
Received: June 18, 2024 Accepted: September 25, 2024 Published Online: October 29, 2024

How to cite this article: Tazegül G, Aydın V, Tükenmez Tigen E, Erturk Sengel B, Köksal K, Doğan B, Karakurt S, Altıkardeş ZA, 
Mülazimoğlu L, Fak AS, Aktaş A, Sili U, Gündoğdu A, Gül F, Tokay Tarhan S, Eryüksel E, Topçu M, Aysevinç B, Çeçen Düzel S, Güçtekin T, 
Kocakaya D, Ozben B, Atas H, Tigen K, Çinçin AA, Mutlu B, Kepez A, Balcan MB, Erdoğan A, Çapar E, Ataç Ö, Bilgili B, Cinel İ, Akıcı A, 
Direskeneli H. Machine Learning to Predict Disease Severity and Progression in Hospitalized COVID-19 Patients Using Laboratory Data 
on Admission. Turk J Int Med 2024;6(4):144-154. DOI: 10.46310/tjim.1502238

Address for Correspondence: Address for Correspondence: Marmara University Faculty of Medicine, Department of Internal Medicine, Division of General Internal 
Medicine, İstanbul, Turkey
E-mail: drgtazegul@gmail.com 

144

ISSN:2687-4245 Artificial Intelligence

TURKISH JOURNAL OF INTERNAL MEDICINE

Turk J Int Med 2024;6(3):144-154
DOI: 10.46310/tjim.1502238

Original Article
Keywords: Accuracy, classifiers, COVID-19, inpatient, oxygen supplementation, random forest

A B S T R A C T
Background Herein, we aimed to develop and test machine learning (ML) models to predict disease severity and/or 
progression in hospitalised COVID-19 patients through baseline laboratory features.
Methods In this retrospective study of hospitalised COVID-19 patients admitted to a tertiary care centre, we evaluated 
routine admission data to determine the accuracy rates of different ML algorithms: k-nearest neighbour classifier, 
bagging classifier, random forest (RF), and decision tree. These models were compared over three outcomes: those who 
needed oxygen supplementation vs who did not on admission (Analysis 1, n: 180), those who later developed oxygen 
requirement vs those who did not (Analysis 2, n: 112), and those who needed invasive mechanical ventilation vs. those 
who did not during hospitalisation (Analysis 3, n: 164).
Results The median age of the patients was 55 (44-68) years, with males constituting 47.2% of the subjects. At admission, 
37.8% of the patients required oxygen supplementation. During hospitalisation, 17.5% needed mechanical ventilation, 
and 8.3% died. For all analyses, RF had the highest accuracy in classifying the need for oxygen supplementation 
on admission (89.4%) or during hospitalisation (91.1%) and for invasive mechanical ventilation (92.2%). These were 
followed by a bagging classifier for Analysis 1 (88.3%) and Analysis 3 (91.0%) and by a decision tree for Analysis 2 
(88.4%). C-reactive protein, monocyte distribution width, and high-sensitive troponin-T were the most crucial laboratory 
contributors to Analysis 1, Analysis 2, and Analysis 3, respectively.
Conclusion Our study showed that ML algorithms could predict the need for oxygen supplementation and mechanical 
ventilation during hospitalisation using baseline laboratory data, suggesting a slight superiority of RF, among others.
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INTRODUCTION

   In March 2020, the World Health Organization (WHO) 
officially declared the outbreak of Coronavirus disease 
2019 (COVID-19) a pandemic. By the end of March 
2024, the total number of COVID-19 cases globally 
had surpassed a staggering 775 million, resulting in the 
loss of 7 million lives worldwide.1 The pandemic was 
characterized by unprecedented cases that overwhelmed 
healthcare facilities globally2, and it still poses a 
significant threat since presentations are heterogeneous; 
15% of all infected patients deteriorate rapidly, with 
multiorgan damages and high fatality rates.3-5 Therefore, 
finding novel ways for effective triage and timely risk 
stratification to predict COVID-19 deterioration remains 
an important research area. In this context, patient 
progression through the healthcare system is assessed 
via the WHO Clinical Progression Scale (WHO-CPS), 
which the WHO recommends as an outcome measure.6 
Early warning scores (EWS) that help recognize clinical 
deterioration in the short term have been extensively used 
in COVID-19 patients.7 Among them, the National Early 
Warning Score (NEWS) and Modified Early Warning 
Score (MEWS) have been reported to predict mortality 
and clinical deterioration adequately8-10; however, several 
recent studies on EWS models showed subpar results.11-13 
   Artificial intelligence (AI), featuring various machine 
learning (ML) tools, can analyze large amounts of data 
and offer solutions that are not apparent. AI programs 

have already been adopted as decision support systems 
in clinical practice, where certain ML models are 
known to generate better performance than traditional 
prediction models.14,15 Several studies have successfully 
tested ML’s predictive value in COVID-19-related 
mortality and clinical deterioration16-18, with some 
models showing promise for possible identification of 
low-risk patients for early discharge.19 Nevertheless, 
ML studies on COVID-19 are heterogeneous, as there 
is a plethora of included parameters as well. Therefore, 
in this study, we aimed to develop and test ML models 
to predict WHO-CPS-oriented disease severity and/or 
progression in hospitalized COVID-19 patients using 
baseline laboratory features on hospital admission.

MATERIAL AND METHODS

Ethical considerations
   This single-center retrospective study was 

approved by the institutional review board of the 
Turkish Ministry of Health’s COVID-19 Scientific 
Research Studies, and ethical approval was obtained 
from Marmara University Clinical Studies Ethics 
Committee (Approval date: 27.04.2020, Approval 
number: 09.2020.487). This study was conducted 
by the Declaration of Helsinki and the Research and 
Publication Ethics, and patient data were anonymized 
before analysis.

Table 1. Seventy-three demographic and laboratory features are included in the dataset after preprocessing  
Gender Creatinine LDH NEU#/LYM# PT 
Age CRP LYM# NEU#/PLT# PT,% 
Albumin D-dimer LYM% NRBC# RBC 
ALP Direct bilirubin LYM#/CRP   NRBC% RDW 
ALT EOS# Magnesium Osmolarity sO2 
aPTT EOS% MCH pCO2 Sodium 
AST Ferritin MCHC PCT Total bilirubin 
BAS# Fibrinogen MCV PDW Total protein 
BAS% GGT MDW pH Troponin T-hs 
Base Excess Glucose Methemoglobin Phosphorus Urea 
BUN HCO3- MON# PLT Uric acid 
Calcium HCT MON% PLT#/ LYM# WBC 
Carboxyhemoglobin HGB MPV pO2 WDOP 
Chloride INR NEU# Potassium  
CK-MB (mass) Lactate NEU% Procalcitonin  

Initial and worst WHO-CPS scores were not included in this demographic and laboratory features presentation. (#) denotes counts, 
and (%) denotes percent. ALP: alkaline phosphatase, ALT: alanine transaminase, aPTT:  activated partial thromboplastin time, 
AST: aspartate transaminase, BAS: basophils, BUN: blood urea nitrogen, CK-MB: creatine kinase myocardial band, CRP: C-
reactive protein, EOS: eosinophils, GGT: gamma-glutamyl transferase, HCO3-: bicarbonate, HCT: hematocrit, HGB: hemoglobin, 
INR: international normalized ratio, LDH: lactate dehydrogenase, LYM: lymphocytes, MCH: mean corpuscular hemoglobin, 
MCHC: mean corpuscular hemoglobin concentration, MCV: mean corpuscular volume, MDW: monocyte distribution width, 
MON: monocytes, MPV: mean platelet volume, NEU: neutrophils, PLT: platelets, NRBC: nucleated red blood cell, pCO2: partial 
pressure of carbon dioxide, PCT: plateletcrit, PDW: platelet distribution width, pO2: partial pressure of oxygen, PT: prothrombin 
time, RBC: red blood cell, RDW: red blood cell distribution width, sO2: blood oxygen saturation, Troponin T-hs: troponin T-high 
sensitivity, WBC: white blood cells, WDOP: white cell differential optical count. 
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Study setting
   This study evaluated WHO-CPS-oriented patient 

outcomes in patients hospitalized with COVID-19 
infection admitted to (censored) University Training 
and Research Hospital between 27 April 2020 and 
1 June 2020. We collected baseline data on routine 
clinical evaluation encompassing medical history, 
thorough physical examination, and initial laboratory 
tests, including complete blood count, biochemistry 
panel, and inflammatory markers. All patients were 
followed until death, discharge, or up to 28 days of 
hospital stay.

Data handling
   We followed four basic stages to determine the 

accuracy rates of different ML algorithms: creating 
the dataset, preprocessing, random feature selection, 
and classification.

Study population, dataset, and preprocessing
   The initial dataset consisted of 508 patients 

admitted to the COVID-19 unit within the study 
period and included 193 parameters, including age, 
sex, initial and worst WHO-CPS scores, and 189 
laboratory results. Patients without a confirmed 
COVID-19 infection based on reverse-transcriptase 
polymerase chain reaction for the SARS-CoV-2 
ribonucleic acid, who were rapidly treated with 
intubation and mechanical ventilation during initial 
presentation, and who were directly admitted to the 
intensive care unit were not included in this study. 
Included patients had a valid initial laboratory result 
obtained within the first 24 hours of admission. 
Parameters with substantial missing data (present in 
less than 50% of the cases) or duplicated (e.g., obtained 
from arterial and venous blood) were excluded. The 
final analysis was conducted on 180 patients with 75 
attributes (71 laboratory parameters, age, sex, initial 
WHO-CPS, and worst WHO-CPS) (Table 1). Before 
data processing, all features are normalized to have 0 
mean and unit standard deviation.

 Feature selection
   Feature subset selection is a critical step of 

data mining, where fewer parameters could achieve 
higher accuracy (Figure 1).20 We used the random 
subset feature selection (RSFS) algorithm to reduce 
the number of features in the data set.21 The feature 
selection process is iterative. The K-Nearest Neighbor 
(KNN) classifier classifies the randomly selected 

feature subsets, rated according to their relevance 
values at each step. Each subset has randomly selected 
features as the square root of the total number of 
features.22 The relative contribution and ranking of 
the selected features were assessed via the Correlation 
Attribute Eval (CA) algorithm and the Ranker method. 

Classification
   The targets, i.e., the outcomes of the study, were 

classified as to the pre-defined initial and worst WHO-
CPS categories of the patients, which included reverse-
transcriptase polymerase chain reaction positivity for 
the SARS-CoV-2 ribonucleic acid, symptomatology 
of patients, the need for and the severity of oxygen 
supplementation, and the need for non-invasive or 
invasive mechanical ventilation.6 The initial WHO-
CPS category was defined as the WHO-CPS score 
during the initial presentation. In contrast, the worst 
WHO-CPS category was the highest WHO-CPS score 
during a patient’s follow-up. In all classifications, 
a standardization process was performed on the 
dataset with the WEKA application (WEKA 3.8, 
Waikato, New Zealand)23, and the model’s accuracy 
was calculated using k-fold cross-validation.22 We 
used the KNN classifier, bagging classifier, random 
forest, and decision tree ML algorithms in the 
training phase.22,24-26 All classification results were 
generated using the 10-fold cross-validation technique 
and were evaluated according to whether there was 
standardization within each algorithm. The relevance 
value of each randomly generated subset is calculated 
as the difference between the performance criterion 
(the average recall value for the current iterations) and 
the expected criterion (correctly classified / correctly 
classified + incorrectly categorized).

Evaluation metrics
   Model performances were evaluated using the 

accuracy value, which equals the percentage of the 
correctly classified positive and negative subjects: 
(true negatives + true positives) / (all subjects).16 We 
also calculated the F1-score, an important metric 
in unbalanced data sets and can be described as a 
weighted average of the precision and recall values. 
F1-score equals 2 x precision x recall / (precision + 
recall), where precision equals true positives / (true and 
false positives), and recall equals true positives / (true 
positives and false negatives).16 We only presented the 
F1-score of the ML model with the highest accuracy 
in each analysis.
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Study outcomes
   Three main events were analyzed as outcomes 

within this study. The study outcomes were 
determining the accuracy rate of differentiating the 
subjects (i) who needed oxygen supplementation 
(WHO-CPS Score 5-9) from those who did not 
(WHO-CPS Score 1-4) on initial admission (Analysis 
1, n: 180); (ii) patients who later developed the need 
for oxygen supplementation (WHO-CPS Score 5-9) 
from those who did not (WHO-CPS Score 1-4), 
excluding those who needed oxygen supplementation 
on initial admission (Analysis 2, n: 112), and (iii) who 
needed invasive mechanical ventilation (WHO-CPS 
Score 7-9) from those who did not (WHO-CPS Score 
1-6) during hospitalization, excluding those who 
needed invasive mechanical ventilation during initial 
admission (Analysis 3, n: 164).

Statistical analysis
   Statistical analyses were carried out using 

SPSS 24.0 software. Baseline categorical variables 
were expressed as numbers and percentages, and 
continuous variables were presented as medians and 
interquartile ranges. Each analysis’s relevant target 

group’s features were compared through the Mann-
Whitney U test. An overall 5% type-I error level was 
used to infer statistical significance.

RESULTS

   The median age of the overall study population 
was 55 (44-68) years, with males constituting 47.2% of 
the participants. We identified comorbidities in 67.2% 
of the subjects, which was the most common reason 
for hospitalization (45.0%), followed by advanced age 
(37.7%), dyspnea/hypoxia (35.5%), and radiological 
evidence of severe pneumonia (34.4%). At admission, 
62.2% did not require oxygen supplementation, while 
others did, with non-invasive (28.9%) or invasive 
mechanical ventilation (8.9%). Table 2 shows the 
baseline clinical characteristics of the analyzed study 
subgroups. During hospitalization, 29 patients (17.5%) 
developed the need for mechanical ventilation, and 15 
patients (8.3%) died. 

  Within the data of 180 patients and 75 attributes, 
the RSFS algorithm identified 16 attributes to classify 
the need for oxygen supplementation on admission, 

Figure 1. A model development pipeline flowchart was used in this study. 
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where the random forest had the highest accuracy 
(89.4%), followed by the bagging classifier (88.3%). 
The ranking of the attributes by the CA algorithm 
showed C-reactive protein (CRP) (0.41) and monocyte 
distribution width (MDW) (0.40) as the most 
important contributors. The F1-score for defining the 
patient group who did not need oxygen on admission 
was 0.92, whereas the F1-score for defining the group 
that needed oxygen on admission was 0.86 (Figure 
2). All included variables in the ML algorithm had 
statistically significant differences between the two 
groups (Mann-Whitney U test, p<0.05 for all pairs).

In 112 patients who did not need oxygen 
supplementation during admission, developing a need 
for oxygen during hospitalization was classified by 
18 attributes, with the highest accuracy by random 
forest (91.1%), followed by decision tree (88.4%). Of 
these eighteen classifiers, MDW (0.49), high-sensitive 
troponin T (0.43), CRP (0.41), and calcium (0.40) were 
the most critical contributors to identifying the need 
for oxygen among those who did not require oxygen 
on admission. The F1 score for the patient group that 
did not require oxygen during the study period was 
0.95. In contrast, it was 0.71 for the patient group that 

had developed the need for oxygen supplementation 
(Figure 3). Although included in the ML algorithm, 
several notable variables, namely pO2, neutrophil 
(NEU) and white blood cell (WBC) count, total and 
direct bilirubin, and white cell differential optical 
count (WDOC), had not shown any statistically 
significant difference between the two groups (Mann-
Whitney U test, p>0.05 for all pairs).

Twelve attributes were used to classify any need for 
invasive mechanical ventilation during hospitalization 
in patients not hospitalized in the intensive care unit 
on admission. Random forest achieved the highest 
accuracy (92.2%), followed by the bagging classifier 
(91.0%). Initial WHO-CPS category (0.56), high-
sensitive troponin T (0.46), and CK-MB (0.42) were 
the most important contributors. The F1 score for 
developing a need for invasive mechanical ventilation 
during the study period was 0.73, whereas it was 
0.94 for not needing invasive mechanical ventilation 
(Figure 4). Apart from methemoglobin levels and 
gender (Mann-Whitney U test, p>0.05), all included 
variables in the ML algorithm had statistically 
significant differences between the two groups (Mann-
Whitney U test, p<0.05, Figure 4).  

Table 2. Baseline characteristics of the study population. 

Characteristics Analysis 1 
(n: 180) 

Analysis 2 
(n: 112) 

Analysis 3 
(n: 164) 

Age (years) (median, IQR) 55 (44-68) 56 (39-68) 56 (42-72) 
Male n (%) 85 (47.2) 58 (51.8) 82 (50) 
Any comorbidity n (%) 

Hypertension 
Cardiovascular disease 
Asthma/COPD 
Diabetes mellitus 
Chronic kidney disease 
Rheumatologic/autoimmune disease 
Immunodeficiency 
Neurological disease 
Solid organ tumors 

121 (67.2) 
54 (30.0) 
23 (12.7) 
20 (11.0) 
19 (10.5) 
10 (5.5) 
9 (5.0) 
8 (4.4) 
8 (4.4) 
5 (2.7) 

66 (58.9) 
26 (23.2) 
11 (9.8) 
7 (6.1) 
5 (4.4) 
4 (3.5) 
6 (5.3) 
3 (2.6) 
2 (1.7) 
1 (0.8) 

109 (66.4) 
46 (28) 

21 (12.8) 
15 (9.1) 
12 (7.3) 
7 (4.2) 
8 (4.8) 
5 (3.0) 
7 (4.2) 
3 (1.8) 

Reasons for hospitalization n (%) 
Comorbidities  
Advanced age 
Dyspnea/hypoxia 
Radiological findings of severe pneumonia 
Other 

 
81 (45.0) 
68 (37.7) 
64 (35.5) 
62 (34.4) 
17 (9.4) 

 
39 (34.8) 
44 (39.2) 
23 (20.5) 
29 (25.8) 
17 (15.1) 

 
69 (42) 

62 (37.8) 
50 (30.4) 
54 (32.9) 
17 (10.3) 

Need for oxygen supplementation on admission. 
No (WHO-CPS Score 1 to 4) 
Yes, without mechanic ventilation (WHO CPS Score 5-6) 
Yes, with invasive mechanic ventilation (WHO-CPS Score 7-9) 

 
112 (62.2) 
52 (28.9) 
16 (8.9) 

 
112 (100.0) 

- 
- 

 
112 (68.3) 
52 (31.7) 

- 
Categorical variables were expressed as numbers and percentages, and continuous variables were presented as medians and 
interquartile ranges. IQR: Interquartile range, COPD: chronic obstructive pulmonary disease, WHO-CPS: World Health 
Organization Clinical Progression Scale. 
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 KNN classifier Bagging classifier Random forest Decision tree 
Accuracy 82.2% 88.3% 89.4% 85.0% 

 

 Precision Recall F1-score 
No need for oxygen supplementation 0.90 0.94 0.92 
Need for oxygen supplementation 0.89 0.82 0.86 

 
Comparison of the groups by selected attributes Relative ranks of the attributes in the CA algorithm 

 
No need for O2 

(n: 112) 
Median (IQR) 

Need for O2 
(n: 68) 

Median (IQR) 

 

CRP (mg/dL)  19.6 (6.7-37.0) 68.7 (29.0-105.8)    
MDW (fL) 23.2 (21.9-23.3) 26.1 (24.6-27.3)    
Albumin (g/dL) 38.3 (37.0-41.0) 33.8 (31.0-38.0)    
Total protein (g/dL) 69.3 (68.0-71.0) 65.2 (64.0-69.0)    
Methemoglobin (%) 1.3 (1.0-1.7) 1.1 (0.8-1.3)    
Fibrinogen (g/L) 4.4 (3.7-4.8) 5.2 (4.7-5.7)    
Uric acid (mg/dL) 4.3 (3.8-4.3) 5.1 (4.3-6.0)    
pCO2 (mmHg) 45.1 (40.2-48.7) 41.3 (39-44)    
Troponin T-hs (ng/L) 6.1 (3.2-10.7) 18.5 (5.7-37.6)    
Ferritin (ng/mL) 159.8 (72.3-223.6) 389.7 (146.0-566.6)    
pH 7.38 (7.28-7.41) 7.42 (7.39-7.44)    
Glucose (mg/dL) 110 (95.0-124.5) 134 (106.5-145.7)    
D-dimer (mg/L) 0.51 (0.34-0.8) 1.02 (0.67-1.63)    
LYM#/CRP 0.06 (0.03-0.23) 0.02 (0.01-0.04)    
ALP( IU/L) 82.2 (74-84) 73.3 (53.2-82.7)    
GGT (IU/L) 45.4 (42.0-45.4) 38.5 (21.2-39.2)    
CA: Correlation Attribute Evaluation by Ranker method, IQR: interquartile range, CRP: C-reactive protein, MDW: monocyte distribution width, 
pCO2: partial pressure of carbon dioxide, LYM: lymphocytes, ALP: alkaline phosphatase, GGT: gamma-glutamyl transferase.  

Figure 2. Classification accuracy and F1 scores of machine learning algorithms for oxygen requirement on admission (upper panel) 
with the relative rankings (right lower) and statistical comparisons (left lower) of the selected attributes.  
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 KNN classifier Bagging classifier Random forest Decision tree 
Accuracy 83.9% 86.6% 91.1% 88.4% 

 

 Precision Recall F1-score 
No need for oxygen supplementation 0.91 0.99 0.95 
Need for oxygen supplementation 0.92 0.57 0.71 

 
Comparison of the groups by selected attributes Relative ranks of the attributes in the CA 

algorithm 

 
No need for O2 

(n: 91) 
Median (IQR) 

Need for O2 
(n: 21) 

Median (IQR) 

 

MDW (fL) 22.2 (21.5-22.5) 27.1 (23.2-27.8)    
Troponin T-hs (ng/L) 5.7 (3.1-6.9) 10.3 (4.4-25.7)    
CRP (mg/dL) 16.3 (4.6-29.2) 54.5 (13.5-85.3)    
Calcium (mg/dL) 8.8 (8.5-9.0) 8.4 (7.9-8.7)    
Albumin (g/dL) 39.3 (38.0-42.0) 34.3 (31.5-38.0)    
pO2 (mmHg) 34 (27-37) 30 (24-66)*    
NEU# (103/µL) 3.1 (2.5-4.3) 4.5 (2.4-8.45)*    
Total protein (g/dL) 70 (68-71) 66 (65-71)    
NEU (%) 63.3 (54.4-71.7) 71.5 (62.9-82.4)    
WBC (103/µL) 5.1 (4.4-6.5) 6.9 (3.75-9.7)*    
Direct bilirubin (mg/dL) 0.1 (0.1-0.2) 0.2 (0.1-0.3)*    
LYM (%) 9.7 (7.4-11.8) 6.8 (5.8-10.8)    
MON (%) 42.2 (37.0-42.2) 57.1 (49.5-57.5)    
GGT (IU/L) 229 (185-308) 305 (216-496)    
LDH (U/L) 1.03 (0.96-1.05) 1.12 (1.01-1.18)    
INR 25 (18.1-31.9) 21.1 (9.9-26.1)    
Total bilirubin (mg/dL) 0.6 (0.4-0.7) 0.6 (0.3-0.8)*    
WDOP (103/µL) 5.8 (4.3-6.6) 5.8 (4.4-5.8)*    
CA: Correlation Attribute Evaluation by Ranker method, IQR: interquartile range, MDW: monocyte distribution width, CRP: C-reactive protein 
pO2: partial pressure of oxygen, NEU: neutrophil, WBC: white blood cell, LYM: lymphocytes, MON: monocytes, GGT: gamma-glutamyl 
transferase, LDH: lactate dehydrogenase, INR: international normalized ratio, WDOP: white cell differential optical count. *No statistically 
significant difference. 

Figure 3. Classification accuracy and F1 scores of machine learning algorithms for oxygen requirement during hospitalization 
(upper panel) with the relative rankings (right lower) and statistical comparisons (left lower) of the selected attributes.  
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DISCUSSION

   Healthcare systems face many difficulties 
managing resources and healthcare personnel during 
a pandemic. Although there have been studies on 
many parameters that predict disease severity or 
mortality risk of COVID-19, such as laboratory 
features (e.g., CRP, ferritin, D-dimer, lymphocyte 
count), using these parameters in traditional statistical 
methods are complex, heterogeneous, and not cost-
effective.27,28 Accurately predicting severity allows 
managing COVID-19-infected patients on admission, 
which will help decrease hospital burden and 
pressure on healthcare workers.29 In this single-center 
retrospective study focusing on testing ML models 
to predict the need for oxygen supplementation or 
mechanical ventilation in hospitalized COVID-19, 
using baseline laboratory biomarkers on admission, 
we have demonstrated that our models might help 
discriminate patients who would need oxygen 
supplementation or mechanical ventilation during 
their COVID-19 infection and allocate health services 
for them. These findings would be clinically significant 
in a resource-limited setting, where ML algorithms 
could aid clinicians in decision-making. 

   There has been a plethora of evidence regarding 
conventional scoring systems, such as NEWS, 
NEWS2, MEWS, and other scores, to predict severe 
COVID-19 and COVID-19-related mortality; all 
scores show moderate-to-high discriminatory power 
based on the clinical scenario they have been used 
for.10,30,31 However, due to the complex nature of 
the COVID-19 pandemic and multi-faceted causes 
of severe infection and mortality, there have been 
efforts to develop different ML applications to predict 
COVID-19 prognosis better: purposes: Kamran 
et al.12 developed an ML model that can define 
patients at risk for clinical deterioration in patients 
with COVID-19 infection with external validation; 
Yu et al.19 demonstrated that different ML methods 
using blood inflammatory cytokines could help 
predict COVID-19 death; Elhazmi et al.32 developed 
a successful decision tree ML algorithm to predict 
mortality in critically ill adult patients, Liu et al.33 used 
different ML algorithms to successfully predict mild, 
regular, severe and critical cases using clinical and 
radiological data, and Kocadagli et al.34 investigated 
hybrid ML models to predict disease severity based 
on clinical and laboratory parameters. Similar to our 
study endpoint, in a multicenter retrospective study, 

 KNN classifier Bagging classifier Random forest Decision tree 
Accuracy 87.4% 91.0% 92.2% 90.4% 

 

 Precision Recall F1-score 
No invasive mechanical ventilation 0.95 0.93 0.94 
Need for invasive mechanical ventilation 0.71 0.76 0.73 

 
Comparison of the groups by selected attributes Relative ranks of the attributes in the CA algorithm 

 

No mechanical 
ventilation 

(n=135) 
Median (IQR) 

Need for 
mechanical 
ventilation 

(n=29) 
Median (IQR) 

 

Initial WHO-CPS category 4 (4-4) 5 (5-6)    
Troponin T-hs (ng/L) 6.6 (3.4-10.8) 36.3 (8.1-41.3)    
CK-MB (IU/L) 1.3 (0.7-1.5) 2.7 (1.7-3.14)    
Hematocrit (%) 38.1 (35.5-40.9) 33.1 (29.7-37.7)    
Hemoglobin (g/dL) 13.3 (12.2-14.3) 11.5 (9.9-13.2)    
RBC (103/µL) 4.5 (4.2-4.9) 4.1 (3.7-4.5)    
MDW (fL) 23.6 (22.8-23.7) 26.2 (24.4-27.4)    
pO2 (mmHg) 36 (26.0-37.5) 38 (26.5-49.7)    
MON (%) 9.6 (7.2-11.6) 7.2 (4.9-8.4)    
Methemoglobin (%) 1.26 (0.95-1.6) 1.15 (0.85-1.45)*    
MON (103/µL) 0.5 (0.4-0.6) 0.4 (0.3-0.5)    
Male (%) 50.3 48.2*    
CA: Correlation Attribute Evaluation by Ranker method, IQR: interquartile range, WHO-CPS: World Health Organization Clinical Progression 
Scale, Troponin T-hs: Troponin T-high sensitivity, CK-MB: creatine kinase myocardial band, RBC: red blood cell, MDW: monocyte distribution 
width, pO2: partial pressure of oxygen, MON: monocytes. *No statistically significant difference. 
 
Figure 4. Classification accuracy and F1 scores of machine learning algorithms for mechanic ventilation requirement during 
hospitalization (upper panel) with the relative rankings (right lower) and statistical comparisons (left lower) of the selected 
attributes.  
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Yamanaka et al.35 successfully predicted oxygen 
therapy needs in COVID-19 patients using a modern 
XGboost model with the eight clinical and laboratory 
variables, with a high negative predictive value of 
0.93, and the authors underlined that compared to 
conventional scoring approaches, the ML model had 
better results. Although most of the data on ML use 
in COVID-19 are heterogeneous in terms of included 
data and endpoints, our results are consistent with 
the literature on the usefulness of ML in predicting 
COVID-19 cases that require oxygen supplementation 
and mechanical ventilation using objective and easily 
obtainable laboratory data. Since most traditional 
scoring systems and ML studies incorporate 
subjective clinical data like age, comorbidities, 
physical examination findings, and radiological data, 
we believe that this study could make a significant 
contribution to the literature, as our results suggest 
that easily accessible, quickly reported, and objective 
biochemical tests have comparable prognostic 
effectiveness, which could be beneficial for clinicians 
as an easily accessible, rapid tool in the future.

   The International Federation of Clinical 
Chemistry (IFCC) stated that no single biochemical 
or hematological marker is sensitive enough or 
specific to predict the outcome of COVID-19 
infection.36 In particular, the IFCC recommends 
interpreting laboratory abnormalities based on groups 
of parameters. In our study, twelve to eighteen results 
identified patients needing oxygen supplementation 
and/or respiratory support. Nevertheless, two 
laboratory measurements were found within all 
three analyses in our study: MDW and high-
sensitive troponin T. Monocytes undergo significant 
morphological changes, alterations in surface markers, 
and cytokine production during sepsis, both as they 
become activated and during the immunosuppressive 
phase. The volumetric changes can be detected 
as variations in MDW. The magnitude of MDW 
elevation correlates with organ dysfunction and sepsis 
severity, suggesting that MDW can be used as “a red 
flag,” a marker for the intensity of the inflammatory 
response.37-39 MDW, as a prognostic marker, can even 
outperform other early sepsis detection markers such 
as CRP and procalcitonin (PCT).40Apart from being 
a useful diagnostic and prognostic tool in sepsis, 
previous data have also demonstrated that MDW 
levels were elevated in COVID-19, correlated with 
disease activity, which is explained by the presence 
of hyperinflammatory state during COVID-19, 

similar to sepsis, where pro-inflammatory cytokines 
are overexpressed, leads to morphological changes 
in monocytes, including increased cell size and 
variability.41 Moreover, in a retrospective study, 
MDW was higher in patients who needed respiratory 
support, and an MDW ≥ 25 had an area under the 
curve of 0.7 to identify oxygen requirement.42 Similar 
to MDW, higher troponin levels were associated with 
poor prognosis in COVID-19 infection and have been 
shown to identify a need for oxygen supplementation 
and mechanical ventilation.43,44 Our results on three 
different analyses are similar to the previously 
published literature on MDW and troponin, with 
similar differences between groups. ML approach 
provides a different perspective to these results, 
which define patients not based on conventional 
statistics but using stratification algorithms, which 
help discriminate beneficial patterns in extensive 
dimensional data to define subgroups of patients more 
accurately.45 

   This study has several limitations. First, it is a 
retrospective study performed in a single hospital. 
Secondly, although we assessed models to determine 
if COVID-19 patients would need supplemental 
oxygen or mechanical ventilation, we did not consider 
comorbidities, treatments, radiological findings, 
or viral load while building ML models, which 
may have impacted disease severity. Third, the 
small sample size may restrict the precision of the 
identity of severity status. This may have affected 
our results because ML models involving multiple 
parameters require large datasets to train effectively 
and avoid overfitting. Nevertheless, we believe that 
the homogenous nature of the patient population 
still provides some insight regarding using ML in 
predicting clinical deterioration in patients with 
COVID-19. Additional studies focused on different 
waves and variants of COVID-19 spread are needed 
to validate the predictive accuracy of the evaluated 
scores, considering vaccination status as well.

 

CONCLUSIONS

   The COVID-19 pandemic led to overwhelming 
complex clinical cases, with a significant percentage 
of patients rapidly deteriorating. Our data on a single-
center retrospective cohort of hospitalized COVID-19 
patients highlights the potential of integrating machine 
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learning algorithms into routine clinical practice as a 
valuable tool for analyzing complex clinical scenarios 
comprehensively. This emphasizes the importance 
of leveraging ML methods to predict clinical 
deterioration in COVID-19 patients, particularly in 
predicting the need for oxygen supplementation and 
mechanical ventilation.
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