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Highlights
e Computed sound velocities agree well with experimental data across all studied liquid metals.
e The model predicts first and second pressure derivatives of sound velocity at ambient conditions.

e The model captures variations in sound velocity and its derivatives with pressure and temperature

Article Info Abstract

This study proposes a new relationship to investigate the behavior of sound velocity as a function
Received: 24 June 2024 of pressure in liquid metals. The suggested relation is applied in liquid metals like Sodium,
Accepted: 4March 2025 Potassium, Rubidium, Cesium, Mercury and Bismuth. The computed sound velocity results for

each liquid metal are found to be consistent with the experimental data across the entire pressure
range, with root mean square deviations on the order of 10-4 in each case. The temperature effect

Keywords is also introduced by considering the linear dependence of thermal pressure on temperature. The

Liquid metals maximum average absolute percentage relative deviation (AARD %) of 0.45 is noted in the case

Sound velocity of Bismuth across the entire pressure range at temperatures. The first and second pressure

Pressure derivatives of sound velocity at ambient pressure and temperature are calculated and found to be

Temperature in good agreement with the available data. Furthermore, the proposed relationship can predict the
variation of the first pressure and temperature derivatives of sound velocity with pressure and
temperature.

1. INTRODUCTION

The sound velocity is one of the most fundamental thermodynamic properties of liquid metals, and once
the sound velocity data is accessible, many thermo-physical quantities, such as thermal pressure coefficient,
Gruneisen parameter, isothermal bulk modulus, ratio of heat capacities, and adiabatic bulk modulus can be
obtained from the fundamental thermodynamic associations. [1-6]. The significance of sound velocity lies
in the fact that it can be measured more precisely than the equation of state (EOS), allowing for a more
accurate study of the variation of thermo-physical properties of liquid metals in the pressure and
temperature (P, 7) domain based on sound velocity measurement.

The molecular structure and thermodynamics of liquid metals govern how sound velocity responds to
changes in pressure and temperature. Increased pressure strengthens atomic interactions, enhancing
resistance to compression and raising sound velocity. Conversely, temperature affects thermal expansion,
reducing density and altering compressibility, which in turn influences sound velocity. Thermodynamically,

sound velocity is linked to the adiabatic bulk modulus and density, following the equation Ug = E , where

K is the adiabatic bulk modulus and p is density.
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The effect of pressure and temperature on sound velocity has been extensively studied using EOS in
condensed matter [7-13]. This method, however, necessitates the handling of a greater number of
parameters. Aside from this, some empirical or semi-empirical models have been proposed to investigate
the effect of pressure or temperature on the sound velocity; however, no one has been found to represent
the sound velocity as a function of pressure and temperature in liquid metals [14, 15]. Furthermore, the
scarcity of higher order derivatives of sound velocity in the literature makes access to a wide range of
thermos-physical properties in the entire (P, 7) domain difficult. Furthermore, literature contains little
information on acoustic parameters, such as Beyer's nonlinear parameters of liquid metals, which are related
to sound velocity pressure and temperature derivatives.

As a result, a new model for representing sound velocity in the entire (P, 7) domain in liquid metals is
described in this study, allowing us to compute the higher pressure and temperature derivatives of sound
speed in the entire (P, T) domain. Liquid sodium (Na), liquid potassium (K), liquid rubidium (Rb), liquid
cesium (Cs), liquid mercury (Hg) and liquid bismuth (Bi) were considered for this study. The experimental
data for these liquids were obtained from [16-18].

2. THEORY

We propose a Tait-like relation to study the effect of pressure on sound velocity at a given temperature 7,
which is given as:

Us(P,To)

UsPoty) ~ 1+ T {Ginl1 + B - P} (1)

where Us (P, Ty) represents the sound velocity at pressure P and temperature 7, and Ug(P,, Ty) represents
the sound velocity at pressure Py and temperature 7). Here 4 and B are constants.

First and second derivatives of Equation (1) with respect to pressure are given as:

1 [dUS(P,T) _ B
Us(Po,To) ar I, {A[1+B(P-P)I} 2
1 d?us(p,T)] -B2
Us(PoTo) [~ ]To T @A B(P-r1}” 3)
Applying the initial condition of pressure P = Py to Equations (2) and (3), we get
1 , _B
[US(PO,TO)] Us(Po, To) = 5 (4)
1 1 — B_Z
[US(PO,TO)] Us'(Po, To) = A (5)
From Equations (4) and (5), we get:
4= _ UsPolo)
Ug(Po,To) (6)
B=— Ug' (Py,To)Us (Po,To) 7

[Ué(Po’To)]z

The experimental results suggest that the sound velocity in liquids increases with pressure. Consequently,
the sound velocity first pressure derivative will always be positive. Thus, B/A4 is positive from Equation (4)
meaning that either both are positive, or both are negative. It is observed that the second derivative of sound
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velocity is negative. Therefore, one can easily conclude from Equations (6) and (7) that both A and B are
positive.

In the present study, the thermal effect is considered in the same way as it is considered in [8]

P(T) = P(To) + Pen ®)
where Py, is the thermal pressure and can be written in simplest form as

Py = a(0,To) Br(0,To) (T —To) =& (T —Tp) )

where a(0,Ty) and Br(0,T,) are the volume expansion coefficient and the isothermal bulk modules,
respectively, at P =0 and 7' = 0.

To take into account the thermal effect, Equations (1) - (3) can be written as

Us(PT) _ 1 5 _
o = 1 {A In[1+B(P — Py — &(T TO))]} (10)
[dUs(P,T)] _ B Us(Po,To)

ap lp = (AL+B(P-Py-E(T-To))]} (11)
[dUs(P'T) — —B & Us(Py,Tp)

ar lp T (A+B(P-Pe-E(T-To))T} (12)

where ¢ is the thermal pressure coefficient and taken as pressure and temperature independent for present
study.

3. METHODOLOGY

In liquid metals, the variation of sound velocity in entire (P, 7) domain can be computed using Equation
(8) provided Us(Py, Ty), A, B, and & are known at reference temperature, To. The best fit values of 4 and B
at reference temperature, 7, are obtained from Equation (1) by using a nonlinear fitting toolbox in
MATLAB. The experimental data of sound velocity at 7y in liquid metals was taken from the references
[15-17]. However, the best fit value of & is obtained by applying the Whale optimization algorithm in the
entire (P, 7) domain in which experimental data velocity as a function of pressure and temperature is
available. Once the values of 4, B, and & are known, the sound velocity and its first pressure and temperature
derivatives can be easily computed using Equations (10)-(12) at any pressure and temperature combination.
It will be appropriate to mention here that the value of £ is taken as pressure and temperature is independent.
Although it appears to be a very wild approximation at first, the close agreement between computed and
experimental sound velocity across the entire pressure and temperature ranges gives confidence to this
approximation.

4. THE WHALE OPTIMIZATION ALGORITHM (WOA)

The WOA is a recently introduced meta-heuristic optimization method that replicates the hunting behavior
of humpback whales. The size of a full-grown humpback whale is comparable to that of a school bus. The
bubble-net feeding method [18] is a novel way of humpback whale hunting. Humpback whales prefer to
feed on krill or small fish at the water's surface. Humpback whales dive to a depth of 12 meters, then start
ejecting bubbles in a spiral pattern that encircles prey, then follow the bubbles to the surface to catch it [18].
Humpback whales are known to remove prey from other people's bubble nets and to work in groups of at
least two individuals. Humpback whales have a unique eating behavior known as bubble-net feeding. The
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mathematical model of encircling prey, the bubble net hunting method, and the search for prey are all
described in the original publication [19].

5. PROBLEM FORMULATION

Before performing an optimization process, an objective function must be developed in order to extract the
optimal value of & from the set of experimental data of sound velocity over the whole pressure and
temperature range [20]. The Root Mean Square Error (RMSE) is employed as the objective function in this
paper to quantify the difference in calculated and measured sound velocity. Using Equation (10), the
difference between the experimental and estimated values of sound velocity can be represented as follows:

f(P,T) = Ugg(P,T) = Us(Po, To) |1+ {5 in[1+ B(P - Py —&(T - To)}| (13)

As a result, for any given set of measurements, the objective function that adds RMSE is defined as

RMSD = /§2¥{f(P, )2 (14)

where N is the number of measured results and Ugg (P, T) is the experimentally measured sound velocity at
pressure, P and temperature, T.

The objective function provided in Equation (14) is used to monitor the selection of the best-fit value for &.
The objective function is summed during the WOA optimization process to be minimized regarding the
parameter, ¢ range. The literature survey [3, 13-15] was used to determine the upper and lower bounds of

é
6. CALCULATIONS AND RESULTS

Equation (1) has been applied in liquid metals studied to compute the sound velocity as a function of
pressure at reference temperature, 7). The best-fit values of constants 4 and B, pressure range studied, the
reference temperature and the root mean square deviation in each liquid are mentioned in Table 1. Figure
1 shows the close agreement between computed sound velocity across the entire pressure range at reference
temperature and experimental values for all liquid metals. Even though the fit in the instance of liquid Bi
is quite poor, the maximum percentage error (MPE) remains well within experimental uncertainty.

To estimate the sound velocity with pressure at different temperatures in each liquid metal, the best value
of & in Equation (10) is obtained by minimizing the objective function of Equation (14) using the WOA.
The range of the thermal pressure coefficient, & is set between 107 and 107, The optimized value of £ along
with the final score of the objective function in each liquid metal are reported in Table 2. The final score of
the objective function is found to be of the order of 10 in each liquid except Bi where it is of the order of
10,

Table 1. Input parameters, best fit values of A and B and RMSD for the Equation (1)

Ty Py
Liquid Metal U(Py, Ty)(km/s) A B (GPa?) RMSD
(K) (GPa)
Na 422.05 0.025 2.529 1.106 0.4579 0.0018
K 423.25 0.025 1.873 0.9811 0.8613 0.00123
Rb 423.25 0.025 1.249 0.9776 1.092 0.00152
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Cs 423.25 0.025 0.975 1.089 1.571 0.00123
Hg 513 0.72 1.49 1.723 0.2028 0.00909
Bi 568 1.12 1.891 3.818 0.3964 0.00521
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Figure 1. The Fit of Equation (1) with experimental data in Na, K, Rb, Cs, Hg and Bi at reference
temperature

The optimized value of ¢ is used to compute the sound velocity in the entire pressure and temperature range
in each liquid metal. The computed value of %AARD over the entire pressure and temperature range in
case of each metal is also reported in Table 3. The maximum %AARD is obtained as 0.45 in the case of Bi
which is clear from the higher value of objective function in this case. However, the value of & obtained
here is around one order smaller than the values calculated from the definition of thermal pressure
coefficient & = ap/Kr, where op is the isobaric thermal expansion coefficient and K7 is the isothermal
compressibility. The maximum percentage error (MPE) in each liquid metal is largely within the
experimental uncertainty in the sound velocity measurement. The scatter plots in Figure 2 are chosen to
demonstrate the kind of MPE obtained in entire pressure and temperature range in case of liquid Sodium
and liquid Bismuth. In liquid Sodium, the %AARD is found to be minimum of 0.07 while in liquid Bismuth
it is maximum of 0.45. The higher AARD% in bismuth suggests a larger deviation between computed and
experimental values compared to other metals. This deviation may be due to unique electronic properties
of bismuth, particularly its semi-metallic nature and bonding characteristics. In contrast, other metals like
sodium and potassium exhibit significantly lower AARD%, reflecting a better fit. Despite this, the
computed sound velocities remain within experimental uncertainties. Table 2 shows that the value of &
generally decreases with decreasing metal melting point, except for mercury, which exhibits a relatively
high & value despite having the lowest melting point among the metals studied. Mercury's strange behavior
may be due to a relativistic effect on the core electrons [16], and as a result, it exhibits anomalous electronic
properties when compared to other transition metals.

Furthermore, the results for the first and second derivatives of the sound velocity from Equations (4) and
(5) at pressure, Py and temperature, 7y, are obtained and compared with the existing data in Table 3. The
agreement is also very good in this case. Furthermore, Equations (9) and (10) can predict the pressure and
temperature variations of the first pressure and temperature derivatives of sound velocity, which is useful
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for studying non-linear Bayer's parameters. [21, 22]. Moreover, the proposed model predicts that the first
pressure derivative of sound velocity remains positive, indicating an increase in sound velocity with
pressure. The second derivative is negative, suggesting a decreasing rate with increase in presure. Similarly,
the temperature derivative varies based on the thermal expansion coefficient, showing that metals with
higher thermal expansion (such as alkali metals) experience a more pronounced temperature effect on sound

velocity.

Table 2. The AARD% in Equation (8), the minimized objective function, Equation (12) and best fit value
of & in Equation (8)

L. Temperature Pressure _ Obj e.ctive Tm
Liquid Range (K) Range (GPa) %AARD E(x 107 fun;:'gg)n (x ()
Na 382.55-422.05 | 0.025-0.700 0.027 3.119 2.436 371
K 357.55-423.25 | 0.025-0.700 0.035 2.559 3.039 337
Rb 333.25-423.25 | 0.025-0.700 0.267 1.393 3.859 312
Cs 322.85-423.25 | 0.025-0.700 0.35 1.367 3.818 302
Hg 296-513 0.720-6.230 0.343 26.63 8.8 234
Bi 568-973 1.12-4.16 0.449 5.361 10.5 544
Table 3. Comparison of first and second derivatives of the sound velocity in liquid metals
Liquid | Py (GPa) | T(K) | y! (P,T)(calc) | U (P,T) 18] | Ul (P,,T)(calc) | Ul (B,,T)I[3]
(kms'GPa™) (kms'GPal) kms'GPa kms1GPa2
Na 0.025 422.05 | 1.05 1.01 -0.48 -0.40
K 0.025 423.25 | 1.64 1.68 -1.41 -1.40
Rb 0.025 423.25 | 1.39 1.44 -1.52 -1.60
C 0.025 42325 | 1.49 1.50 -2.19 -2.80
Hg 0.720 513.00 | 0.176 - -0.036 -0.036
Bi 1.12 568 0.2 - -0.079 --
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Figure 2. Maximum percentage error involved in Equation (8) across the entire pressure and
temperature range

6.1.

The proposed approach provides an effective framework for modeling the variation of sound velocity in
liquid metals across a range of pressures and temperatures using a straightforward parameterized equation.
While this study validates the model by comparing its results with experimental data, a more detailed
comparison with other approaches—including equation of state (EOS)-based models, as well as empirical
and semi-empirical models—has been presented in Table 4 to further enrich the discussion. In contrast to
conventional EOS methods, which often require multiple parameters and complex calculations, the
proposed model relies on just three parameters, offering a balance between computational simplicity and
accuracy. The study demonstrates that a simple parameterized approach can accurately model sound
velocity in liquid metals. Future work could explore refining as a function of pressure and temperature,
incorporating electronic structure calculations for metals like mercury and bismuth. Additionally, extending

Comparison with Existing Model

the model to other liquid systems, such as molten salts and alloys, would be beneficial.

Table 4. Comparison with Other Models

Model Type Equation Type ]I\JIZZZZ;Z Remark
Empirical (Linear Pros: Simple, easy to fit
Pressure Model) [3] Us(P) = Us(Fo) +C,(P-P) Hen Cons: Fails at high pressures
Semi- Empirical Pros: Captures density
(Birch's Law- U =a+bp effects
Based Model) [10] p: density 2(a,b) Cons: Requires

density data
EOS Pros: Thermodynamic basis
(Murnaghan’s Us = K [(Ey - 1] 3(K,V,,n) | Cons: Complex, and needs
Model) [2] n WV

high- precision data
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Gruneisen Model Pros: Useful for high
[8] , YP 2-3 pressure
Us =— (depends on
p ’) Cons: y function is material-
dependent
Present Model Pros: Accurate for
it-lik UsCD) _ gy {1 In[1 d
Tait-like = - i i
( Us(Py, To) A entire (P, 7) domain,
Equati —
quation) +B(P-P, 34 B, Y only 3 parameters
—&(T Cons: A g
ons: Assumes ¢ is
- W) _
independent of P, T’

7. CONCLUSION

The above discussions clearly indicate that the present model is successful in representing the sound speed
in entire pressure and temperature range in all liquid metals of study. The kind of AARDY% obtained in each
case demonstrates the success of the present model. Further, the first pressure and temperature derivatives
of the sound velocity are computed first time in liquid metals, which are important to study the thermos-
physical properties. The values of these derivatives show the slow variation of sound velocity in liquid Hg
and liquid Bi with pressure and temperature. The novelty of this model is that only three parameters (A, B,
and &) are required to represent the sound velocity over the pressure and temperature range of interest.
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