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• Computed sound velocities agree well with experimental data across all studied liquid metals. 

• The model predicts first and second pressure derivatives of sound velocity at ambient conditions. 

• The model captures variations in sound velocity and its derivatives with pressure and temperature 
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Abstract 

This study proposes a new relationship to investigate the behavior of sound velocity as a function 

of pressure in liquid metals. The suggested relation is applied in liquid metals like Sodium, 

Potassium, Rubidium, Cesium, Mercury and Bismuth. The computed sound velocity results for 

each liquid metal are found to be consistent with the experimental data across the entire pressure 

range, with root mean square deviations on the order of 10-4 in each case.  The temperature effect 

is also introduced by considering the linear dependence of thermal pressure on temperature. The 

maximum average absolute percentage relative deviation (AARD %) of 0.45 is noted in the case 

of Bismuth across the entire pressure range at temperatures. The first and second pressure 

derivatives of sound velocity at ambient pressure and temperature are calculated and found to be 

in good agreement with the available data. Furthermore, the proposed relationship can predict the 

variation of the first pressure and temperature derivatives of sound velocity with pressure and 

temperature. 
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1. INTRODUCTION 

 

The sound velocity is one of the most fundamental thermodynamic properties of liquid metals, and once 

the sound velocity data is accessible, many thermo-physical quantities, such as thermal pressure coefficient, 

Gruneisen parameter, isothermal bulk modulus, ratio of heat capacities, and adiabatic bulk modulus can be 

obtained from the fundamental thermodynamic associations. [1-6]. The significance of sound velocity lies 

in the fact that it can be measured more precisely than the equation of state (EOS), allowing for a more 

accurate study of the variation of thermo-physical properties of liquid metals in the pressure and 

temperature (P, T) domain based on sound velocity measurement.  

 

The molecular structure and thermodynamics of liquid metals govern how sound velocity responds to 

changes in pressure and temperature. Increased pressure strengthens atomic interactions, enhancing 

resistance to compression and raising sound velocity. Conversely, temperature affects thermal expansion, 

reducing density and altering compressibility, which in turn influences sound velocity. Thermodynamically, 

sound velocity is linked to the adiabatic bulk modulus and density, following the equation 𝑈𝑠 = √
𝐾𝑠

𝜌
 , where 

𝐾𝑠 is the adiabatic bulk modulus and 𝜌  is density. 
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The effect of pressure and temperature on sound velocity has been extensively studied using EOS in 

condensed matter [7-13]. This method, however, necessitates the handling of a greater number of 

parameters. Aside from this, some empirical or semi-empirical models have been proposed to investigate 

the effect of pressure or temperature on the sound velocity; however, no one has been found to represent 

the sound velocity as a function of pressure and temperature in liquid metals [14, 15]. Furthermore, the 

scarcity of higher order derivatives of sound velocity in the literature makes access to a wide range of 

thermos-physical properties in the entire (P, T) domain difficult. Furthermore, literature contains little 

information on acoustic parameters, such as Beyer's nonlinear parameters of liquid metals, which are related 

to sound velocity pressure and temperature derivatives. 

 

As a result, a new model for representing sound velocity in the entire (P, T) domain in liquid metals is 

described in this study, allowing us to compute the higher pressure and temperature derivatives of sound 

speed in the entire (P, T) domain. Liquid sodium (Na), liquid potassium (K), liquid rubidium (Rb), liquid 

cesium (Cs), liquid mercury (Hg) and liquid bismuth (Bi) were considered for this study. The experimental 

data for these liquids were obtained from [16-18].  

 

2. THEORY 

 

We propose a Tait-like relation to study the effect of pressure on sound velocity at a given temperature T, 

which is given as: 

 
𝑈𝑆(𝑃,𝑇0)

𝑈𝑆(𝑃0,𝑇0)
= 1 + {

1

𝐴
𝑙𝑛[1 + 𝐵(𝑃 − 𝑃0)]}   (1) 

 

where 𝑈𝑆(𝑃, 𝑇0) represents the sound velocity at pressure P and temperature T0 and 𝑈𝑆(𝑃0, 𝑇0) represents 

the sound velocity at pressure P0 and temperature T0.  Here A and B are constants. 

 

First and second derivatives of Equation (1) with respect to pressure are given as: 

 
1

𝑈𝑆(𝑃0,𝑇0)
[

𝑑𝑈𝑆(𝑃,𝑇)

𝑑𝑃
]

𝑇0

=
𝐵

{𝐴[1+𝐵(𝑃−𝑃0)]}
   

 

 

(2) 

1

𝑈𝑆(𝑃0,𝑇0)
[

𝑑2𝑈𝑆(𝑃,𝑇)

𝑑𝑃2 ]
𝑇0

=
−𝐵2

{𝐴[1+𝐵(𝑃−𝑃0)]2}
 . (3) 

 

Applying the initial condition of pressure P = P0 to Equations (2) and (3), we get 

 

[
1

𝑈𝑆(𝑃0,𝑇0)
] 𝑈𝑆

′(𝑃0, 𝑇0) =
𝐵

𝐴
     

 
(4) 

[
1

𝑈𝑆(𝑃0,𝑇0)
] 𝑈𝑆

′′(𝑃0, 𝑇0) = −
𝐵2

𝐴
.  

 
(5) 

From Equations (4) and (5), we get: 

 

𝐴 = −
𝑈𝑆

′′(𝑃0,𝑇0)

𝑈𝑆
′ (𝑃0,𝑇0)

        

  
(6) 

𝐵 = −
𝑈𝑆

′′(𝑃0,𝑇0)𝑈𝑆(𝑃0,𝑇0)

[𝑈𝑆
′ (𝑃0,𝑇0)]

2  . (7) 

 

The experimental results suggest that the sound velocity in liquids increases with pressure. Consequently, 

the sound velocity first pressure derivative will always be positive. Thus, B/A is positive from Equation (4) 

meaning that either both are positive, or both are negative. It is observed that the second derivative of sound 
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velocity is negative. Therefore, one can easily conclude from Equations (6) and (7) that both A and B are 

positive.   

 

In the present study, the thermal effect is considered in the same way as it is considered in [8] 

 

𝑃(𝑇) = 𝑃(𝑇0) + 𝑃𝑡ℎ (8) 

 

where 𝑃𝑡ℎ is the thermal pressure and can be written in simplest form as 

 

𝑃𝑡ℎ =  𝛼(0, 𝑇0) 𝐵𝑇(0, 𝑇0) (𝑇 − 𝑇0) = 𝜉 (𝑇 − 𝑇0)                                                                                  (9) 

 

where 𝛼(0, 𝑇0) and 𝐵𝑇(0, 𝑇0) are the volume expansion coefficient and the isothermal bulk modules, 

respectively, at P = 0 and T = 0. 

 

To take into account the thermal effect, Equations (1) - (3) can be written as 

 

𝑈𝑆(𝑃,𝑇)

𝑈𝑆(𝑃0,𝑇0)
= 1 + {

1

𝐴
𝑙𝑛[1 + 𝐵(𝑃 − 𝑃0 − 𝜉(𝑇 −    𝑇0))]}    (10) 

        

 [
𝑑𝑈𝑆(𝑃,𝑇)

𝑑𝑃
]

𝑇
=

𝐵 𝑈𝑆(𝑃0,𝑇0)

{𝐴[1+𝐵(𝑃−𝑃0−𝜉(𝑇−𝑇0))]}
 

                                                                                                                                                                              
(11) 

 

[
𝑑𝑈𝑆(𝑃,𝑇)

𝑑𝑇
]

𝑃
=

−𝐵 𝜉 𝑈𝑆(𝑃0,𝑇0)

{𝐴[1+𝐵(𝑃−𝑃0−𝜉(𝑇−𝑇0))]}
                                                                                               

                                                                                
(12) 

where ξ is the thermal pressure coefficient and taken as pressure and temperature independent for present 

study. 

 

3. METHODOLOGY 

 

In liquid metals, the variation of sound velocity in entire (P, T) domain can be computed using Equation 

(8) provided 𝑈𝑆(𝑃0, 𝑇0), A, B, and ξ are known at reference temperature, T0. The best fit values of A and B 

at reference temperature, T0 are obtained from Equation (1) by using a nonlinear fitting toolbox in 

MATLAB. The experimental data of sound velocity at T0 in liquid metals was taken from the references 

[15-17]. However, the best fit value of ξ is obtained by applying the Whale optimization algorithm in the 

entire (P, T) domain in which experimental data velocity as a function of pressure and temperature is 

available. Once the values of A, B, and ξ are known, the sound velocity and its first pressure and temperature 

derivatives can be easily computed using Equations (10)-(12) at any pressure and temperature combination. 

It will be appropriate to mention here that the value of ξ is taken as pressure and temperature is independent. 

Although it appears to be a very wild approximation at first, the close agreement between computed and 

experimental sound velocity across the entire pressure and temperature ranges gives confidence to this 

approximation. 

 

4. THE WHALE OPTIMIZATION ALGORITHM (WOA) 

 

The WOA is a recently introduced meta-heuristic optimization method that replicates the hunting behavior 

of humpback whales. The size of a full-grown humpback whale is comparable to that of a school bus. The 

bubble-net feeding method [18] is a novel way of humpback whale hunting. Humpback whales prefer to 

feed on krill or small fish at the water's surface. Humpback whales dive to a depth of 12 meters, then start 

ejecting bubbles in a spiral pattern that encircles prey, then follow the bubbles to the surface to catch it [18]. 

Humpback whales are known to remove prey from other people's bubble nets and to work in groups of at 

least two individuals. Humpback whales have a unique eating behavior known as bubble-net feeding. The 
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mathematical model of encircling prey, the bubble net hunting method, and the search for prey are all 

described in the original publication [19]. 

 

5. PROBLEM FORMULATION 

 

Before performing an optimization process, an objective function must be developed in order to extract the 

optimal value of ξ from the set of experimental data of sound velocity over the whole pressure and 

temperature range [20]. The Root Mean Square Error (RMSE) is employed as the objective function in this 

paper to quantify the difference in calculated and measured sound velocity. Using Equation (10), the 

difference between the experimental and estimated values of sound velocity can be represented as follows: 

 

f(𝑃, 𝑇) =  𝑈𝑆𝐸(𝑃, 𝑇) −  𝑈𝑆(𝑃0, 𝑇0) [1 + {
1

𝐴
𝑙𝑛[1 + 𝐵(𝑃 − 𝑃0  − 𝜉(𝑇 − 𝑇0))]}]    .                          (13)        

 
As a result, for any given set of measurements, the objective function that adds RMSE is defined as 

 

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑ {𝑓(𝑃, 𝑇)}2𝑁

1         
                                (14) 

 

where N is the number of measured results and 𝑈𝑆𝐸(𝑃, 𝑇) is the experimentally measured sound velocity at 

pressure, P and temperature, T.  

 

The objective function provided in Equation (14) is used to monitor the selection of the best-fit value for ξ. 

The objective function is summed during the WOA optimization process to be minimized regarding the 

parameter, ξ range. The literature survey [3, 13-15] was used to determine the upper and lower bounds of 

ξ. 

 

6. CALCULATIONS AND RESULTS 

 

Equation (1) has been applied in liquid metals studied to compute the sound velocity as a function of 

pressure at reference temperature, T0. The best-fit values of constants A and B, pressure range studied, the 

reference temperature and the root mean square deviation in each liquid are mentioned in Table 1.  Figure 

1 shows the close agreement between computed sound velocity across the entire pressure range at reference 

temperature and experimental values for all liquid metals. Even though the fit in the instance of liquid Bi 

is quite poor, the maximum percentage error (MPE) remains well within experimental uncertainty. 

 

To estimate the sound velocity with pressure at different temperatures in each liquid metal, the best value 

of ξ in Equation (10) is obtained by minimizing the objective function of Equation (14) using the WOA. 

The range of the thermal pressure coefficient, ξ is set between 10-5 and 10-3. The optimized value of ξ along 

with the final score of the objective function in each liquid metal are reported in Table 2. The final score of 

the objective function is found to be of the order of 10-3 in each liquid except Bi where it is of the order of       

10-2. 

 

Table 1. Input parameters, best fit values of A and B and RMSD for the Equation (1) 

Liquid Metal 
𝑇0 

(K) 

𝑃0 

(GPa) 
𝑈(𝑃0, 𝑇0)(km/s) 

 

𝐴 

 

𝐵 (GPa-1) RMSD 

Na 422.05 0.025 2.529 1.106 0.4579 0.0018 

K 423.25 0.025 1.873 0.9811 0.8613 0.00123 

Rb 423.25 0.025 1.249 0.9776 1.092 0.00152 
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Cs 423.25 0.025 0.975 1.089 1.571 0.00123 

Hg 513 0.72 1.49 1.723 0.2028 0.00909 

Bi 568 1.12 1.891 3.818 0.3964 0.00521 

 

 
Figure 1. The Fit of Equation (1) with experimental data in Na, K, Rb, Cs, Hg and Bi at reference 

temperature 

 

The optimized value of ξ is used to compute the sound velocity in the entire pressure and temperature range 

in each liquid metal. The computed value of %AARD over the entire pressure and temperature range in 

case of each metal is also reported in Table 3. The maximum %AARD is obtained as 0.45 in the case of Bi 

which is clear from the higher value of objective function in this case. However, the value of ξ obtained 

here is around one order smaller than the values calculated from the definition of thermal pressure 

coefficient ξ = αP/KT, where αP is the isobaric thermal expansion coefficient and KT is the isothermal 

compressibility. The maximum percentage error (MPE) in each liquid metal is largely within the 

experimental uncertainty in the sound velocity measurement. The scatter plots in Figure 2 are chosen to 

demonstrate the kind of MPE obtained in entire pressure and temperature range in case of liquid Sodium 

and liquid Bismuth. In liquid Sodium, the %AARD is found to be minimum of 0.07 while in liquid Bismuth 

it is maximum of 0.45. The higher AARD% in bismuth suggests a larger deviation between computed and 

experimental values compared to other metals. This deviation may be due to unique electronic properties 

of bismuth, particularly its semi-metallic nature and bonding characteristics. In contrast, other metals like 

sodium and potassium exhibit significantly lower AARD%, reflecting a better fit. Despite this, the 

computed sound velocities remain within experimental uncertainties. Table 2 shows that the value of ξ 

generally decreases with decreasing metal melting point, except for mercury, which exhibits a relatively 

high ξ value despite having the lowest melting point among the metals studied. Mercury's strange behavior 

may be due to a relativistic effect on the core electrons [16], and as a result, it exhibits anomalous electronic 

properties when compared to other transition metals. 

 

Furthermore, the results for the first and second derivatives of the sound velocity from Equations (4) and 

(5) at pressure, P0 and temperature, T0, are obtained and compared with the existing data in Table 3. The 

agreement is also very good in this case. Furthermore, Equations (9) and (10) can predict the pressure and 

temperature variations of the first pressure and temperature derivatives of sound velocity, which is useful 
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for studying non-linear Bayer's parameters. [21, 22]. Moreover, the proposed model predicts that the first 

pressure derivative of sound velocity remains positive, indicating an increase in sound velocity with 

pressure. The second derivative is negative, suggesting a decreasing rate with increase in presure. Similarly, 

the temperature derivative varies based on the thermal expansion coefficient, showing that metals with 

higher thermal expansion (such as alkali metals) experience a more pronounced temperature effect on sound 

velocity. 

 

Table 2. The AARD% in Equation (8), the minimized objective function, Equation (12) and best fit value 

of ξ in Equation (8) 

Liquid 
Temperature 

Range (K) 

Pressure 

Range (GPa) 
%AARD ξ (× 10−4) 

Objective 

function (x 

10-3) 

𝑇𝑚 

(K) 

Na 382.55-422.05 0.025-0.700 0.027 3.119 2.436 371 

K 357.55-423.25 0.025-0.700 0.035 2.559 3.039 337 

Rb 333.25-423.25 0.025-0.700 0.267 1.393 3.859 312 

Cs 322.85-423.25 0.025-0.700 0.35 1.367 3.818 302 

Hg 296-513 0.720-6.230 0.343 26.63 8.8 234 

Bi 568-973 1.12-4.16 0.449 5.361 10.5 544 

 

Table 3.  Comparison of first and second derivatives of the sound velocity in liquid metals 

Liquid 𝑃0 (GPa) 𝑇(K) ( , )S oU P T (Calc) 

(kms-1GPa-1 ) 

( , )S oU P T   [3] 

(kms-1GPa-1 ) 

( , )S OU P T (Calc) 

kms-1GPa-2 

( , )S OU P T [3] 

kms-1GPa-2 

Na 0.025 422.05 1.05 1.01 - 0.48 - 0.40 

K 0.025 423.25 1.64 1.68  - 1.41  - 1.40 

Rb 0.025 423.25 1.39 1.44  - 1.52  - 1.60 

C 0.025 423.25 1.49 1.50  - 2.19  - 2.80 

Hg 0.720 513.00 0.176 -- - 0.036 - 0.036 

Bi 1.12 568 0.2 -- - 0.079 -- 
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Figure 2. Maximum percentage error involved in Equation (8) across the entire pressure and 

temperature range 

 

6.1. Comparison with Existing Model 

 

The proposed approach provides an effective framework for modeling the variation of sound velocity in 

liquid metals across a range of pressures and temperatures using a straightforward parameterized equation. 

While this study validates the model by comparing its results with experimental data, a more detailed 

comparison with other approaches—including equation of state (EOS)-based models, as well as empirical 

and semi-empirical models—has been presented in Table 4 to further enrich the discussion. In contrast to 

conventional EOS methods, which often require multiple parameters and complex calculations, the 

proposed model relies on just three parameters, offering a balance between computational simplicity and 

accuracy. The study demonstrates that a simple parameterized approach can accurately model sound 

velocity in liquid metals. Future work could explore refining as a function of pressure and temperature, 

incorporating electronic structure calculations for metals like mercury and bismuth. Additionally, extending 

the model to other liquid systems, such as molten salts and alloys, would be beneficial. 

 

Table 4.  Comparison with Other Models 

Model Type Equation Type 
Number of 

Parameters 
Remark 

Empirical (Linear 

Pressure Model) [3] 

 

𝑈𝑠(𝑃) = 𝑈𝑠(𝑃𝑜)
+ 𝐶1(𝑃 − 𝑃𝑜) 

1 (C1) 

Pros: Simple, easy to fit 

Cons: Fails at high pressures 

Semi- Empirical 

(Birch's Law- 

Based Model) [10] 
𝑈𝑠 = 𝑎 + 𝑏 𝜌 

𝜌: density 
  2 (a,b) 

Pros: Captures density 

effects 

Cons: Requires 

density data 

EOS 

(Murnaghan’s 

Model) [2] 

𝑈𝑠 =
𝐾𝑜

𝑛
[(

𝑉𝑜

𝑉
)

𝑛

− 1] 3 (𝐾𝑜𝑉𝑜, n) 

Pros: Thermodynamic basis 

Cons: Complex, and needs 

high- precision data 
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Gruneisen Model 

[8] 

𝑈𝑠
2 =

𝛾𝑃

𝜌
 

2-3 

(depends on 

𝛾) 

Pros: Useful for high 

pressure 

Cons: 𝛾 function is material- 

dependent 

Present Model 

(Tait-like 

Equation) 

US(P, T)

US(P0, T0)
= 1 + {

1

A
ln[1

+ B(P − P0

− ξ(T

−    T0))]} 

3 (A, B, ξ) 

Pros: Accurate for 

entire (P, T) domain, 

only 3 parameters 

Cons: Assumes ξ is 

independent of P, T 

 

7. CONCLUSION 

 

The above discussions clearly indicate that the present model is successful in representing the sound speed 

in entire pressure and temperature range in all liquid metals of study. The kind of AARD% obtained in each 

case demonstrates the success of the present model. Further, the first pressure and temperature derivatives 

of the sound velocity are computed first time in liquid metals, which are important to study the thermos-

physical properties. The values of these derivatives show the slow variation of sound velocity in liquid Hg 

and liquid Bi with pressure and temperature. The novelty of this model is that only three parameters (A, B, 

and ξ) are required to represent the sound velocity over the pressure and temperature range of interest. 
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