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ABSTRACT. The primary objective of this paper is to introduce and examine the new class of discrete orthogonal
polynomials called U–Bernoulli Korobov-type polynomials. Furthermore, we derive essential recurrence relations and
explicit representations for this polynomial class. Most of the results are proven through the utilization of generating
function methods. Lastly, we place particular emphasis on investigating the orthogonality relation associated with
these polynomials.
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1. INTRODUCTION

The study of discrete Appell polynomials is significant in mathematics due to their spe-
cial properties and wide range of applications. Analogous to continuous Appell polynomials,
they feature a discrete shift operator as their primary differential operator. Moreover, they
are closely related to orthogonal polynomials, such as Hermite and Chebyshev polynomials,
which are vital in areas like approximation theory and quantum mechanics. Together, these
polynomials contribute to the development of special functions that are applied across diverse
fields, including mathematics, physics, engineering, and statistics (see, [7, 10, 17]).

In this context, let f : Z → R be any function of the natural numbers, and consider the
discrete operator ∆f(x) = f(x + 1) − f(x). This operator plays a crucial role in the defini-
tion and analysis of discrete Appell polynomials, further highlighting their importance in both
theoretical and applied mathematics.

A discrete Appell sequence {pn(x)}∞n=0 is a sequence of polynomials such that (see, [6]):

∆pk(x) = pk(x+ 1)− pk(x) = kpk−1(x), k ≥ 1.

It is known that a Taylor series expansion can define Appell sequences (see, [1]):

(1.1) A(z)exz =

∞∑
n=0

Pn(x)
zn

n!
,

where A(z) is a function analytic at z = 0 with A(0) ̸= 0; similarly, discrete Appell sequences
can be defined by a Taylor generating expansion
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(1.2) A(z)(1 + z)x =

∞∑
n=0

pn(x)
zn

n!
,

where A(z) is a function analytic at z = 0 with A(0) ̸= 0.
There is a substantial body of mathematical literature devoted to studying the families of

Appell sequences. Typical examples include the trivial case
{
xk
}∞
k=0

, whose generating func-
tion is given by (1.1) with A(z) = 1, and the Bernoulli polynomials, which were used by Euler
in 1740 to sum

∑∞
n=1 1/n

2k. Their generating function is (1.1) with A(z) = z
ez−1 .

In the case of discrete Appell sequences, the trivial case, obtained from (1.2) with A(t) = 1,
is the family

{
xk
}∞
k=0

, where

xk = x(x− 1) · · · (x− k + 1) =

k−1∏
j=0

(x− j)

is the falling factorial (various notations have been used for these polynomials; here we fol-
low [11] and [8, p. 47]). The discrete counterpart to the Bernoulli polynomials is the so-called
Bernoulli polynomials of the second kind (see [3]), denoted by bk(x), which were indepen-
dently introduced by Jordan [9] and Rey Pastor [16] in 1929. These polynomials, also known
as Rey Pastor polynomials (see, [2]), are now defined by a generating function as in (1.1) via

z

log(1 + z)
(1 + z)x =

∞∑
k=0

bk(x)
zk

k!
.

We consider the discrete orthonormal polynomials {p(x)}n≥0 corresponding to a positive mea-
sure with respect to a discrete weight ω(k) and satisfies the conditions

(1.3)
∞∑
k=0

pn(k)pm(k)ω(k) = δm,n,

where δm,n is the Kronecker delta (cf., [14, pp. 586]).
The moments µn of the discrete weight ω(k) in (1.3) are given by

µn =

∞∑
k=0

knω(k), n ≥ 0.

In the special case when the discrete weight has the special form

ω(k) = c(k)zk, z > 0,

which is the case for the Charlier polynomialsCn(k; z) and the Meixner polynomialsMn(k;α; z)
(see, [5, 13]), then

µn(z) = µn =

∞∑
k=0

knc(k)zk.

Considering the aforementioned context, the main objective of this work is to define and study
the discrete U -Bernoulli Korobov-type polynomial. We study the algebraic and differential
properties associated with this particular family of polynomials. Furthermore, we introduce
an orthogonality relation that satisfies these polynomials.
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2. NOTATION AND BACKGROUND

Throughout this paper, let N,N0,Z,R, and C denote, respectively, the set of all natural num-
bers, the set of all non-negative integers, the set of all integers, the set of all real numbers, and
the set of all complex numbers.

The Korobov polynomialsKn(x;λ) of the first kind are given by the generating function (cf.,
[12])

λz

(1 + z)λ − 1
(1 + z)x =

∞∑
n=0

Kn(x;λ)
zn

n!
.

When x = 0, Kn(λ) = Kn(0, λ) are called the Korobov number.
In [4], L. Carlitz considered the degenerate Bernoulli polynomials which are given by the

generating function to be

(2.4)
z

(1 + λz)
1
λ − 1

(1 + λz)
x
λ =

∞∑
n=0

Bn(x;λ)
zn

n!
.

From (2.4), we have limλ→0 Bn(x;λ) = Bn(x), (n ≥ 0).
Additionally, for n ∈ N0, we defined the new family U–Bernoulli polynomials Mn(x) of de-

gree n in the variable x by the power series expansion at 0 of the following generating function
(see, [15]):

f(x; z) =
z

e−z − 1
e−xz =

∞∑
n=0

Mn(x)
zn

n!
, |z| < 2π.

We have for the first few U–Bernoulli polynomials Mn(x), that

M0(x) = −1, M3(x) = x3 − 3

2
x2 +

1

2
x,

M1(x) = x− 1

2
, M4(x) = −x4 + 2x3 − x2 +

1

30
,

M2(x) = −x2 + x− 1

6
, M5(x) = x5 − 5

2
x4 +

5

3
x3 − 1

6
x.

When x = 0 in (2), the U -Bernoulli numbers are defined by the generating function

f(z) =
z

e−z − 1
=

∞∑
n=0

Mn
zn

n!
, |z| < 2π.

Some of these numbers are

M0 = −1; M1 = −1

2
; M2 = −1

6
; M3 = 0; M4 =

1

30
; M5 = 0.

3. U–BERNOULLI KOROBOV-TYPE DISCRETE POLYNOMIALS

In this section, we introduce the U -Bernoulli Korobov-type discrete polynomials and derive
several key results for these polynomials.

Definition 3.1. The new family of U–Bernoulli Korobov-type discrete polynomials Pn(x) of degree n
in x ∈ N are defined by the generating function

(3.5)
(

z

e−z − 1

)
(1 + z)x =

∞∑
n=0

Pn(x)
zn

n!
, |z| < 2π.
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The first six U–Bernoulli Korobov-type discrete polynomials Pn(x), are

P0(x) = −1, P3(x) = −x3 + 3

2
x2 − x,

P1(x) = −x− 1

2
, P4(x) = −x4 + 4x3 − 4x2 + 3x+

1

30
,

P2(x) = −x2 − 1

6
, P5(x) = −x5 + 15

2
x4 − 65

3
x3 +

55

2
x2 − 33

6
x.

For x = 0 in (3.5) the U–Bernoulli Korobov-type discrete numbers Pn(0) are defined by the
generating function

(3.6)
z

e−z − 1
=

∞∑
n=0

Pn
zn

n!
, |z| < 2π.

Some of these numbers are

P0 = −1; P1 = −1

2
; P2 = −1

6
; P3 = 0; P4 =

1

30
; P5 = 0.

A consequence of (3.5) and (3.6) is the following proposition, which highlights several proper-
ties satisfied by this family of polynomials.

Proposition 3.1. The U -Bernoulli Korobov-type discrete polynomials in the variable x, they satisfy the
following relations

Pn(x+ y) =

n∑
k=0

(
n

k

)
(y)kPn−k(x),(i)

Pn(x) =

n−1∑
k=0

n

(
n− 1

k

)
(x)k +

n∑
k=0

(
n

k

)
Pk(x),(ii)

n∑
k=0

(
n

k

)
Pk(x+ y)Pn−k =

n∑
k=0

(
n

k

)
Pn−k(x)Pk(y),(iii)

Pn(x) = Pn +

n−1∑
k=0

n

(k + 1)

(
n− 1

k

)
(x)k+1Pn−1−k,(iv)

Pn(x) =

∞∑
k=0

(
x

k

)
n!

(n− k)!
Pn−k,(v)

Pn(x) = Pn(x+ 1)− nPn−1(x).(vi)

Proof. (see (iii)). Let’s consider the following expressions(
z

e−z − 1

)
(1 + z)x =

∞∑
n=0

Pn(x)
zn

n!
(3.7)

and (
z

e−z − 1

)
(1 + z)y =

∞∑
n=0

Pn(y)
zn

n!
.(3.8)
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Of (3.7) and (3.8), we have[
z

e−z − 1

]2
(1 + z)x+y =

( ∞∑
n=0

Pn(x)
zn

n!

)( ∞∑
n=0

Pn(y)
zn

n!

)
( ∞∑

n=0

Pn
zn

n!

)( ∞∑
n=0

Pn(x+ y)
zn

n!

)
=

( ∞∑
n=0

Pn(x)
zn

n!

)( ∞∑
n=0

Pn(y)
zn

n!

)
∞∑

n=0

n∑
k=0

(
n

k

)
Pn−kPk(x+ y)

zn

n!
=

∞∑
n=0

n∑
k=0

(
n

k

)
Pn−k(x)Pk(y)

zn

n!

n∑
k=0

(
n

k

)
Pn−kPk(x+ y) =

n∑
k=0

(
n

k

)
Pn−k(x)Pk(y).

Therefore,
n∑

k=0

(
n

k

)
[Pk(x+ y)Pn−k − Pn−k(x)Pk(y)] = 0.

□

Theorem 3.1 (Differential expressions). For n ∈ N, let {Pn(x)}n≥0 be the sequences ofU–Bernoulli
Korobov-type discrete polynomials in the variable x ∈ N, they satisfy the following relations

(1)

(n− 1)Pn(x)− nψ(x; z)
∂

∂x
Pn−1(x) = 0,

where

ψ(x; z) =

[
x

(z + 1) log(z + 1)
+

e−z

(e−z − 1) log(z + 1)

]
,

(2)
∂Pn(x)

∂x
=

n−1∑
k=0

n

(
n− 1

k

)
(−1)k

k!

k + 1
Pn−k−1(x).

Proof. For the proof of (1). Consider the following equations

L(x; z) =

∞∑
n=0

Pn(x)
zn

n!
,(3.9)

L(x; z) =
z

e−z − 1
(1 + z)x.(3.10)

Partially differentiating with respect to z in (3.9) and (3.10) , the result is

∂L(x; z)

∂z
=

∞∑
n=0

Pn(x)
nzn−1

n!

and
∂L(x; z)

∂z
=

(1 + z)x

e−z − 1
+

[
z(1 + z)x

e−z − 1

]
x

1 + z
+

[
z(1 + z)x

e−z − 1

]
e−z

e−z − 1
.(3.11)

Partially differentiating with respect to x in (3.10) , we have

∂L(x; z)

∂x
=

z log(z + 1)(1 + z)x

e−z − 1
.
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Of (3.11), we have

0 =
∂L(x; z)

∂z
− (1 + z)x

e−z − 1
−
[
z log(z + 1)(1 + z)x

e−z − 1

]
x

(1 + z) log(z + 1)

−
[
z log(z + 1)(1 + z)x

e−z − 1

]
e−z

(e−z − 1) log(z + 1)

0 =
z∂L(x; z)

∂z
−
[

zx

(1 + z) log(z + 1)
+

ze−z

(e−z − 1) log(z + 1)

]
∂L(x; z)

∂x
− z(1 + z)x

e−z − 1

0 =

∞∑
n=0

Pn(x)
nzn

n!
−

∞∑
n=0

[
x

(1 + z) log(z + 1)
+

e−z

(e−z − 1) log(z + 1)

]
∂

∂x
Pn−1(x)

nzn

n!

−
∞∑

n=0

Pn(x)
zn

n!

0 = (n− 1)Pn(x)−
[

x

(1 + z) log(z + 1)
+

e−z

(e−z − 1) log(z + 1)

]
n
∂

∂x
Pn−1(x).

This completes the proof of (1).
For the proof of (2). Partially differentiating with respect to x in (3.1), we have(

z

e−z − 1

)
∂

∂x
[(1 + z)x] =

∞∑
n=0

∂

∂x
Pn(x)

zn

n!( ∞∑
n=0

Pn(x)
zn

n!

)( ∞∑
n=0

(−1)n

n+ 1
zn+1

)
=

∞∑
n=0

∂

∂x
Pn(x)

zn

n!

∞∑
n=0

n−1∑
k=0

Pn−1−k(x)(−1)k
(
n− 1

k

)
k!

(k + 1)
n
zn

n!
=

∞∑
n=0

∂

∂x
Pn(x)

zn

n!
.

Comparing the coefficients of
zn

n!
in both sides of the equation, the result is

∂

∂x
Pn(x) =

n−1∑
k=0

n

(
n− 1

k

)
(−1)k

k!

k + 1
Pn−k−1(x).

□

4. ORTHOGONALITY RELATION OF THE U -BERNOULLI KOROBOV-TYPE DISCRETE
POLYNOMIALS

In this section, we will present a comprehensive demonstration of the orthogonality rela-
tionship associated with the U -Bernoulli Korobov-type discrete polynomials.

Theorem 4.2. The U–Bernoulli Korobov-type discrete polynomials Pn(x), fulfill the following orthog-
onality relation

∞∫
0

Pm(x) Pn(x) dµ(x) = (−1)n−1m!n δm,n,

where

dµ(x) = ω(x, λ1, σ1)dx =
(1− eλ1)(1− eσ1) e

x!
dx,

with x ∈ N , z, v ∈ C, and λ1 ∈ Re(z), σ1 ∈ Re(v).
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Proof. Let’s consider the following equality

L(x, z) =

(
z

e−z − 1

)
(1 + z)x =

∞∑
n=0

Pn(x)
zn

n!
, |z| < 2π.

Then

L(x, z) =

(
z

e−z − 1

)
(1 + z)x(4.12)

=

∞∑
n=0

n∑
k=0

(
x

k

)
Pn−k

(n− k)!
zn

L(x, z) =

∞∑
n=0

Ln(x)z
n,(4.13)

where we get

Ln(x) =

n∑
k=0

(
x

n

)
Pn−k

(n− k)!

Ln(x) =

n∑
k=0

1

k!
(x(x− 1)(x− 2) · · · (x− k + 1))

Pn−k

(n− k)!
.(4.14)

Note that (4.14) is a polynomial of degree n and Ln(x), which coincides with the so-called
U–Bernoulli Korobov-type discrete polynomial.

On the other hand, let

L(x, v) = f(v)g(x, v)

=

(
v

e−v − 1

)
(1 + v)x(4.15)

=

∞∑
m=0

m∑
k=0

(
x

m

)
Pm−k

(m− k)!
vm

L(x, v) =

∞∑
m=0

Lm(x) vm,(4.16)

where it is obtained

Lm(x) =

m∑
k=0

(
x

m

)
Pm−k

(m− k)!
.

Considering the product of (4.12) and (4.15), we obtain

L(x, z)L(x, v) =

(
z

e−z − 1

)
(1 + z)x

(
v

e−v − 1

)
(1 + v)x

=

[
zvez+v

(1− ez)(1− ev)

]
[(1 + z)x(1 + v)x]

then,

L(x, z)L(x, v) =

[
zvez+v

(1− ez)(1− ev)

]
[(1 + z)(1 + v)]

x
.
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For any k = x, we have

(−1)kL(x, z)L(x, v) =

[
zvez+v

(1− ez)(1− ev)

]
[(−1)(1 + z)(1 + v)]

k
.

Then,
∞∑
k=0

(−1)kL(x, z)L(x, v)

k!
=

zvez+v

(1− ez)(1− ev)

∞∑
k=0

[−(1 + z)(1 + v)]
k

k!

=
zvez+v

(1− ez)(1− ev)
e−(1+z)(1+v)

=

[
zv e−1

(1− ez)(1− ev)

]
e−zv.

Therefore,

(4.17)
∞∑
k=0

(−1)kL(x, z)L(x, v)

k!
=

∞∑
n=0

[
zv e−1(−1)n

(1− ez)(1− ev)

]
zn vn

n!
,

from (4.13) and (4.16) on (4.17) left side we have

(4.18)
∞∑
k=0

(−1)kLm(k , z)Ln(k , v)

k!
=

∞∑
m,n=0

∞∑
k=0

Lm(k), Ln(k)
(−1)k

k!
znvm.

From (4.17) and (4.18) we get

(4.19)
∞∑

n=0

[
zv e−1(−1)n

(1− ez)(1− ev)

]
znvn

n!
=

∞∑
m,n=0

∞∑
k=0

Lm(k), Ln(k)
(−1)k

k!
znvm.

Which gives:
∞∑

n=0

[
zv e−1(−1)n

(1− ez)(1− ev)

]
znvn

n!
=

∞∑
n=0

[
e−1(−1)n

(1− ez)(1− ev)

]
zn+1vn+1

n!

=

∞∑
n=0

[
e−1(−1)n−1

(1− ez)(1− ev)

]
nznvn

n!
.

Therefore, in (4.19) we have
∞∑

n=0

[
e−1(−1)n−1

(1− ez)(1− ev)

]
nznvn

n!
=

∞∑
m,n=0

∞∑
k=0

Lm(k)Ln(k)
(−1)k

k!
znvm,(4.20)

by comparing the coefficients in (4.20), one has

(4.21)
∞∑
k=0

Lm(x)Ln(x)
(−1)k

k!
=


(−1)n−1 e−1

n!

[
n

(1− ez)(1− ev)

]
; if m = n.

0; if m ̸= n.

In (4.21), we note that {Ln(x)}n≥0 , is a sequence of orthogonal polynomials with respect to the

weight function
(−1)k

k!
, k = 0 , 1 , 2, . . .
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Remark 4.1. We define about (4.21) the functional L as follows:

(4.22) L

[
Lm(x)Ln(x)

(−1)k

k!

]
=

(−1)n−1

n!
e−1 ψn δm,n,

where

ψn =
n

(1− ez)(1− ev)
.

Therefore (4.22) can be expressed in terms of the Riemann-Stieltjes integral as follows.

(4.23)

∞∫
0

Lm(x)Ln(x)
(−1)k

k!
dx =

(−1)n−1 e−1

n!
ψn δm,n.

In (4.13) and (4.16), we have that,

L(x, z) =

∞∑
n=0

Ln(x) z
n and L(x, v) =

∞∑
m=0

Lm(x) vm.

Therefore,

(4.24) Ln(x) =
Pn(x)

n!
and Lm(x) =

Pm(x)

m!
.

Of (4.24) and (4.23) we obtain

(4.25)

∞∫
0

Pm(x)

m!

Pn(x)

n!
dλ =

(−1)n−1 e−1

n!
ψn δm,n,

where

d λ =
(−1)k

k!
dx, k = 0 , 1 , 2, . . .

(4.26)

∞∫
0

Pm(x)Pn(x) dµ(x) = (−1)n−1 m!ψn δm,n,

where dµ(x) =
(−1)x e

x!
dx.

□
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