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Additive manufacturing (AM), one of the emerging disruptive technologies, is gaining 

popularity not only in rapid prototyping but also in manufacturing of complex shapes and 

dimensions. Artificial intelligence (AI) is the intelligence exhibited by computer systems to 

perform complex tasks such as learning, reasoning, decision making and problem solving. 

Machine learning (ML) is a subset of artificial intelligence which enables AI to imitate human 

learning process by using data and algorithms. The concept of machine intelligence which 

helps the advanced computing technologies to interact with the environment and highlights 

the intersection of AI and ML.  The aim of this review article is to provide comprehensive 

information about the application of AI and ML in various additive manufacturing processes 

for different activities in order to improve the performance of the operation. Also, it describes 

the application of other advanced technologies such as Internet of Things (IoT), Digital Twins 

(DT) and Block Chain Technology to augment the additive manufacturing in producing quality 

products. Further, the article explains the various challenges that are encountered and the 

certain areas need to be addressed in future for the enhancement of quality product 

production by the application of these technologies in design, manufacturing and quality 

assurance. 
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1. Introduction  
 

     The 4.0 industrial revolution has paved significant 
changes in manufacturing and other industrial sectors 
with the usage of automation and data communication. 
Integration of advanced technologies such as data 
analytics, industrial internet of things (IIoT), machine 
learning (ML), artificial intelligence (AI) and robotics 
along with the advanced digital manufacturing 
technologies has created an efficient system as shown in 
Figure 1. This interconnectivity has tremendously helped 
in transferring the knowledge between the human and 
machines effectively [1]. Large scale manufacturing 
industries have started implementing the AI and ML 

techniques but not in Micro, Small, and Medium 
enterprises (MSME) due to lack of investment, lack of 
data availability etc., [2]. Additive manufacturing (AM) is 
an emerging manufacturing technology used to fabricate 
complex shaped and custom based components by 
printing layer by layer. It is also known as 3D printing, 
Solid freeform manufacturing and Layered 
manufacturing [3]. The advantages of AM help in 
sustainable production that can reduce the 
environmental adverse effect and utilize the optimum 
natural resources [4]. 
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Figure 1. Essential Technologies for Industry 4.0 

In AM, the first step is to create a model of a part to be 
printed using either a modeling software or the image 
obtained from the scanner. The data from this is 
transformed into a standard tessellation format (STL) is 
the second step. In third step, using slicing software, this 
file format is sliced into number of layers with a defined 
thickness and finally it is fed into the appropriate 3D 
printing machine [5]. Due to its various advantages, it is 
expected in near future that the needed product can be 
printed in home using a 3D printer by purchasing the 
digital computer aided design (CAD) model through 
online [6]. Researchers are focusing on developing a 
newer material especially composites, light weight 
material for Fused deposition modelling process and 
optimizing the process parameters. Since the mechanical 
properties of the parts made using industrial grade 
plastics are approximately 50% when compared with the 
parts manufactured by injection molding process, lot of 
scope for future research exists [7]. The application of AI 
and ML is used to predict the desired outputs in 
agriculture [8] and healthcare industries [9, 10]. Also, the 
space privatization in recent decades provides the 
potential usage of the latest technologies such as AI, ML, 
Quantum technology and AM in Mars exploration 
activities [11]. 

2. Application of ML and AI in additive manufacturing 

2.1. Manufacturing 

     The activities of manufacturing industry depend on 
the technologies which are data-driven and utilize the 
deep learning (DL), a subset of Machine learning (ML), 
for making efficient decision and optimization of the 
manufacturing processes. The manufacturing units use 
ML and DL in product development, process planning, 
logistics, fault assessment, quality assurance, reliability 
analysis, predictive maintenance and robotics [12-15]. 
Large number of experiments and simulations are 
required for studying the properties of the printed parts 
and optimization of process parameters and hence the 
time and the cost involved are very high when adopting 
new 3D printers instead of existing printer. To overcome 
this challenge, Sen Liu et al. [16] have proposed a data-

mining assisted ML technique using previously acquired 
data from the existing printer.  

2.1.1Dimensional variation 

     The quality of the fusion deposition modeling (FDM) 
printed parts are predicted by assessing the dimensional 
variations between the model created in Computer aided 
design (CAD) and the actual part produced using the data 
that are collected from the sensors by ML algorithms. 
Random forest (RF), Gradient boost (GB), Extreme 
gradient boosting (XGB), Light gradient boosting 
machine (LGBM), Linear regression (LR), Decision tree, 
Ridge, Lasso and AdaBoost are ML algorithms used for 
this purpose [17]. Zeqing Jin et al. [18] demonstrated an 
autonomous fused deposition modeling platform to 
monitor in-situ and adjust the conditions of printing 
based on ML algorithm training to achieve the better 
quality of the printed parts. Residual networks (ResNet) 
was used to train the convolution neural networks (CNN) 
model of classification due to its excellent performance 
on complex MNIST image data sets. Weizhe Tian et al. 
[19] proposed a virtual model using ML technique to 
assist AM to formulate a scheme for quantifying the 
errors due to manufacturing imperfections such as 
waviness, node dislocation and variation in radius which 
greatly affect the forming performance of the composite 
structures.  

2.1.2 Deposition of bead geometry 

To implement AI and ML for melt pool analysis in 
additive manufacturing for the prediction of accuracy 
and quality of the fabricated component, many 
challenges are to be addressed by the researchers which 
is presented in Figure 2. Won-Jung Oh et al. [20] have 
utilized ML techniques to study the bead geometry to 
solve the irregular deposition and deviation in the arc 
striking zone in wire arc additive manufacturing 
(WAAM). Wire feed speed (WFS), Travelling speed (TS) 
and Layer thickness are the input parameters was 
considered. Python language was used for programming 
and the packages such as Scikit-learn, Pandas, Numpy, 
and Matplotlib were used for machine learning 
calculations. In WAAM, without considering the central 
angle if the bead is deposited then the shape may be 
distorted due to the deposition in further layers. To 
overcome this problem, Dong-Ook Kim et al. [21] 
employed SVM classifier to optimize the geometry of the 
bead. Jan Patrik et al. [22] have addressed the 
implementation of AI using gated recurrent unit (GRU), a 
recurrent neural network technique, to analyse the 
shape of the deposited weld bead along the curved path 
in WAAM. Melt pool characterization was done using 
MeltpoolNet, a developed suite of ML methods in metal 
additive manufacturing. This is used to predict the 
geometry of the melt pool such as width, length and 
depth and also the types of defects such as lack of fusion, 
balling and keyhole [23].  
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Figure 2. Challenges in implementing AI and ML in melt 
pool analysis  

2.1.3 Process control 

ML was employed to predict the mechanical performance 
of composite material parts fabricated using VAT 
photopolymerization method. This prediction helps in 
reducing or eliminating the elaborate testing after 
manufacturing resulting in speeding up of product 
development cycle [24]. Partial least squares regression 
(PLSR), a supervised learning technique, was used for 
predicting the manufacturing parameters in laser 
powder bed fusion (LPBF) which helps in online process 
control for improving the quality of the manufactured 
product [25]. Acoustic emission (AE) signals are used to 
monitor the process effectively and control the quality of 
part fabricated by different methods of manufacturing. 
But, in case of laser additive manufacturing, it is imposing 
hardship in processing AE signals due to its high 
dynamical characteristics. To overcome this, AI was 
employed to process the large data within a considerable 
time by Kilian Wasmer et al. [26] and also proposed an 
alternate AI method to reduce the number of data 
required for training. Jan Zenisek et al. [27] presented a 
merging data stream approach which is based on ML in 
laser metal deposition, one of the AM methods. The 
following three steps were involved: 1) Data stream 
classification based on models using ML; 2) Use of 
Algorithms for merging the data stream; and 3) 
Validation based on virtual sensor. Since AM is a complex 
and multi-input and output process with a high level of 
uncertainity, the use of proportional-integral-derivative 
(PID) controller and its formulation is a challenging one 
in process control. Reinforcement learning (RL), a ML 
model, is suitable for process control due to its concept 
of trial-and-error and data driven nature as well as its 
flexibility to formulate the framework and control the 
tasks [28]. 

2.2. Materials and design 

     Hyunwoong Ko et al. [29] developed a methodology by 
using a) ML to extract the predictive manufacturability 
knowledge from AM data; b) knowledge graphs to store 
the previous as well as the new AM knowledge; and c) 
gained knowledge to construct the design rules for laser 

powder bed fusion which is one of the additive 
manufacturing processes.  

2.2.1 Material structure 

Controlling and understanding the different materials 
and design of parts degrees of freedom in AM using ML 
techniques greatly reduce the time, hence the cost, and 
optimize the process. The problems encountered in AM 
process may be due to the composition of selected alloy 
which impacts on the quality because of rapid thermal 
variation causing constituent element vaporization [30]. 
Chi Wu et al. [31] put forward a derivative-aware neural 
network (DANN), a ML technique, to develop a design 
framework for lattice-based multiscale structures. DANN 
was used to optimize the design due to its computational 
efficiency in designing the non-uniform lattice structures 
over other conventional optimization techniques. Petros 
Siegkas [32] presented a process developing a 3D 
Titanium porous structures based on ML in additive 
manufacturing. To mimic the 3D porous materials, 
generative adversarial networks (GAN) and bag of 
features (BoF) approach were used as a combination 
techiques. For higher dimension GANs, the combination 
of deep generative ML and BoF were used as an alternate 
method. Even though the method is successful in 
fabricating the porous structures, it is unsuccessful in 
regular lattice structures and closed cell foams. 

2.2.2 Design and process optimization 

Multiscale modeling, which is generally expensive 
computationally, in combination with the ML was 
developed to reduce the cost of computation. At the same 
time, provide a detailed analysis of a newly formed 
processes in the context of designing the catalytic 
reactors used in chemical industries. Additive 
manufacturing helps in converting the design from the 
results of the above combined methods into prototyping 
and production of custom based geometries [33]. Afdhal 
et al. [34] used ML to develope a model to establish a 
relationship between the parameters of design and the 
required properties and also to obtain the optimum 
design parameters in case of hexachiral structures 
fabricated using VAT Photopolymerization (VPP). 
Gaussian Process Regression (GPR) was employed for 
construction of a model for porosity and poisson ratio 
and sensitivity analysis was carried out using Global 
sensitivity analysis (GSA) and Shapley additive 
explanation (SHAP) to understand their effect on design 
parameters. Zeqing Jin et al. [35] used ML techniques to 
explore the 3 main stages of AM such as design, process 
parameters selection and its effects and anomaly 
detection like inconsistency, inaccuracy and porosity etc. 
It was stated that the challenge lies in investigation of the 
constrained obtained from real time experimentation 
and inclusion of these in design phase. 
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2.3. Properties 

     Rajat Neelam et al. [36] predicted tensile and flexural 
strength of FFF 3D printed High density polyethylene 
(HDPE) based foam using six ML algorithms out of which 
two algorithms XGBoost and LightGBM as ensemble-
based and other four MLBox, TPOT, AutoSKL, and 
H2OAutoML as automated ML algorithms. The 
automated ML is more effective than the traditional ML 
due to reduction in time to build the model. Ruijun Cai et 
al. [37] applied six ML methods such as Decision tree, 
Support vector regression (SVR), Random forest, ANN, K 
Nearest neighbour (KNN) and Extreme gradient boosting 
(XGB) to predict the dynamic mechanical properties of 
printing filament extrusion specimens manufactured 
using different materials and different process 
parameters. The evaluation of the models was carried 
out using Coefficient of determination, Mean absolute 
error (MAE), Root mean square error (RMSE), and 
Median absolute error. 

     Jorge Lizarazu et al. [38] applied ML algorithms to 
predict the stress-strain curves for mild steel based on 
the trained microstructural characteristics and also 
based on representative volume element (RVE) images. 
Linear regression, Ridge regression, Lasso, k- nearest 
neighbours (KNN), Decision trees, Random forest, Elastic 
net, Gradient boosting and Ada boost are multi-output 
regressors were employed. Support vector machine, 
Random forest, Feedforward neural network, 
Convolution neural networks, Adaptive network-based 
fuzzy system and Physics-informed neural networks 
(PINN) are the ML strategies were employed to predict 
the fatigue life of the additively manufactured materials 
and only rando forest was used to predict the rate of 
fatigue crack growth [39]. Dazhong Wu et al. [40] have 
developed a online system to monitor the process and a 
model using random forest to predict the surface 
roughness of the parts made by FDM process. Based on 
the success of the developed predictive model which 
yielded a high accuracy with the validation error of 
5.90%, it was suggested to extend the model in other 
additive manufacturing processes also for the same 
purpose. 

     Amit Kumar Ball and Amrita Basak [41] estimated the 
high-fidelity transfer of heat and predicted the thermal 
distortion using AI based model in Multi-laser powder 
bed fusion (ML-PBF) process. Feed forward neural 
networks was used due to its advantages that they can 
manage the high dimensional and non-linear data 
effectively. Munish Kumar Gupta et al. implemented 
novel ML technologies to predict the tribological 
characteristics mainly wear in metal additive 
manufacturing. Convolutional neural networks (CNN), 
Attention based CNN (ABCNN) and CNN -Long short-
term memory (CNN-LSTM) methods of classifiers were 
used for this purpose [42] and concluded that the ABCNN 
provided better performance than the other two 
classifiers. 

2.4. Defects 

     DL technique is an ideal method in developing the 
intelligent monitoring system in Electron beam melting 
(EBM) process due to its ability to deal easily in selection 
of features which is very important for achieving 
accurate results. Léopold Le Roux et al. [43] used five 
deep learning algorithms such as AlexNet, SqueezeNet, 
ResNet, DenseNet and VGGNet to identify the bulging and 
pores defects occurring in EBM. In order to predict the 
height of a part and porosity, Jeong Ah Lee et al. trained 
the Gaussian process regression (GPR) model using the 
input parameters such as scanning speed, feed rate and 
power of laser in laser metal deposition process. Also, to 
categorize the defects, Support vector machine (SVM) 
model was trained using the same input process 
parameters. Additionally, the explainable machine 
learning (xML) was utilized in both above said methods 
to predict and analyze the relative importance of the 
different input features [44]. 

     Rodríguez-Martín et al. [45] used ML techniques to 
predict the defect length from the thermography output 
data in additive manufactured Nylon and Poly lactic acid 
(PLA) parts. Linear regression, Gaussian regression and 
Support vector machine are the three algorithms used for 
prediction and MAE, RMSE, and Correlation coefficient 
are the statistical techniques employed for checking the 
fitness of the learning models. Christian Gobert et al. [46] 
have developed and implemented a strategy to predict 
defects using supervised ML in the parts manufactured 
by powder bed fusion. Melt pool morphologies were 
studied in laser powder bed fusion to detect the porosity 
and balling defects using computer vision and the 
unsupervised ML method was employed to differentiate 
the between the melt pools that were observed [47]. Gas 
porosity, Residual stress and distortion, Crack and 
delamination, Anisotropy, Undercutting and Humping 
are the defects observed in the parts produced by WAAM. 
In order to obtain a defect free parts with high quality, it 
is very much important to monitor and control the 
process. AI techniques are used to monitor the WAAM 
process by detecting the object, recognizing and 
categorizing the image [48]. A protocol for detection of 
cracks, which causes a malicious effect among the 
observed defects on the additively manufactured part 
quality, based on acoustic emission and machine learning 
was given by Denys Y. Kononenko et al. [49]. Support 
vector with linear and squared exponential kernels, 
Logistic regression, Random forest, and Gaussian process 
are the classifier algorithms used for this purpose. 

     Meritxell Gomez-Omella et al. stated that large amount 
of data approximately 19,000 per part are generated 
during the wire laser metal deposition AM process. These 
data provide information over time about position which 
is defined by X, Y & Z coordinates, power of laser used, 
speed with which the wire is fed and the surface 
geometry after each layer printing [50]. Based on the 
information, using AI techniques of classification, the 
occurrence of porosity is detected at the early stage itself 
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and also predicted the failure due to existence of pores. 
Convolution neural network, a ML algorithm was 
employed by Tağrul özel et al. [51] to identify the defects 
from the images taken using Raspberry PI camera during 
FFF. It was concluded that the CNN could not able to 
capture the differences in colours, edges and contours 
and also could not provide the camera images for 
training purpose due to different resolutions in every 
image. Limited availability of data combined with its 
heterogeneous nature and sensitivity limits the use of 
conventional machine learning processes. Manan Mehta 
and Chenhui Shao [52] developed a method based on 
federated machine learning of semantic segmentation to 
lessen the amount of data availability to train the model 
for detecting the defects in laser powder bed fusion 
process. It was concluded that the variety of data within 
and across the different clients improves the 
performance of the federated learning (FL) and also the 
training cost is lesser than the conventional centralized 
learning (CL). 

2.5. Medical 

    Additive manufacturing is a significant method for 
manufacturing scaffolds with uniform pore size and 
homogeneous distribution of pores [53]. Aikaterini 
Dedeloudi et al. discussed the implementation of ML in 
AM for fabrication of precise custom based drug delivery 
systems. Also, the different ML techniques and 
algorithms used in various additive manufacturing 
processes and the parameters analyzed have been 
explained [54]. 3D printing combined with artificial 
intelligence, known as closed loop AI printing, is a latest 
manufacturing technology to fabricate accurate and 
precise parts by controlling and modifying the process 
parameters based on the feedback from the process. This 
application of AI in AM helps in manufacturing of patient-
based implants and also to create the organ models for 
preoperative training [55]. The AI technique was 
employed to optimize the process parameters to achieve 
the thermomechanical properties of the orthopedic plate 
fabricated using Poly lactic acid (PLA) coated with nano-
fibers by AM [56]. Due to non-availability of practical 
design optimization approaches, the full potential of 
ceramic AM is not explored in biomedical industries. To 
meet this gap, ML technique was proposed to optimize 
the design of ceramic scaffolds by Chi Wu et al. [57] in 
lithography-based ceramic manufacturing (LCM). U-net 
NN, a convolution neural network, was employed to 
predict the varying local strain and utilized the algorithm 
of stochastic gradient descent with momentum (SGDM) 
as optimizer. 

3. Application of other advanced technologies in 
additive manufacturing 

The evolution of Industry 4.0 enables the digital 
transformation and creation of new business models in 
industries with the applications of different advanced 
technologies as presented in Figure 3. 

 

Figure 3. Applications of other advanced technologies 

3.1. IOT, Edge computing, and Block chain  

     David Miller et al. [58] presented a system using 
Internet of Things (IoT) and Edge computing technique 
to collect data and analyze in laser based additive 
manufacturing (LBAM). From these data, the occurrence 
of defects was identified using ML process. Erik Westphal 
et al. described the theoretical aspects to be considered 
for improving the quality in metal extrusion (MEX), one 
of the additive manufacturing processes, by combining 
the block chain technology. Also, the authors explained 
the design and development of the quality management 
based on block chain technology for mapping the digital 
part record of the value chain in MEX and suggested the 
future possible work needs to focused in this context 
[59]. Block chain technology was employed to address 
the following two challenges in additive manufacturing: 
(i) protection of copyright for the manufacturing 
company on the design of the digital product; and (ii) 
authentication and certification of spare parts 
manufactured by AM to subcontractors [60]. 
Gunasekaram et al. [61] expressed that the additive 
manufacturing has not yet gained popularity 
commercially due to the following reasons: i) poor 
repeatability of the quality parts; ii) high wastage due to 
trial-and-error in determining the optimum process 
parameters; and iii) higher cost involved. However, AI 
along with the advanced technologies application in AM 
significantly helpful in overcoming the above said 
disadvantages.  

3.2. Digital twins 

The application of AI through digital twins (DT), a virtual 
replicate of the physical process, in AM further reduce 
the cost by eliminating fully or partially the intervention 
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of human and also wastage of material and time. Slim 
Krückemeier and Reiner Anderl [62] introduced a new 
approach for quality assurance in AM where the existing 
approaches cannot be used effectively. The digital master 
When used in AM will represent all data information with 
respect to design, pre-process steps, and the digital 
shadow represents the all parameters data observed 
during AM process. Due to the instability of the AM 
process, the defects may exist in the parts produced even 
if the appropriate process parameters are used. To 
overcome this, Raven T Reisch et al. [63] presented a 
smart manufacturing method using digital twins which 
helps in compensating the previously occurred defects 
by modifying the process parameters accordingly in 
WAAM. 

Purely a sensor data driven analysis for monitoring the 
defects existing in laser powder bed fusion (LPBF) has 
the following drawback: (i) latency in obtaining and 
analysing the data from the sensors; (ii) insufficient 
generalization of the model for different part shapes and 
dimensions; and (iii) nature of obtaining the data is 
resource-intensive. To overcome these drawbacks, 
Yavari et al. [64] developed a strategy consists of digital 
twin which integrates the physics-based simulation and 
in-situ sensor data to provide feedback to correct any 
possible anomalies. Carla Susana A Assuad et al. [65] 
proposed a framework to combine AM process in 
reconditioning within the pattern of circular factory 
system, a system devised by the principles of reuse, along 
with the cyber-physical systems (CPS). The operational 
management of a circular factory in CPS is augmented by 
digital twins connected with the CPS and manufacturing 
execution systems (MES). Fabio Oettl et al. [66] 
attempted to find the added monetary value using digital 
technologies such as digital twin or digital part file (DPF) 
in AM. To evaluate the benefits of digital technologies, 
three following use cases were identified: (a) Production 
with possible advantages of efficiency of the process and 
quality of the DPF; (b) Decentralized production which 
provides a room for exchange of standardized data 
between the different production units; and (c) 
Certification where the simplification of component 
certification is effective by the additional data provided 
by DPF. The calculation of utility of these use cases help 
in avoidance of additional costs. 

By using the DT, the printing process can be simulated, 
relevant process parameters can be analyzed and any 
deviations from the expected outcomes may be 
predicted. Also, using ML algorithms, the DT will enhance 
the performance of printing by improving the efficiency 
of input process parameters and hence the quality 
products are manufactured consistently [67]. But, the 
digital files containing the specifications and 
manufacturing instructions of a part has become the 
target for the cyber criminals. Digital twins along with 
the block chain technology provides integrity, 
traceability and security during the entire digital supply 
chain from the file developer to the end user [68]. 

4. Challenges in implementing ML and AI in AM 

     Some of the challenges encountered in implementing 
the AI and ML in additive manufacturing are summarized 
below: 
The performance of AI and ML methods depend on the 
large dataset in predicting the required output. Since the 
data available in 3D printing process are limited, the 
prediction becomes less accurate. Also, data accessibility 
and its quality which is sufficient enough to develop a 
dependable ML model is a serious concern. Using the 
correct data after removing the noise is a crucial step in 
ML methods for accurate prediction. In 3D printing, 
modelling and processing of images of thermography is 
an issue due to the generated large amount of data to 
handle. Also, the variation in size and location of the melt 
pool during the process require additional effort to 
match precisely for the better performance of the 
prediction methods. The complexity of physical change in 
metal 3D printing process causes an issue on 
repeatability of the printed parts which affects the 
accuracy of prediction. The quality of printed each layer 
has a significant effect on the overall quality of the part 
and hence there is a need for proper data acquisition 
while printing each layer for precise prediction using ML 
techniques. 

5. Future work  

     The need for research to establish a exhaustive 
database of various arc-based hardware systems and 
also the details of parts made by additive manufacturing 
using different metals to develop a precise operative 
rules and to ensure the quality of the parts based on their 
forming characteristics. ML based assistance, learning 
and training systems need to be developed to assist and 
train the workers for better performance. Refinement of 
ML techniques are to be explored to implement in 
optimizing the process parameters, predicting the 
properties of the metal, detecting anomaly and 
controlling the deviation in the size and shape of the 
manufactured parts especially in case of metal additive 
manufacturing (MAM). A model to analyze the 
reconstruction of multi- bead and multi-layer welds in 
WAAM. Also, influence of the parameters such as radius 
of the curved paths, wire feed rate, welding speed, and 
temperature of the surface needs to be addressed. 
Implementation of AI techniques in hybrid 
manufacturing, a combination of conventional 
manufacturing process and additive manufacturing to 
optimize the process. Future research in combining 
artificial intelligence, Additive manufacturing and Edge 
computing to bring efficient AM product life cycle system 
need to be explored. 

6.Conclusion 

     Eventhough, lot of computing algorithms were used in 
additive manufacturing processes, the selection of 
specific algorithm for a particular application is not yet 
defined clearly. Also, the application of these advanced 
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technologies to various methods of additive 
manufacturing is very much limited and need to be 
explored due to the complexity of the process. The 
various process parameters influencing the quality of the 
product produced are not fully considered to obtain the 
optimum setting parameters based on the specific 
application. Since the data available in additive 
manufacturing is limited, need for development of 
algorithms to achieve the better accuracy in using AI and 
ML. The analysis and prediction of only few defects that 
can occur in AM processes are addressed and other 
possible defects such as insufficient interlayer bonding, 
warpage etc. are in the need of attention. Use of these 
technologies in multi-material AM is another area which 
impose more challenges. Further, the emerging 
technologies such as Block chain, Digital twins etc. are to 
be effectively applied to improve the performance of AM 
from design to manufacturing. 
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