)

2aB

 .

The first fundamental form is

I = e(4a−2B)u(A2e2Bu − 1)2

4A2B2 (du2 + dv2),

and the domain of X is u 6= − log A
B , v ∈ R.

(2) Case B = 2a,

X(u, v) =
(

A2e4au cos(4av) + 4au

16a2A
,
4av − A2e4au sin(4av)

16a2A
,
e2au cos(2av)

4a2

)
.

The first fundamental form is

I = (A2e4au − 1)2

16a2A2 (du2 + dv2),

and the domain of X is u 6= − log A
2a , v ∈ R.
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(3) Case B = −2a,

X(u, v) =
(

−e4au cos(4av)
16a2A

− Au

4a
,
Av

4a
− e4au sin(4av)

16a2A
, −e2au cos(2av)

4a2

)
.

The first fundamental form is

I = (A2 − e4au)2

16a2A2 (du2 + dv2),

and the domain of X is u 6= log A
2a , v ∈ R.

At the points where X is not defined, the mapping X is not an immersion. The
case A = B = a = 1 corresponds to the spacelike Enneper surface (1.2). The cases
B = ±2a correspond with spacelike ZMC surfaces where the 1-forms in the Weierstrass
representation have residues. This implies that the surface is periodic: see this discussion
in Section 4.

3.2. Timelike case
Let Σ be a timelike intrinsic rotational ZMC surface and twist α(v) = av. Now

{E1(u, 0), E2(u, 0), E3(u, 0)} is an orthonormal basis where E3 is spacelike. We have two
cases to discuss, namely, δ = −ϵ = 1 and δ = −ϵ = −1. Equivalently, if E1 is spacelike
and E2 is timelike or E1 is timelike and E2 is spacelike, respectively. Since the arguments
are similar, we give the details in the first case, and we omit the details in the second one,
indicating only the results.

3.2.1. Case E1 is spacelike and E2 is timelike. In such a case, the matrices P and
Q given in (3.6) are now

P =

 0 0 − e
ρ

0 0 f
ρ

e
ρ

f
ρ 0

 , Q =


0 ρ′

ρ
f
ρ

ρ′

ρ 0 g
ρ

f
ρ

g
ρ 0

 . (3.11)

Using (1.7) and A = I−1II,(
e f
f g

)
= ρ2

(
λ1 cosh2(av) − λ2 sinh2(av) (λ1 − λ2) sinh(av) cosh(av)
(λ1 − λ2) sinh(av) cosh(av) λ1 sinh2(av) − λ2 cosh2(av)

)
.

Evaluating at (u, 0), (
e f
f g

)
(u, 0) = ρ2

(
λ1 0
0 −λ1

)
(u, 0).

From (3.6) and (3.11) and with the same notation as in the previous subsection, we have
E′

1(u) = ρλ1E3(u)
E′

2(u) = 0
E′

3(u) = −ρλ1E1(u).

Using (2.10) and (3.5),

E′
1(u) = e2au

ρ
E3(u) = 2ABeBu

1 + A2e2Bu
E3(u)

E′
2(u) = 0

E′
3(u) = −e2au

ρ
E1(u) = − 2ABeBu

1 + A2e2Bu
E1(u).

(3.12)
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In particular, E2 is constant. With respect to a fixed orthonormal basis of E3
1, let

E1(u, 0) = (a(u), b(u), 0), E2(u) = (0, 0, 1) and E3(u, 0) = (b(u), −a(u), 0). Then the
first and third equation of (3.12) are equivalent to

(a′, b′, 0) = h(b, −a, 0)
(b′, −a′, 0) = −h(a, b, 0),

where

h(u) = 2ABeBu

1 + A2e2Bu
.

Using that |E1|2 = |E3|2 = 1, we have a′2 + b′2 = h2. Thus

a′
√

1 − a2
= h.

Solving this equation and since that b = a′/h, we have

a(u) = 2AeBu

1 + A2e2Bu
, b(u) = 1 − A2e2Bu

1 + A2e2Bu
.

With these functions a and b, we can integrate (3.12), obtaining
E1(u) = 1

1 + A2e2Bu

(
2AeBu, 1 − A2e2Bu, 0

)
E2(u) = (0, 0, 1)

E3(u) = 1
1 + A2e2Bu

(
1 − A2e2Bu, −2AeBu, 0

)
.

(3.13)

Using that c′(u) = ρE1(u), the value of ρ in (3.5) and the expression of E1(u) in (3.13),
we obtain the parametric curve X(u, 0) = c(u) of the surface.

Lemma 3.7. The space curve c(u) = X(u, 0) is given by

c(u) =
(

e2au

2aB
, − Ae(2a+B)u

2B(2a + B)
+ e(2a−B)u

2AB(2a − B)
, 0
)

, B 6= ±2a

c(u) =
(

e2au

4a2 , −Ae4au

16a2 + u

4Aa
, 0
)

, B = 2a

c(u) =
(

−e2au

4a2 , − e4au

16a2A
+ Au

4a
, 0
)

, B = −2a.

The curve c(u) is the base curve in the Björling problem to find a parametrization of
the surface X(u, v). Now the solution of the Björling problem with initial analytic data
{c(u), E3(u)} is given in terms of paracomplex analysis [7],

X(u, v) = Re
(

c(z) + τ

∫ z

E3(w) × c′(w) dw

)
, (3.14)

where z = u + τv, τ2 = 1. Again, c(u) and E3(u) have paraholomorphic extensions
c(z) and E3(z), respectively, thanks to (3.13) and Lemma 3.7. Replacing in this formula
the value of c(u) obtained in Lemma 3.7 together the expression of E3(u) in (3.13), we
conclude:

Theorem 3.8. Suppose that δ = −ϵ = 1 in (1.1). Then any timelike intrinsic rotational
ZMC surface of E3

1 and twist α(v) = av is parametrized by
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(1) Case B 6= ±2a,

X(u, v) =


e2au cosh(2av)

2aB
e(2a−B)u((2a+B) cosh((2a−B)v)−A2(2a−B)e2Bu cosh((2a+B)v))

2AB(4a2−B2)

− e(2a−B)u(A2(2a−B)e2Bu sinh((2a+B)v)+(2a+B) sinh((2a−B)v))
2AB(4a2−B2)

 .

The first fundamental form is

I = e(4a−2B)u(A2e2Bu + 1)2

4A2B2 (du2 − dv2),

and the domain of X is R2.
(2) Case B = 2a,

X(u, v) =
(

e2au cosh(2av)
4a2 ,

4au − A2e4au cosh(4av)
16a2A

, −A2e4au sinh(4av) + 4av

16a2A

)
.

The first fundamental form is

I = (A2e4au + 1)2

16a2A2 (du2 − dv2),

and the domain of X is R2.
(3) Case B = −2a,

X(u, v) =
(

−e2au cosh(2av)
4a2 ,

4aA2u − e4au cosh(4av)
16a2A

,
4aA2v + e4au sinh(4av)

16a2A

)
.

The first fundamental form is

I = (A2 + e4au)2

16a2A2 (du2 − dv2),

and the domain of X is R2.

The timelike Enneper surface (1.4) corresponds with the case A = B = a = 1. Again,
the cases B = ±2a are surfaces where the 1-forms of the Weierstrass representation have
residues.

3.2.2. Case E1 is timelike and E2 is spacelike. The matrix P in (3.6) is

P =

 0 0 e
ρ

0 0 −f
ρ

e
ρ

f
ρ 0

 .

At v = 0, we have f = 0 and e(u) = −g(u) = ρ2λ1(u). Then
E′

1(u) = ρλ1E3(u) = 2AB

1 − A2e2Bu
E3(u)

E′
2(u) = 0

E′
3(u) = ρλ1E1(u) = 2AB

1 − A2e2Bu
E1(u).

The integration leads to
E1(u) = 1

1 − A2e2Bu

(
2AeBu, 0, −1 − A2e2Bu

)
E2(u) = (0, 1, 0)

E3(u) = 1
1 − A2e2Bu

(
1 + A2e2Bu, 0, −2AeBu

)
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and

c(u) =
(

e2au

2aB
, 0, − Ae(2a+B)u

2B(2a + B)
− e(2a−B)u

2AB(2a − B)

)
, B 6= ±2a

c(u) =
(

e2au

4a2 , 0, −Ae4au

16a2 − u

4Aa

)
, B = 2a

c(u) =
(

−e2au

4a2 , 0,
e4au

16a2A
+ Au

4a

)
, B = −2a.

Theorem 3.9. Suppose that δ = −ϵ = −1 in (1.1). Then any timelike intrinsic rotational
ZMC surface of E3

1 and twist α(v) = av is parametrized by
(1) Case B 6= ±2a,

X(u, v) =


e2au cosh(2av)

2aB

− e(2a−B)u(A2(2a−B)e2Bu sinh((2a+B)v)−(2a+B) sinh((2a−B)v))
2AB(4a2−B2)

− e(2a−B)u((2a+B) cosh((2a−B)v)+A2(2a−B)e2Bu cosh((2a+B)v))
2AB(4a2−B2)

 .

The first fundamental form is

I = −e(4a−2B)u(A2e2Bu − 1)2

4A2B2 (du2 − dv2),

and the domain of X is u 6= − log(A)
B , v ∈ R.

(2) Case B = 2a,

X(u, v) =
(

e2au cosh(2av)
4a2 ,

4av − A2e4au sinh(4av)
16a2A

, −A2e4au cosh(4av) + 4au

16a2A

)
.

The first fundamental form is

I = −(A2e4au − 1)2

16a2A2 (du2 − dv2),

and the domain of X is u 6= − log(A)
2a , v ∈ R.

(3) Case B = −2a,

X(u, v) =
(

−e2au cosh(2av)
4a2 ,

4aA2v − e4au sinh(4av)
16a2A

,
4aA2u + e4au cosh(4av)

16a2A

)
.

The first fundamental form is

I = −(A2 − e4au)2

16a2A2 (du2 − dv2),

and the domain of X is u 6= log(A)
2a , v ∈ R.

At the points where X is not defined, the mapping X is not an immersion.

Remark 3.10. If a = A = B = 1 in Theorem 3.9, we find the surface

X(u, v) =

 1
2e2u cosh(2v)

−1
6eu

(
e2u sinh(3v) − 3 sinh(v)

)
−1

6eu
(
e2u cosh(3v) + 3 cosh(v)

)
 . (3.15)

This surface is analogous to the timelike Enneper surface (1.4). We call the second timelike
Enneper surface. The first fundamental form is

I = 1
16

e4u
(
e2u − 1

)4
(−du2 + dv2).
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Here we exclude the value u = 0 because in the set {X(0, v) : v ∈ R}, the mapping X is
not an immersion. For example, assuming that the domain of X is R+ × R, the change
eu cosh v → u and eu sinh v → v provides a parametrization of the surface in terms of
polynomials on u and v, namely,

X(u, v) = 1
2

(
u2 + v2, −1

3
v(3u2 + v2 − 3), −1

3
u(u2 + 3v2 + 3)

)
.

We can obtain the Weierstrass data after the change of variable ez → z. Then the
Weierstrass data is g(z) = τz and ω = τdz. The surface Σ is C and the only end is z = ∞
with a pole of order 4, in particular, the end z = ∞ is of Enneper-type.

3.3. Untwisted zero mean curvature surfaces
In this subsection, we study intrinsic rotational ZMC surfaces with constant twist α(v) =

c, c ∈ R. It will be proved that the surface is associated with a surface of revolution.

Theorem 3.11. If Σ is an intrinsic rotational ZMC surface of E3
1 with twist α(v) = c,

c ∈ R, then Σ is an associate surface of a ZMC surface of revolution.

Proof. By Propositions 3.1 and 3.3, we can assume that c = 0. The proof is achieved
if we show that Σ is a surface of revolution. We now repeat the process of integration
described in Section 3.

(1) Spacelike case. The function ρ is given in (3.5) for a = 0. For the base curve
c(u) = X(u, 0), we have

c′(u) = ρ(u)E1(u, 0) = 1
2B

( 1
A

e−Bu + AeBu, 0, 2
)

.

Thus
c(u) = 1

2B

(
− 1

AB
e−Bu + A

B
eBu, 0, 2u

)
.

Using the Björling formula (3.10), the parametrization of the surface is

X(u, v) =


− 1

2AB2 e−Bu cos(Bv) + A
2B2 eBu cos(Bv)

− 1
2AB2 e−Bu sin(Bv) + A

2B2 eBu sin(Bv)
u

B

 , u 6= 0.

If we consider the one-parameter family {Ψe
θ : θ ∈ R} of rotations of E3

1 about the
x3-axis, where

Ψe
θ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,

it is immediate that Ψe
θ(X(u, v)) = X(u, v + θ). This proves that X(u, v) is a

surface of revolution about the x3-axis. In particular, X is the elliptic catenoid
[19]. Notice that the (horizontal) plane, which is also a spacelike ZMC surface of
revolution about the x3-axis, was discarded because all surfaces considered in this
paper have not open sets of umbilic points.

(2) Timelike case. The argument is similar. Now

c′(u) = ρE1(u) = 1
2AB

(
2A, e−Bu − A2eBu, 0

)
and the curve c(u) is

c(u) = 1
2AB

(
2Au, − 1

B
e−Bu − A2

B
eBu, 0

)
.
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The timelike ZMC surface obtained by (3.14) is

X(u, v) =


u

B
− 1

2AB2 cosh(Bv)e−Bu − A
2B2 cosh(Bv)eBu

− 1
2AB2 sinh(Bv)e−Bu − A

2B2 sinh(Bv)eBu

 , (u, v) ∈ R2.

If {Ψh
θ : θ ∈ R} is the one-parameter family of hyperbolic rotations about the

x1-axis of E3
1, where

Ψh
θ =

 1 0 0
0 cosh θ sinh θ
0 sinh θ cosh θ

 ,

then Ψh
θ (X(u, v)) = X(u, v +θ). Therefore X(u, v) is a surface of revolution about

the x1-axis. This surface is the timelike catenoid (sub-case 1 in Proposition 1.2):
see [22, Prop. 1].

□

4. Examples of intrinsic rotational surfaces with zero mean curvature
In this section we show explicit examples of intrinsic rotational ZMC surfaces. We point

out that we are not able to give examples when the mean curvature is a non-zero constant
as in [6] because we do not use loop group methods.

4.1. Spacelike surfaces
Let Σ be a spacelike ZMC surface described in Theorem 3.6. We will give the Weierstrass

representation of these surfaces via the holomorphic function ϕ(z) = ∂X
∂z (z) where z =

u + iv are conformal coordinates. Recall that X(z) = 2Re
∫ z

z0
ϕ(w) dw, and that this

integral is made along any path from z0 to z [19]. In the case of Theorem 3.6, the constant
of integration is determined by the identity X(u, 0) = c(u).

The Weierstrass representation of Σ is defined by the pair (g, ω), where

g(z) = ϕ3
ϕ1 − iϕ2

, ω = (ϕ1 − iϕ2)dz,

and ϕ = (ϕ1, ϕ2, ϕ3). In terms of (g, ω), the surface Σ is parametrized by

X(u, v) = Re
∫ z

z0

(1
2

(1 + g2)ω,
i

2
(1 − g2)ω, gω

)
. (4.1)

If ϕk do not have real periods, the integrals Re
∫ z ϕk dz are well defined independently of

the path from the initial point z0 to z. From the Björling formula (3.10) we have
ϕ(z) = c′(z) + i(E3(z) × c′(z)).

A computation of g and ω gives

g(z) = e−Bz

A
, ω = Ae(2a+B)z

2B
dz

in all cases of A, B and a. As far as the authors know, these surfaces do not appear in the
literature and only one particular case was discussed in [15]. Some references of examples
of spacelike ZMC surfaces in E3

1 are [2, 13,17–19,25,35], without to be a complete list.
We give some examples of surfaces of this family, focusing on the cases when B and 2a

are integers. Let n = B and m = 2a, n, m ∈ Z. So the change z → − log(z) and next,
z → λz shows that it is possible to assume A = 1. Then ω = −1/(2n)z−n−m−1dz. After
a dilation of Σ in E3

1, the Weierstrass representation is

g(z) = zn, ω = 1
zn+m+1 dz. (4.2)
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Let Es(n, m) denote the corresponding spacelike ZMC surface with these data (g, ω).
In particular, Es(1, 2) is the spacelike Enneper surface (1.2) and Es(1, 0) is the elliptic
catenoid. On the other hand, the surface Es(n, −n − 1) appeared in [15, Lemma 1].

Using (4.1), a parametrization of Es(n, m) is

X(u, v) = Re
∫ z

z0

(1
2

(
z−n−m−1 + zn−m−1

)
,

i

2

(
z−n−m−1 − zn−m−1

)
, z−m−1

)
dz.

Notice that the real periods appear in the 1-form ϕ2 dz, namely,

ϕ2dz = i

2

( 1
zn+m+1 + 1

z−n+m+1

)
dz.

This occurs only when n + m = 0 or n − m = 0. In terms of the constants B and a
in Theorem 3.6, both cases correspond with B = ±2a. We now present some explicit
examples of surfaces. We will also study the geometry of their ends which, as in Euclidean
case, is determined by the order of the poles of ϕ at these points [26]. If the maximum of
the orders of ϕ at an end p is k, then it is of Enneper type if k = 4. If k = 2, then it is of
planar or catenoid type depending if the residue is 0 or not, respectively.

(1) The surface Es(2, −1) (Figure 1). This case corresponds with n + m = 0. The
Weierstrass data g(z) = z2 and ω = dz/z2 are defined on Σ = C − {0}. We
analyze the two ends z = 0 and z = ∞:

max{ord(ϕ1, 0), ord(ϕ2, 0), ord(ϕ3, 0)} = max{2, 2, 0} = 2,

max{ord(ϕ1, ∞), ord(ϕ2, ∞), ord(ϕ3, ∞)} = max{4, 4, 2} = 4.

Thus z = 0 is an end of catenoid or planar type. Since g(z) = z2 is not bijective
around z = 0, then z = 0 is end of planar type. On the other hand, the end z = ∞
is of order 4, so it is of Enneper type.

(2) The surface Es(2, 2). The Weierstrass data are g(z) = z and ω = dz/z5. Since
n − m = 0, the 1-form ϕ2 dz has real periods. In particular, the surface is periodic
along the x1-axis: see Figure 2.

(3) The surface Es(1, −1). This case corresponds with n+m = 0. The Weierstrass data
g(z) = z and ω = dz/z are defined on Σ = C − {0}. We have max{ord(ϕi, 0) : 1 ≤
i ≤ 3} = 1 and max{ord(ϕi, ∞)} = 3. Now ϕ1 dz has real periods. see Figure 2.

Figure 1. The spacelike ZMC surface Es(2, −1). The surface presents an Enneper
type end at z = ∞ and a planar end at z = 0
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Figure 2. The spacelike ZMC surfaces Es(2, 2) (left) and Es(2, −2) (right).

4.2. Timelike surfaces
As we have seen in Section 3, there are two types of timelike ZMC surfaces. In order

to give some examples of such surfaces, we only describe those of Theorem 3.8. The
Weierstrass representation of Σ is defined thanks to the paraholomorphic function ϕ(z) =
∂X
∂z (z), where now z = u+τv is a paraconformal coordinate on Σ. If ϕ = (ϕ1, ϕ2, ϕ3), then
the Weierstrass representation is defined by (g, ω), where

g(z) = ϕ1
ϕ2 − τϕ3

, ω = (ϕ2 − τϕ3)dz,

and the parametrization of the surface is

X(u, v) = Re
∫ z

z0

(
gω,

1
2

(1 − g2)ω,
τ

2
(1 + g2)ω

)
.

See [20]. If the timelike surface is given by the Björling formula (3.14), then the paraholo-
morphic function ϕ(z) is

ϕ(z) = c′(z) + τ(E3(z) × c′(z)).

The Weierstrass data are g(z) = AeBz and w = e(2a−B)z

AB dz in all cases. We will study the
particular situation that B and 2a are integers, B = n, 2a = m, n, m ∈ Z. As in the
spacelike case, after the change z → log(z), a dilation in the parameter z and a dilation
in the ambient space E3

1, we have

g(z) = zn, ω = 1
zn−m+1 dz.

Let Et(n, m) denote the timelike ZMC surface with the above Weierstrass representation
(g, ω). With these values of the Weierstrass representation, the surface is given by

X(u, v) = Re
∫ z

z0

(
zm−1,

1
2

(zm−n−1 − zm+n−1), τ

2
(zm−n−1 + zm+n−1)

)
dz.

The real periods appear for ϕ3dz which occurs when n − m = 0 or n + m = 0. Notice that
Et(1, 2) is the timelike Enneper surface (1.4) and Et(1, 0) is the timelike catenoid.

(1) The timelike surface Et(2, 1) has Weierstrass data g(z) = z2 and ω = dz/z2. Now
Σ = C − {0}. The points z = 0 and z = ∞ are the two ends of the surface. The
orders of the poles are

max{ord(ϕ1, 0), ord(ϕ2, 0), ord(ϕ3, 0)} = max{0, 2, 2} = 2,

max{ord(ϕ1, ∞), ord(ϕ2, ∞), ord(ϕ3, ∞)} = max{2, 4, 4} = 4.

At z = 0, the Gauss map g(z) = z2 is not one-to-one. Since the order is 2, then
z = 0 is an end of planar type. On the other hand, z = ∞ is an end of Enneper
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type because its order is 4. A parametrization of the surface is

X(u, v) = 1
6

eu

 3eu cosh(2v)
−e2u cosh(3v) + 3 cosh(v)
e2u sinh(3v) + 3 sinh(v)

 , u, v ∈ R.

(2) The timelike surface Et(1, −1) has Weierstrass data g(z) = z and ω = dz/z3. In
this case, the 1-form

ϕ3dz = τ

2

(
z + 1

z

)
dz

has real periods. See Figure 3. A parametrization of the surface is

X(u, v) =

 eu cosh(v)
1
4
(
2u − e2u cosh(2v)

)
1
2
(
e2u sinh(v) cosh(v) + v

)
 , u, v ∈ R.

(3) The timelike surface Et(1, 1) has Weierstrass data g(z) = z and ω = dz/z. We
have max{ord(ϕi, 0) : 1 ≤ i ≤ 3} = 1 and max{ord(ϕi, ∞)} = 3. Now ϕ1 dz has
real periods. see Figure 3. In this case, the 1-form

ϕ3dz = τ

2

(
z + 1

z

)
dz

has real periods. See Figure 3.

Figure 3. The timelike ZMC surfaces Et(1, 2) (left), Et(1, −1) (middle) and
Et(1, 1) (right).
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