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The relationship between modular metrics and fuzzy metrics
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ABSTRACT. In a famous article published in 1975, Kramosil and Michálek introduced a notion of fuzzy metric
that was the origin of numerous researches and publications in several frameworks and fields. In 2010, Chistyakov
introduced and discussed in detail the concept of modular metric. Since then, some authors have investigated the
problem of establishing connections between the notions of fuzzy metric and modular metric, obtaining positive partial
solutions. In this paper, we are interested in determining the precise relationship between these two concepts. To
achieve this goal, we examine a proof, based on the use of uniformities, of the important result that the topology
induced by a fuzzy metric is metrizable. As a consequence of that analysis, we introduce the notion of a weak fuzzy
metric and show that every weak fuzzy metric, with continuous t-norm the minimum t-norm, generates a modular
metric and, conversely, we show that every modular metric generates a weak fuzzy metric, with continuous t-norm
the product t-norm. It follows that every modular metric can be generated from a suitable weak fuzzy metric, and that
several examples and properties of modular metrics can be directly deduced from those previously obtained in the
field of fuzzy metrics.
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1. INTRODUCTION

With the aim in offering a fuzzy approach of statistical metric spaces and Menger spaces,
Kramosil and Michálek introduced in [13] the fruitful notions of fuzzy metric and fuzzy metric
space. Modifications of these concepts were proposed by Grabiec [8], and George and Veera-
mani [6]. These structures have been extensively explored both from the point of view of their
topological and metric properties, as well as the development of a fixed point theory for them,
and their application to various fields. There are obviously numerous relevant publications on
fuzzy metric spaces and related structures. In order not to make the reference section too long,
we will limit ourselves to cite the books [3, 10] and the very recent [7] joint with the references
therein.

On the other hand and partly motivated by the studies about modulars on vector spaces
([14, 15, 16, 17]) Chistyakov introduced and discussed in [4] (see also [5]) the concepts of mod-
ular metric and modular metric space. Looking at Chistyakov’s definition, it can be well in-
tuited that there is a strong connection between modular metrics and fuzzy metrics. In fact,
some authors have explored such a connection when working in the construction of a fixed
point theory for modular metric spaces, obtaining various positive partial solutions (see, e.g.,
[11, 20]). In this paper, we are interested in determining the precise relationship between these
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two concepts. To achieve this goal, we examine a proof, based on the use of uniformities, of the
important result that the topology induced by a fuzzy metric is metrizable. As a consequence of
that analysis, we introduce the notion of a weak fuzzy metric and show that every weak fuzzy
metric, with continuous t-norm the minimum t-norm, generates a modular metric such that
the induced topologies agree; and, conversely, we show that every modular metric generates a
weak fuzzy metric, with continuous t-norm the product t-norm, such that the induced topolo-
gies agree. It follows that every modular metric can be generated from a suitable weak fuzzy
metric, and that several examples and properties of modular metrics can be directly deduced
from those previously obtained in the field of fuzzy metrics.

2. REMARKS ON THE NOTION OF FUZZY METRIC

First, we emphasize that our notation and terminology will be standard. By R+, we design
the set of non-negative real numbers and by N the set of natural numbers.

Now, we recall the notions of fuzzy metric and fuzzy metric space in the aforementioned
senses. To this end, the following well-known concept will play a fundamental role.

Definition 2.1. A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to be a continuous triangular
norm (continuous t-norm in short) if ([0, 1], ∗) is a topological Abelian monoid with neutral 1 such that
a ∗ c ≤ b ∗ c if a ≤ b, with a, b, c ∈ [0, 1].

As distinguished examples of continuous t-norm that will be used throughout this paper,
we have the minimum t-norm ∧, the product t-norm ∗P and the Łukasiewicz t-norm ∗L, which
are defined as follows: a ∧ b = min{a, b}, a ∗P b = ab, and a ∗L b = max{a + b − 1, 0}, for all
a, b ∈ [0, 1]. Recall that ∧ ≥ ∗P ≥ ∗L. In fact, ∧ ≥ ∗ for any continuous t-norm ∗.

The books [10, 12] provide suitable sources to the study of continuous t-norms.
Now, consider the following axioms for a set X , a fuzzy set M in X×X×R+ , and x, y, z ∈ X :

(KM1) M(x, y, 0) = 0;
(GV1) M(x, y, t) > 0 for all t > 0;
(KM2) x = y if and only if M(x, y, t) = 1 for all t > 0;
(GV2) M(x, x, t) = 1 for all t > 0, and M(x, y, t) < 1 whenever y ̸= x;
(KM3) M(x, y, t) = M(y, x, t) for all t > 0;
(KM4) M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s) for all t, s > 0;
(KM5) the function t → M(x, y, t) is left continuous on R+;
(GV5) the function t → M(x, y, t) is continuous on R+;
(KM6) limt→∞ M(x, y, t) = 1.

The triple (X,M, ∗) is a fuzzy metric space in the sense of Kramosil and Michálek [13] pro-
vided that axioms (KM1), (KM2), (KM3), (KM4), (KM5) and (KM6) are fulfilled. In that case,
we will say that the pair (M, ∗), or simply M , is a KM-fuzzy metric.

In [8], Grabiec removed axiom (KM6) in the definition of fuzzy metric space because it was
not necessary for his research about fixed point theory on fuzzy metric spaces. Then, a fuzzy
metric (M, ∗), or simply M , in Grabiec’s sense will be called a Gr-fuzzy metric.

Later, George and Veeramani [6] defined a fuzzy metric space as a triple (X,M, ∗), where X
is a set, M is a fuzzy set in X×X×(0,∞) and ∗ is a continuous t-norm such that axioms (GV1),
(GV2), (KM3), (KM4) and (GV5) are fulfilled. In that case, we will say that the pair (M, ∗), or
simply M , is a GV-fuzzy metric.

Note that every GV-fuzzy metric (M, ∗) can be considered as a Gr-fuzzy metric simply defin-
ing M(x, y, 0) = 0 for all x, y ∈ X .

In [8, Lemma 4], Grabiec stated assertion (1) of Lemma 2.1 below in the framework of Gr-
fuzzy metrics.
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Lemma 2.1. Let X be a set, M be a fuzzy set in X ×X × R+ and ∗ be a continuous t-norm for which
axioms (KM1), (KM2) and (KM4) are fulfilled. Then, for each x, y ∈ X , we get

(1) The function t → M(x, y, t) is nondecreasing on R+,
(2) x = y if and only if M(x, y, t) ≥ 1− t for all t > 0.

Proof.
(1) Fix x, y ∈ X. Let s, t ∈ R+ such that 0 ≤ s < t. If s = 0, we get M(x, y, s) = 0 by (KM1).

If s > 0 we get M(x, y, t) ≥ M(x, x, t−s)∗M(x, y, s) = M(x, y, s) by (KM2) and (KM4).
(2) Suppose that x = y. Then, M(x, y, t) ≥ 1 − t for all t > 0 by (KM2). Conversely,

suppose that x ̸= y. By (KM2), there are t > 0 and δ ∈ (0, 1) such that M(x, y, t) < 1− δ.
It follows from hypothesis and assertion (1) that, for any s ∈ (0, t), 1− s ≤ M(x, y, s) ≤
M(x, y, t) < 1− δ, a contradiction.

□

Every Gr-fuzzy metric M on a set X induces in a natural way a topology TM on X . We show
that axioms (KM1), (KM2) and (KM4) are sufficient to construct such a topology.

Lemma 2.2. Let X be a set, M be a fuzzy set in X × X × R+ and ∗ be a continuous t-norm for
which axioms (KM1), (KM2) and (KM4) are fulfilled. For each x ∈ X, ε ∈ (0, 1) and t > 0, set
BM (x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε}. Then, the family

TM = {A ⊆ X : for each x ∈ A there is ε ∈ (0, 1) and t > 0 such that BM (x, ε, t) ⊆ A},
is a topology on X.

Proof. It is obvious that the union of any family of members of TM belongs to TM . Now, let
A1, ..., An, be a finite family of members of TM . Let x ∈

⋂n
k=1 Ak. For each k ∈ {1, ..., n} there

is εk ∈ (0, 1) and tk > 0 such that BM (x, εk, tk) ⊆ Ak. Put ε = min{εk : k ∈ {1, ..., n}} and
t = min{tk : k ∈ {1, ..., n}}. It follows from Lemma 2.1 that BM (x, ε, t) ⊆ BM (x, εk, tk) for all
k ∈ {1, ..., n}. Therefore, BM (x, ε, t) ⊆

⋂n
k=1 Ak. We conclude that TM is a topology on X. □

Remark 2.1. It is well known that the topology TM is metrizable, i.e., there is a metric on X such that
its induced topology agrees with TM . Next, we present an outline of a proof of this fundamental result
based on the construction of a suitable uniformity (see, e.g., [9, 19]) and emphasizing about those axioms
that are really used. The conclusions derived from this examination will be key later on.

Indeed, let X be a set, M be a fuzzy set in X × X × R+ and ∗ be a continuous t-norm for which
axioms (KM1), (KM2), (KM3) and (KM4) are fulfilled. For each n ∈ N put

Un = {(x, y) ∈ X ×X : M(x, y, 1/n) > 1− 1/n}.
Then, we obtain

• {(x, x) : x ∈ X} =
⋂∞

n=1 Un by (KM1), (KM2) and (KM4) (Lemma 2.1),
• Un = U−1

n for all n ∈ N by (KM3),
• for each n ∈ N there is m ∈ N such that U2

m ⊆ Un by continuity of ∗ and (KM4).
Therefore, the family {Un : n ∈ N} is a (countable) base for a uniformity on X whose induced

topology agrees with TM , which implies that TM is a metrizable topology on X.

Next, we remind some typical and well-known examples of KM, Gr and GV fuzzy metric
spaces. In all cases we will assume, without explicit mention, that axiom (KM1) is satisfied.

Example 2.1. Let (X, d) be a metric space and ∗ be a continuous t-norm. Let Md : X×X×R+ → [0, 1]
given by

Md(x, y, t) =
t

t+ d(x, y)
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for all x, y ∈ X and t > 0. Then, the pair (Md, ∗) is a GV-fuzzy metric on X, whose induced topology
coincides with the topology induced by d.

Example 2.2. Let (X, d) be a metric space and ∗ be a continuous t-norm. Let M01 : X ×X × R+ →
[0, 1] given by M01(x, y, t) = 1 if d(x, y) < t, and M01(x, y, t) = 0 if d(x, y) ≥ t, for all x, y ∈ X
and t > 0. Then, the pair (M01, ∗) is a KM-fuzzy metric on X whose induced topology coincides with
the topology induced by d. Clearly, (M01, ∗) is not a GV-fuzzy metric whenever |X| ≥ 2 because axiom
(GV1) is not satisfied.

Example 2.3. Let X = [0, 1] and let ∗ be a continuous t-norm. Then, the pair (M∗, ∗) is a Gr-fuzzy
metric on X, where M∗(x, x, t) = 1 for all x ∈ X and t > 0 , and M(x, y, t) = x ∗ y for all x, y ∈ X
with x ̸= y, and t > 0. Clearly, (M∗, ∗) is not a KM-fuzzy metric because axiom (KM6) is not satisfied.
Moreover, it is not a GV-fuzzy metric because M∗(0, y, t) = 0 whenever y ̸= 0.

Example 2.4. Let (X, d) be a metric space such that d(x, y) ≤ 1 for all x, y ∈ X. Then, the pair
(M1, ∗L) is a Gr-fuzzy metric on X, where M1(x, y, t) = 1 − d(x, y) for all x, y ∈ X and t >
0. Moreover, the topologies induced by (M1, ∗L) and d coincide. Note also that if there are x, y ∈
X such that d(x, y) = 1, then (M1, ∗L) is not a GV-fuzzy metric because axiom (GV1) is not be
satisfied. Moreover, (M1, ∗L) is not a KM-fuzzy metric whenever |X| ≥ 2 because axiom (KM6) is not
be satisfied.

Remark 2.2. It is well known (see, e.g., [6, Result 3.2]) that for every Gr-fuzzy metric M on a set X
the balls BM (x, ε, t) are TM -open sets. To show it axiom (KM5) is essential. Fortunately, this result
will not be relevant for our targets.

By virtue of Remark 2.1, we propose the following notion.

Definition 2.2. A weak fuzzy metric space is a triple (X,M, ∗), where X is a set, M is a fuzzy set in
X × X × R+ and ∗ is a continuous t-norm for which axioms (KM1), (KM2), (KM3) and (KM4) are
fulfilled. In this case, we say that the pair (M, ∗), or simply M , is a weak fuzzy metric on X .

Remark 2.3. Let (X,M, ∗) be a weak fuzzy metric space. It follows from Remark 2.1 that a sequence
(xn)n in X is TM -convergent to a x ∈ X if and only if, for each t > 0 , limn→∞ M(x, xn, t) = 1.

Remark 2.4. Recall that Kramosil and Michálek added axioms (KM5) and (KM6) in their definition
with the aim of having that, for each x, y ∈ X , the function t → M(x, y, t) be a (generalized) distribu-
tion function, as occurs for statistical metric spaces. Note also that axiom (KM6) is crucial in the realm
of fuzzy normed spaces, concretely, to show that every fuzzy normed space is a topological vector space
(see [1, 3, 18]).

We conclude this section with three examples of weak fuzzy metrics that are not Gr-fuzzy
metric, obtained by suitable modifications in Examples 2.1, 2.2 and 2.3, respectively.

Example 2.5. Let (X, d) be a metric space and ∗ be a continuous t-norm. Let Md,w : X ×X × R+ →
[0, 1] given by

Md,w(x, y, t) =
t

t+ d(x, y)

for all x, y ∈ X and t ∈ (0, 1), and Md,w(x, y, t) = 1 for all x, y ∈ X and t ≥ 1. Then, the pair
(Md,w, ∗) is a weak fuzzy metric on X whose induced topology coincides with the topology induced
by d. Note that (Md,w, ∗) is not a Gr-fuzzy metric if |X| ≥ 2 because, for x ̸= y, the function t →
Md,w(x, y, t) is not left continuous at t = 1.

Example 2.6. Let (X, d) be a metric space and ∗ be a continuous t-norm. Let M01,w : X × X ×
R+ → [0, 1] given by M01,w(x, y, t) = 1 if d(x, y) < t, M01,w(x, y, t) = 1/2 if d(x, y) = t, and
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M01(x, y, t) = 0 if d(x, y) > t, for all x, y ∈ X and t > 0. Then, the pair (M01,w, ∗) is a weak fuzzy
metric on X whose induced topology coincides with the topology induced by d. Note that (M01,w, ∗)
is not a Gr-fuzzy metric if |X| ≥ 2 because, for x ̸= y, the function t → M01,w(x, y, t) is not left
continuous at t = d(x, y). Note also that the “open” ball B01,w(x, 1, 1) is not necessarily a TM -open
set because B01,w(x, 1, 1) = {y ∈ X : d(x, y) ≤ 1}.

Example 2.7. Let X = [0, 1]. Then, the pair (M∧,∧) is a weak fuzzy metric on X, where M∧(x, x, t) =
1 for all x ∈ X and t > 0 , M(x, y, t) = x ∧ y for all x, y ∈ X with x ̸= y and t ∈ (0, 1), and
M(x, y, t) = 1 for all x, y ∈ X and t ≥ 1. Clearly, (M∧,∧) is not a Gr-fuzzy metric because the
function t → M(x, y, t) is not left continuous at t = 1 for x ̸= y.

3. MODULAR METRICS AND THEIR RELATION WITH FUZZY METRICS

We start this section recalling the notion of modular metric as given by Chistyakov ([4, 5]).

Definition 3.3. A modular metric on a set X is a function w : (0,∞)×X ×X → [0,∞] that fulfills
the following axioms for all x, y, z ∈ X:

(MM1) x = y if and only if w(t, x, y) = 0 for all t > 0;
(MM2) w(t, x, y) = w(t, y, x) for all t > 0;
(MM3) w(t+ s, x, y) ≤ w(t, x, z) + w(s, z, y) for all t, s > 0.

A modular metric space is a pair (X,w) such that X is a set and w is a modular metric on X.
Let w be a modular metric on a set X. For each x ∈ X, and ε, t > 0, set Bw(x, ε, t) = {y ∈ X :

w(t, x, y) < ε}. Since, for each x, y ∈ X, the function t → w(t, x, y) is nonincreasing on (0,∞)
([4, p. 3]), we deduce, similarly to the proof of Lemma 2.2, that the family

Tw = {A ⊆ X : for each x ∈ A there exist ε, t > 0 such that Bw(x, ε, t) ⊆ A},
is a topology on X.

Remark 3.5. If, for each x, y ∈ X, the function t → w(t, x, y) is left continuous on (0,∞), then each
ball Bw(x, ε, t) is a Tw-open set. Indeed, suppose that y ∈ Bw(x, ε, t) for some x ∈ X and ε, t > 0.
Put δ = ε− w(t, x, y) and choose r ∈ (0, t) such that w(t− r, x, y) < w(t, x, y) + δ/2. Thus, for each
z ∈ Bw(y, δ/2, r), we have

w(t, x, z) ≤ w(t− r, x, y) + w(r, y, z) < w(t, x, y) + δ/2 + δ/2 = ε.

We conclude that Bw(y, δ/2, r) ⊆ Bw(x, ε, t), and hence, Bw(x, ε, t) is a Tw-open set.

In the light of the preceding remark, and by analogy with the fuzzy metric case, by a Gr-
modular metric on a set X we will mean a modular metric w on X satisfying that, for each x, y ∈
X, the function t → w(t, x, y) is left continuous on (0,∞). If, in addition, w satisfies that
limt→∞ w(t, x, y) = 0 for all x, y ∈ X, we will say that w is a KM-modular metric on X.

Proposition 3.1. Let (M, ∗) be a weak fuzzy metric on a set X such that ∗ = ∧. Then, the function
wM : X ×X × (0,∞) → [0,∞] defined by

(3.1) wM (t, x, y) =
1−M(x, y, t)

M(x, y, t)

for all x, y ∈ X and t > 0, is a modular metric on X such that the topologies TM and TwM
coincide

on X. Furthermore, if (M,∧) is a Gr-fuzzy metric (resp. a KM-fuzzy metric) on X , then wM is a
Gr-modular metric (resp. a KM-modular metric) on X.

Proof. We first note that wM satisfies axioms (MM1) and (MM2) as a direct consequence of
(KM2) and (KM3), respectively.

In order to verify that wM satisfies (MM3) we shall distinguish two cases.
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Case 1. min{M(x, z, t),M(z, y, s)} = 0. Then, max{wM (t, x, z), wM (s, z, y)} = ∞.
Case 2. min{M(x, z, t),M(z, y, s)} > 0. Then, M(x, y, t+ s) > 0 by (KM4).
Put a = M(x, z, t), b = M(z, y, s) and c = M(x, y, t+ s). Then, a+ b− ab ≥ a ∨ b, so

c(a+ b− ab) ≥ (a ∧ b)(a+ b− ab) ≥ ab.

Hence, c(a+ b− 2ab) ≥ (1− c)ab, and, thus

wM (t+ s, x, y) =
1− c

c
≤ 1− a

a
+

1− b

b
= wM (t, x, z) + wM (s, z, y).

We conclude that wM is a modular metric on X.
The fact that the topologies TM and TwM

coincide on X is a consequence from the following
easy relations:

BM (x, ε/L, t) ⊆ BwM
(x, ε, t) ⊆ BM (x, ε, t)

for all x ∈ X , ε ∈ (0, 1) and t > 0, where L > 1 + ε.
Finally, it is obvious that if (M,∧) is a Gr-fuzzy metric (resp. a KM-fuzzy metric) on X , then

wM is a Gr-modular metric (resp. a KM-modular metric) on X. □

Conversely, we have:

Proposition 3.2. Let w be a modular metric on a set X and let Mw the fuzzy set in X × X × R+

defined by Mw(x, y, 0) = 0 for all x, y ∈ X and

(3.2) Mw(x, y, t) =
1

1 + w(t, x, y)

for all x, y ∈ X and t > 0. Then, the pair (Mw, ∗P ) is a weak fuzzy metric on X such that the topologies
Tw and TMw coincide on X. Furthermore, if w is a Gr-modular metric (resp. a KM-modular metric) on
X , then (Mw, ∗P ) is a Gr-fuzzy metric (resp. a KM-fuzzy metric) on X.

Proof. We first note that Mw satisfies axioms (KM2) and (KM3) as a direct consequence of
(MM1) and (MM2), respectively.

To show that (Mw, ∗P ) is a weak fuzzy metric on X it remains to verify that wM satisfies
(KM4). To this end, let x, y, z ∈ X and t, s ≥ 0. If min{t, s} = 0, we have Mw(x, y, t + s) ≥ 0 =
Mw(x, z, t) ∗P M(z, y, s) = 0 by the definition of Mw. So, we will assume that t > 0 and s > 0.
Then, we obtain

Mw(x, y, t+ s) =
1

1 + w(t+ s, x, y)
≥ 1

1 + w(t, x, z) + w(s, z, y)

≥ 1

1 + w(t, x, z)

1

1 + w(s, z, y)
= Mw(x, z, t) ∗P Mw(z, y, s).

Similarly to the proof of Proposition 3.1, the fact that the topologies Tw and TMw
coincide on X

is a consequence from the following easy inclusions:

(3.3) BMw
(x, ε/2, t) ⊆ Bw(x, ε/2, t) ⊆ BMw

(x, ε, t)

for all x ∈ X , ε ∈ (0, 1) and t > 0. □

Remark 3.6. Remark 2.1 and relations (3.3) imply that the topology Tw is metrizable. Moreover,
by Remark 2.3, we get that a sequence (xn)n in X is Tw-convergent to a x ∈ X if and only if, for
each t > 0, limn→∞ w(t, x, xn) = 0, thus recovering an important result by Chystiakov (compare [4,
Theorem 2.13]).

With the help of Proposition 3.1 and examples given in Section 2, it is easy to obtain several
instances of modular metrics (compare [4, Examples 2.4]).
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Example 3.8.
(A) Let (X, d) be a metric space. By applying Example 2.1 and Proposition 3.1 (formula (3.1)), we

immediately deduce that the function w : (0,∞) × X × X → [0,∞] given by w(t, x, y) =
d(x, y)/t for all x, y ∈ X and t > 0, is a KM-modular metric on X. If we apply Example 2.5
instead of Example 2.1, we obtain that the function w : (0,∞) × X × X → [0,∞] given by
w(t, x, y) = d(x, y)/t for all x, y ∈ X and t ∈ (0, 1), and w(t, x, y) = 0 for all x, y ∈ X
and t ≥ 1, is a modular metric on X that is not a Gr-modular metric whenever |X| ≥ 2.

(B) Let (X, d) be a metric space. By applying Example 2.2 and Proposition 3.1 (formula (3.1)), we
immediately deduce that the function w : (0,∞) ×X ×X → [0,∞] given by w(t, x, y) = 0
if d(x, y) < t, and w(t, x, y) = ∞ if d(x, y) ≥ t, is a KM-modular metric on X. If we apply
Example 2.6 instead of Example 2.2, we obtain that the function w : (0,∞)×X ×X → [0,∞]
given by w(t, x, y) = 0 if d(x, y) < t, w(t, x, y) = 1 if d(x, y) = t, and w(t, x, y) = ∞ if
d(x, y) > t, is a modular metric on X that is not a Gr-modular metric whenever |X| ≥ 2.

(C) Let X = [0, 1]. By applying Example 2.3, with ∗ = ∧, and Proposition 3.1 (formula (3.1)) we
immediately deduce that the function w : (0,∞) ×X ×X → [0,∞] given by w(t, x, x) = 0
for all x ∈ X and t > 0, and w(t, x, y) = (1/(x ∧ y))− 1 whenever x ̸= y and t > 0, is a Gr-
modular metric on X that is not a KM-modular metric on X. If we apply Example 2.7 instead of
Example 2.3, we obtain that the function w : (0,∞)×X×X → [0,∞] given by w(t, x, x) = 0
for all x ∈ X and t > 0, w(t, x, y) = (1/(x ∧ y)) − 1 whenever x ̸= y and t ∈ (0, 1), and
w(t, x, y) = 0 whenever x ̸= y and t ≥ 1, is a modular metric on X that is not a Gr-modular
metric on X.

Note that Propositions 3.1 and 3.2 imply the following statements:
(s1) If (M,∧) is a weak fuzzy metric on a set X, then M = MwM

,
(s2) If w is a modular metric on a set X, then w = wMw

.

In turn, statements (s1) and (s2) suggest the next notions.

Definition 3.4.
(i) A weak fuzzy metric (M, ∗) on a set X is called modulable if there is a modular metric w on X

such that M = Mw.
(ii) A modular metric w on a set X is called fuzziable if there is a weak fuzzy metric (M, ∗) on X

such that w = wM .

Therefore, we obtain:

Proposition 3.3.
(a) Every fuzzy metric (M, ∗) on a set X such that ∗ = ∧ is modulable.
(b) Every modular metric on a set X is fuzziable.

We finish the paper by recalling that precedents of Propositions 3.1 and 3.2 can be found in
[11] and [20], respectively. Thus, in [11] it was proved Proposition 3.1 for the case that (M, ∗)
is a triangular GV-fuzzy metric in the sense of [2], while that in [20] is was proved that under
the assumption that w is a non-Archimedean modular metric on a set X such that, for each
x, y ∈ X , the function t → w(t, x, y) is continuous on (0,∞), and condition w(t, x, y) > 0
whenever x ̸= y is also satisfied, then equality (3.2) defines a non-Archimedean triangular
GV-fuzzy metric on X for the product t-norm.
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