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ABSTRACT 

A novel approach, called modular approach, is presented in this paper making possible the closed-form solutions of the 
planar path-generating multi-link mechanisms with lower pairs. In this approach, the mechanism is viewed as a suitable 
combination of some simpler components called "modules". The design of the modules is realized by applying the so-
called Precision-Point, Subdomain and Galerkin methods. The approach is illustrated on 4-bar, slider-crank, double-slider, 
5-bar and 6-link mechanisms. Numerical results prove the effectiveness of the approach. 
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1. INTRODUCTION 
 
Analytical methods for synthesizing mechanisms can 

be classified mainly into two categories. One of them is 
the numerical iterative approach and the other is the 
closed form solution approach. Out of a desire to use high 
speed computing abilities of the computers, the tendency 
towards utilizing numerical iterative approach has usually 
been strong. For instance, Roth and Freudenstein (Roth et 
al. 1963) have applied the so called Newton Raphson 
method to solve the synthesis of geared five bar 

mechanism to pass through nine path points. Kramer and 
Sandor (Kramer et al. 1975) have referred to direct search 
techniques for minimizing a penalty function against 
violation of what they call "accuracy neighborhoods" 
around selected path points. A similar approach has been 
shown by Bakthavachalam and Kimbrell 
(Bakthavachalam et al. 1975) in path generation 
involving clearances and manufacturing tolerances. 
There are well-known limitations of the numerical 

iterative approaches.  First of all, these methods are 
crippled by serious convergence difficulties. No 
assurance regarding the convergence of an arbitrary 
starting design to a final one exists. Thus, they highly 
depend upon the suitable selection of an initial solution. 
Although they require a large computation time, they 
finally provide one single solution. On the other hand, the 
closed form solution does not possess the aforementioned 

undesirable features associated with the numerical 
iterative techniques. However, one important drawback 
of the closed form solution is the fact that the number of 
parameters, which can be taken into account in the 
synthesis procedure, is generally very limited. This 
indicates that most mechanisms, especially those which 
are of multi-link structure, display a situation where 
closed-form approach is not directly applicable due to the 

abundant number of parameters. Nevertheless, if multi-
link mechanisms can be decomposed into simpler 
components whereby closed form solution is possible, 
then the whole mechanism can be synthesized by bringing 
together in a suitable manner the design of simpler 
structural units called modules. This is the underlying 
idea behind this work. From this angle, the mechanisms 
are viewed as an appropriate combination of "modules". 

Thus, this approach is conveniently termed as a "modular 
approach".  

This paper presents the application of this approach 

on the design of path generating planar mechanisms with 
lower pairs. Illustrations of the approach have been 

shown on four bars, slider crank, double slider, 5-bar and 
six link mechanisms. The applications have been put in 
the form of computer programs. The numerical results 
indicate that the approach is an effective and efficient one. 

 

2. MODULES  
 
Planar mechanisms with lower pairs can be thought 

of as being made up of simpler components, referred to 

as "modules" hereafter in this paper, whose motion 
relationships exhibit compact forms for handling the 
design equations within the framework of the closed form 
solution. Modules which compose most planar 
constrained mechanisms can be considered as three basic 
types; namely, a dyad, a crank rocker, and a slider. Dyad 
and crank rocker have the similar property involving two 
links connected by only revolute pairs in the plane. They 
basically differ from one another in that dyad can perform 

only partial rotation whereas a crank rocker module 
involves a full revolution. Thus, where a crank drive is 
needed, this module is supplemented to another 
assemblage of links supposed to generate a given path.  
Slider module consists of a prismatic pair connected to a 
link through a revolute pair.  Now formulation and 
solution of the design equations governing each module 
have been developed as follows: 

 

2.1. Dyad Module 
 
Dyad, as shown in Fig.1, is a two-member assembly 

with two degrees of freedom. Its end point C is supposed 

to move on the given path y=f(x), x0xxn.. From the 
geometry of Fig.1, The following is written for the 
coordinate of point C within the reference frame xoy: 

 
   CosCos 4517 d+x+xx =    (1) 

y = x + x + d8 1 45Sin Sin     (2) 

 

By eliminating angle  from equations (1) and (2), the 

displacement function (G) governing the motion in the 
dyad is obtained as follows: 

 

 

 
Fig. 1. Dyad Module 
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where )(0 xh+=  and '=h(x) represents the well-defined the motion of the arm QA against the independent variable 

x.  As can be seen from equation (3), the number of available system parameters is five. Therefore, the number of design 
equations that can be written is limited by five. 
 
The problem of formulating the design can be approached from three different points of view. In one of them, the 
displacement function is set equal to zero at a number of collocation points called precision or accuracy points.  This 
approach referred to in the literature as Collocation, Precision or Accuracy point approach (F 1955; SH 1956; Kao et al. 
2006), yields the following: 

 

G(x ,d ,x ,x , ,x , y ) = 0   i = 1,2,3,4,5
0 i i1 45 7 8  ;              (5) 

 
where (xi,yi) defines the coordinates of the precision points. 
Another point of view in formulating the design is to make the average of the displacement equation (G) zero over selected 
subintervals of the function interval (x0,xn).  The number of subintervals will be equal to the number of available system 
parameters. This constitutes the so called Subdomain method (F 1955; SH 1956; Hartenberg et al. 1964; Akcali et al. 1979; 
Akcali 1983; Akcali 1987; Akcali et al. 1989), which, in the case under consideration, leads to the following equation set:  

i -1

i

x

x

0 i i
G(x ,d ,x ,x , ,x , y )dx = i = 1,2,3,4,5 1 45 7 8 0               (6) 

where (xi-1,xi) are subintervals belonging to the interval (x0,xn). 
The design of the dyad to generate the given path can also be formulated by making the displacement equation orthogonal to 
a set of weighting functions Wi(x) defined on the same interval (x0,xn) as the given path y(x). The number of weighting 
functions will be equal to that of the parameters, thus leading to the following design equations; in accordance with the so-
called Galerkin method (SH 1956; Akcali 1987): 

 

G x d x x x y W dx ii

x

xn

( , , , , , , ) ; , , , ,1 45 7 8 0 0 1 2 3 4 5

0

 = =               (7) 

Now all the design equations resulting from Precision point, Subdomain and Galerkin methods can be represented by the 

following set: 
 

1,2,3,4,5=i   0=tF+xD-xC-xB-A iiiii ;1187
                                                                                  (8) 

where: 
  D = V Cos +V Sin - D x Cos + D x Sin - D x Sin - D x Cos  i = 1,2,3,4,5i ci si ci si ci si0 0 7 0 7 0 8 0 8 0

      ;          (9) 

 
The coefficients Ai,Bi,Ci,Fi,Vci,Vsi,Dci,Dsi are calculated according to each method as follows:  
In Precision-Point approach: 
 

5,4,3,2,1
222

);2122

=
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====
i

;SinD ;CosD );Cosy+Sinx(=V
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           (10) 

 
In Subdomain method: 

A x y dx;  B xdx;  C ydx;  F dx;  V xCos + y )dx;  

V x y )dx;  D dx;  D dx;  i = 1,2,3,4,5
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In Galerkin methods: 
 

1,2,3,4,5=i dx;W2=D dx;W2=D dx;W)y+(-x2V

 dx;Wy+xVdxWF dx;Wy2C dx; Wx2B dx;Wy+xA
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In order to solve equation set (8), first t1 and x1 and then 0 are eliminated, thus reducing the set to the following form: 
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where (Ejk ,j=1,..,15,k=1,2) are constants. The solution of (13) is realized for all possible sets of (x7,x8) by first eliminating the 
term x7

4 from the set and drawing x7 from the resultant equation to be substituted back into one of the equations. Based on the 

solutions of (13) for x7,x8 , it is now a simple matter to solve for the rest of the unknowns, namely, 0 , x1 and d45. 
 

The resulting dyad designs can be analyzed first by solving  from eq’n (1) for a given value of xth , then substituting it in eq’n 
(2) to determine yac with the purpose of computing structural error e=y(xth)-yac .  
 

2.2. Slider Module 
 
One of the lower pairs to be found in planar mechanisms is the sliding or prismatic pair. Thus, in order to accomplish the 
designs of planar mechanisms involving prismatic pairs, development of the design scheme of a new type of module, referred 
to as the slider module here, is needed. 

 
Fig. 2. Slider Module 

 
The problem to be formulated here is to find the suitable dimensions of the slider module shown in Fig.2 such that a point (C) 

on the floating link BC trace the given curve y=f(x) x0xxn as close as possible, while the sliding link moves along a line 
between points characterized by s0 and sn  
Writing out the x and y co-ordinate of the floating-point C of the module in terms of the variables and parameters shown in 

Fig.2 and then eliminating the angle  from the two equations will yield the displacement function (H) of the slider module:  
 

0Ps2s2yC-2xSs+s2yS2xCxsyxyx,,x,d,s,H =++++−++= 003

222

3450 )osin)(()inos()(          (14) 

where: 

 
2

45

2

0

2

3 dsxP  −+=                                          (15) 

 
Here, it is assumed the motion (s'=s-s0) of the slider is defined in the form of specified g(x) functional relationship against x. 

An examination of Fig.2 as well as of equation (14) will explain that there are four unknown parameters, namely, (,s0,d45,x3) 
and thus treatment of the displacement function according to the requirements of the Precision-Point, Subdomain and Galerkin 

methods will yield four design equations in the following form: 
 

1,2,3,4=i  0=)k-k)(k+(s+)k+k(x-Pk+s2k+k cibieicibidieiai ;CosSinSinCos 030   (16) 

 
where coefficients in equations (16) are defined according to each method as follows: 

In Precision-Point method: 
 

1,2,3,4=i  s=k  1;=k  ;y2=k  ;x2=k  ;s+y+x=k ieidiiciibi
2
i

2

i

2
iai ;                 (17) 

 
In Subdomain method: 

1,2,3,4=i  dxs=k  dx;=k  ydx;2=k  xdx;2=k  )dx;s+y+x(=k
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In Galerkin method: 
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For the solution of the set (16), first P then x3 and s0 are eliminated leaving the final equation in one single unknown (): 
 

0=l+l

+l+l+l+l+l+l+l+l

109
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2
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2
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3
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SinCos

CosSinSinCosSinCosSinCosSinCos1                (20) 

 

After solving the equation (20) for  between 0 and 2, it is not difficult to determine the other unknowns (s0,d45,x3) from 
equation set (16), thus completing the design of the slider module. 

The motion analysis of the resulting module design can be performed first by computing the floating link angle () from the 
abscissa (x=xth) expression to be inserted into the ordinate (yac) expression for the evaluation of structural error, e=y(xth)-yac. 
 

2.3. Crank-rocker Module 
 

In the resulting path-generating mechanisms, usually the coupler point is required to trace only a portion of a closed curve very 
nearly and there is no guarantee that a member of the resulting mechanism will make a full revolution, a necessary condition 
for bringing the whole assembly in motion by means of a rotary actuator. In that case, there arises the need to add the crank-
rocker module to the path-generating assembly in order to operate the system. Frictionless engine, grass-cutter and oil pump 
drivers, (Dittrich et al. 1978) can be cited as well-known examples in this regard. 

 
Fig. 3. Crank-rocker module 

 
Crank-rocker module is, in fact, a dyad, Fig.3, with the difference that the crank MA rotates 360° degrees while the endpoint 
(B) of the floating link BA is constrained to move on a circular path with center at Q and radius BQ. In designing the crank-
rocker module, it is a fundamental condition that the assembly assumes the limiting configurations shown in Fig.3. Sine Law 

is written for triangles MB1Q and MB2Q in Fig.3. Then supposing that rocker swing angle (), time ratio (tR) or angle 

between dead-centers () and initial crank angle () are specified, the following relations are deduced to determine the relative 
dimensions (p,q,r,u) of the  crank-rocker module: 
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Depending on the design situation, several specifications from among the parameters defined on Fig.3, namely, 

(p,q,r,u,,,,), equation set (21) may be rearranged with respect to the given situation. Thus, in this way module design can 
be adapted to the designer's needs and conditions.  
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3. CIRCLE AND LINE POINTS OF A GENERAL COUPLER PLANE 
 
In order to transform modules into mechanisms those points of the coupler plane which lie on a circle and those on a line 

should be searched, consistent with the modules developed previously. Firstly, the case of circle-points will be handled. 
Referring to Fig.4, point D of the plane is required to follow a circular path as point C of the same plane traces the given path 

y=f(x) x0 xxn. The co-ordinates (x,y) of the  point is written parametrically relative to A in terms of in the same variable (t) 
xoy-system of Fig.4:  
 

 
Fig. 4. General coupler motion 

 

x Z t k x k x= + −1 1 4 2 5( )                       (22) 

y Z t k x k x= + +2 2 4 1 5( )                       (23) 

k Cos t k Sin t1 2= = ( ) ; ( )                                                                     (24) 

                    
For D to be on the circle, the following should be satisfied: 
 

( ) ( )x x y y Rm m− + − =2 2 2                     (25) 

 
Substituting (22), (23) in (25) and arranging yields the displacement function F as follows:  
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5

2

41 RyxxxP mm −+++=  

Applying Precision-Point, Subdomain and Galerkin methods on function F, the following equation set will result:  
 

1,2,3,4,5=i  0=ZyZxZxZxZxyZxyZxxZxxZPU gimfimeidicimaimbimbimaii ;5454541 ++−−+−−+−                               (27) 

 
The coefficients in the set (27) are defined according to each method as follows: 

In Precision-Point method: 
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In Subdomain method: 
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In Galerkin method: 
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After eliminating parameters P1, xm and ym in (27), equations containing only unknowns x4 and x5 are obtained: 
 

1,2=i  0=)A+xB+xC+x(D+)xE+xF+x(G+)xH+x(K+xL mimimimimimimimimimi ;5

2

5

3

545

2

5

2

45

3

4
                                   (31) 

 
Coefficients Lmi,Kmi,Hmi,Gmi,Fmi,Emi,Dmi,Cmi,Bmi and Ami (i=1,2) are all computable constants. In solving (31) the cubic terms 
of x4 are eliminated and the resulting single quadratic equation can be used to express x4 as a function of x5, which is then 
substituted in one of (31) to yield all possible solutions. 

In the case of line points of the coupler plane, point D in Fig.4 is to satisfy the equation of a line in the form:  
 

y mx n= +                       (32) 

 
In (32) (m) is the slope and n is the intercept of the line. Then the following displacement function Q involving the system 
parameters (x4,x5,m,n) will result as such: 

 

0=n-Z+mZ-mxk+mxk-xk+xk=t)n,m,,x,Q(x 215241514254
                (33) 

 
If the function Q is evaluated under the criteria of Precision-Point, Subdomain and Galerkin methods, then the following 

equation set is found: 
 

1,2,3,4=i  0=h+nh-mh-xmh+mxh-xh+xh eidiciaibibiai ;5454
                                (34) 

 
The coefficients in (34) are calculated according to each method in question as follows:  
 In Precision-point method: 
 

4,3,2,12112 =i;Z=h; 1=h; Z=h; k=h; k=h ieidiiciibiiai
                                  (35) 

 
In Subdomain method: 
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In Galerkin method: 
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(34) can be reduced to a single equation in the unknown (m):  

0=S+mS+mS+mS+mS AAAAA 12

2

3

3

4

4

5
                    (38) 

 
SA1 to SA5 are simply constants. After determining m from (38) all possible solution of the unknown set (x4,x5,m,n) is easily 
drawn from (34). 

 

3.1. Application to Coupler Plane of Modules 
 

Now the theory developed for a general coupler plane motion will be applied to modules. In doing so, it is sufficient to specify 

the co-ordinates Z1,Z2 and angle  as a function of some variable t. First the dyad module will be considered. Referring to 
Fig.5, Z1,Z2 co-ordinates which will be substituted in equation sets (27) and (34) will be represented in terms of the input angle 

, as follows:  
 

Cos171  x + x = Z                       

(39) 

Sin182  x + x = Z                       (40) 
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Fig. 5. Coupler motion of dyad module 

 

Additionally, coupler angle  will be determined as a function of  from relations (1),(2) after realizing the inverse 

transformation xth=h-1(-0). Knowing , k1 and k2 can be calculated from relation (24). Thus circle points of the dyad coupler 
are now found out by evaluating equation set (27) to lead to the values of the unknown parameters (x4,x5,R,xm,ym). Similarly, 
(x4, x5, m, n) parameters are obtained by solving equation set (34) for the line points of the dyad coupler. 

In the case of slider module, Fig.6, Z1, Z2 co-ordinate functions are expressed as a function of the linear variable s, 
as given below:  

 

 SinCos31   s- x = Z                      (41) 

 CosSin32   s+ x = Z                      (42) 

 

Coupler angle  is computed together with the inverse transformation xth=g-1(s-s0). Then the rest of the procedure is identical 
with that of the dyad module, thus defining the circle and line points of the slider coupler.  

 
Fig. 6. Coupler motion of slider module 

 

4. CONSTRUCTION OF MECHANISMS VIA MODULAR APPROACH 
 

Four-bar and slider-crank mechanisms which are constructed using modular approach are shown in Fig 7(a),(b). In designing 

the 4-bar, first, the dyad module to generate the curve y=f(x)  x0xxn at point C is synthesized as explained earlier,  indicating 

that (x7,x8,x1,0,d45) are found out.  
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Fig. 7. Module coupler points 

 
Then, circle points of the dyad coupler are determined, which are characterized by the parameter set (x4,x5,xm,ym,R), Fig.7(a). 
Now the circle point D is joined physically by the center point M, the relative location of which is defined by x6 and x9, by a 
link of length x3=R, completing the construction of the four-bar QADM generating the given path at point C, where the 
connecting link length (x2) is defined by AD=(x4

2+x5
2 )1/2. In order to estimate the quality of the designed 4-bar, the structural 

error (e) has to be calculated.  To that end, the coupler angle () in the resulting 4-bar is computed in accordance with the 
following relation: 
 















cc

cccc1-

N+L

N-L+MM
2=

222

tan


                                                                  (43) 

where 
 

 

)]x+(xx-x+x+x+[x-x=N

; )xx-2(x= M; )xx-2(x=L   

c

cc





SinCos2

SinCos

961

2

2

2

9

2

6

2

1

2

3

291261

                 (44) 

Of the same dyad module (QAC) utilized in 4-bar design, line points (D) are determined to signify the estimation of the 

parameter set (x4,x5,m,n), Fig. 7(b). A slider is inserted at point D, which is then joined to point A of the dyad module, thus 
forming the slider-crank mechanism (QAD), Fig.7(b). For the structural error (e) analysis in the resulting slider-crank 

mechanism, connecting link angle () is to be found by the following relation: 
 














=

ss

ssss1-

N+L

N-L+MM
2

222

tan



                                     (45) 

 
where      
 

)+(x-x=N ; x= M; x=L sss  SinSinCosCosSinCos 1322
                                   (46) 

Now the modular approach will be applied to design a path-generating double-slider.      First, a slider-module is synthesized 

by means of the parameter set (,s0,d45,x3) to trace a given path at point C, Fig. 8. Then line points of the slider coupler are 
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searched to conclude on the values of the parameter set (x4, x5,m,n). Now placing sliders at points D and B, and joining them 
together physically to obtain a length of x2=(x4

2+x5
2 )1/2  will produce the double slider with determinate movement directions, 

to generate the given path. In the structural error analysis of the resulting mechanism, the angular position of the connecting 
link will be needed, which is simply as follows:   

 















dd

dddd1-

N+L

N-L+MM
2=

222

tan



                  (47) 

where 

 

 

SinCosCosSinsSinSinCosCosxx
CosSin

N

Cos

x
M

Sin

x
=L   

d

dd

)()(
1

;

33

22






−++−


=


=



           (48) 

 
Fig. 8. Line points of the slider module 

 

 
Fig. 9. Construction of a Six Bar Mechanism 
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Fig. 10. Applications of the modular approach 
 

The modular approach will be illustrated further on a 
six-bar mechanism, taking into account the four-bar and the 
crank-rocker module. To this end, the four-bar shown in 
Fig.9, characterized by the parameter set 

(x7,x8,0,x2,x3,x6,x9,x4',x5') is synthesized through the 
modular approach as described earlier, in the first place. 

Later the circle points of the coupler plane of the designed 
four-bar QABM generating the given path at point C, are 
searched. This establishes the values of the parameter set 
(x4,x5,xm,ym,R) associated with the circle point D, the 
center of which is located at point K, Fig.9. In this way, the 
length of the circular arc becomes known hence the angle 

() from the center K. Now using the outcome concerning 

the rocker swing angle () and rocker length (u) being 
equal to the radius of the circle (R), and also assuming one 

other criterion such as time ratio (tR) ar angle () or initial 

crank angle (), crank-rocker module is designed, based on 
the equation set (21). It should be pointed out that K is an 
imaginary joint and DK is an imaginary link whereas D,F 
and N signify physically existent revolute joints, and 

DF,FN physical links. This concludes the design of the 
whole six-bar mechanism QADBFN, in Fig. 9, such that 
the given path is generated as the crank FN drives the 
system through 360° rotations. 

The modular approach explained in detail on specific 
examples can be easily applied to many other lower-paired 
mechanisms, some of which are shown in Fig.10. For 
instance, in Fig.10 (a), the line points of the four-bar 
coupler plane can be evaluated by inserting a linear slider, 

forming a five-bar to generate the specified path. Similarly, 
this technique can be utilized in designing the six-link 
mechanism seen on Fig.10 (b), which is constructed from 
circle-points of the slider-crank coupler plane together with 
a crank-rocker module. An extension of the line-points of 
the slider-crank coupler plane covers the five-link 

mechanism, whereby a linear slider is attached, Fig.10 (c). 
One final example may be given for the case, where 
circle-points of the double-slider can be assessed as a joint 
for combining it with a crank-rocker module, thus leading 
to a 6-bar mechanism which can be driven by a rotary 

power source, Fig.10(d).  

 

5. Numerical Results and Discussion 
 

The modular approach developed here has been put in 
the form of program packages on the personal computer for 
numerical applications. Wherever numerical integration is 
needed, for instance in Subdomain and Galerkin methods, 
the so-called Simpson's rule is used. To test the approach, 
the following specific examples have been taken as a basis 
for assessment. Although all possible solutions in each 

example have been obtained, only one typical solution is 
included here. 
 
Example 1: A dyad module is to be designed to generate 

the path y=x 0x1 for a 90 degree clockwise crank 
rotation. Some numerical results, with reference to the 
previous notation, are given according to each method as 
follows:  
 
In Precision-point method: Precision 

points(x(i),i=1,..,5)=0.00,0.20,0.70,0.80,1.00;   
Solution:  x1=0.4645; x7=3.0064; x8=-

2.0064;d45=4.0091;0= 0.0000; emax=0.000005; 
In Subdomain method: 
Subdomains(x(i),i=1,..,6)=0.00,0.01,0.40,0.60,0.99,1.00;  
Solution:  x1=0.4636; x7=3.0089; x8=-2.0089; 

d45=4.01180;0= 0.00;emax=0.000005; 
In Galerkin method: Weighting function(Wi,i=1,5)=

5x+20x-1,16x+8x-1,8x-x1,-xx, 3524322  
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Solution:  x1=0.4642; x7=3.0074; x8=-

2.0074;d45=4.0101;0= 0.00;emax=0.000004; 
 

Example 2: A slider module is to be synthesized for 

generating the path y=x 0x1 within one unit of slider  
displacement. The resulting solutions and the 
corresponding data are as follows:  
In Precision-point method: Precision 
points(x(i),i=1,..,4)=0.00,0.50,0.80,1.00; 

Solution: d45=0.8073; x3=-0.1105; =-

22.92;s0=0.7997;emax=0.003813; 
In Subdomain method: 
Subdomains(x(i),i=1,..,5)=0,0.20,0.5,0.80,1.00; 

Solution: d45=0.6890; x3=-0.1888; =-

27.45;s0=0.6647;emax=0.003626; 
In Galerkin method : Weighting function(Wi,i=1,4) 

1+8x-x,8x-x1,-xx, 2432 342   

Solution: d45=0.7108; x3=-0.1678; =-

26.38;s0=0.6931;emax=0.002515; 
 
Example 3: A four-bar design is to be obtained such that 

the coupler point trace the path y=x 0x1 within 90 
degrees clockwise crank rotation. In the solution, the circle 
points of the dyad coupler of Example 1 are referred to, thus 
leading to the numerical results given below in accordance 
with each method. 
In Precision-point method: Precision 

points(p(i),i=1,..,5)=0.00°,-0.10°,-0.20°,-0.30°,-90.00°   
Solution: 
x1=0.4642;x2=3.0468;x3=2.8626;x4=2.0164;x5=3.4662;x6

=-0.7778;x7=3.0074; 

x8=-2.0074;x9=0.6015;0=0.00;emax=0.0002682; 

In Subdomain method: Subdomains (s(i),i=1,..,6)=0.00°,-
0.10°,-0.20°,-0.30°,-89.00°,-90.00°; 

Solution: 
x1=0.4642;x2=4.9697;x3=4.8188;x4=1.1231;x5=3.8496;x6

=-0.6695;x7=3.0074;         

x8=-2.0074;x9=0.4636;0=0.00;emax=0.000268; 
In Galerkin method: Weighting function(Wi,i=1,5)      

1, , , ,sin cos sin cos   2 2   

Solution: 
x1=0.4642;x2=1.4668;x3=0.6528;x4=3.5875;x5=1.7919;x6

=-0.6340;x7=3.0074;         

x8=-2.0074;x9=0.6341;0=0.00;emax=0.000863; 
 
Example 4: A slider-crank is required to generate the path 

y=x 0x1 for a 90 degree clockwise input rotation. In 
solving this problem, the line points of the dyad coupler of   
Example 1 are searched, producing the following results by 
each method. 
In Precision-point method: Precision 

points(p(i),i=1,..,4)=0°,-50°,-65°,-90°;  
Solution:  

x1=0.4642;x2=1.7442;x3=1.1094;x4=3.4259;x5=-
2.0843;x7=3.0074; 

x8=-2.0074;=-148.48;0=0;emax=0.010061; 
 

In Subdomain method:  Subdomains (s(i),i=1,..,5)= 0°,-
10°,-55°,-75°,-90°;  
Solution:  
x1=0.4642;x2=1.8768;x3=1.2711;x4=3.3144;x5=-
2.2573;x7=3.0074; 

x8=-2.0074;=-148.56;0=0;emax=0.009973; 

In Galerkin method: Weighting function(Wi,i=1,4)      

e ,    ,sin cos cos ,sin   

Solution:  
x1=0.4642;x2=2.7238;x3=2.2345;x4=3.4925;x5=-
1.9707;x7=3.0074; 

x8=-2.0074;=-173.45;0=0;emax=0.0074223; 
 
Example 5: A double-slider is sought for the generation of 

the path y=x 0x1  for a unit input  displacement. The line 
points of the slider module of Example 2 will be the answer 
of this problem, in the following form: 
In Precision-point method: Precision points   

(xp(i),i=1,..,4)=0,0.01,0.011,1; 
Solution:  x2=1.3435; x4=-0.3300; x5=0.66243; x3=-

0.1679; x3
'=0.4767; =-26.38°; '=-43.61°; s0=0.6932; 

emax=0.003176; 
In Subdomain method: Subdomains 
(xs(i),i=1,..,5)=0,0.01,0.011,0.012,1; 
Solution: x2=1.4220; x4=-0.4453; x5=0.5540; x3=-0.1679; 

x3
'=0.6404; =-26.38°; '=-40.99°; s0=0.6932;  

emax=0.042500; 
In Galerkin method: Weighting function(Wi,i=1,4)=

x e ,x e x e x ex x x x− − − −− − − −2 3 4 5

, ,   

Solution: x2=0.9093; x4=-0.5209; x5=0.4837; x3=-0.1679; 

x3
'=0.3652; =-26.38°; '=177.49°; s0=0.6932; 

emax=0.015030; 
 
Example 6: A slider-crank is constructed by slider module 

that generate the path y=x 0x1  for a unit input  
displacement  .The circle points of the slider module of 
Example 2 will be the answer of this problem, in the  
following form: 

In Precision-point method: Precision points   
(xp(i),i=1,..,4)=0,0.01,0.03,0.999,1; 
Solution: x1=0.7965; x2=1.2373; x4=1.6724; x5=-0.5621; 
x3=0.5134; x7=0.1476; x8 =1.8308; 

 =-26.38°; s0=0.6932; emax=0.008103; 
In Subdomain method: Subdomains 
(xs(i),i=1,..,5)=0,0.01,0.05,0.994,0.996,1; 
Solution: x1=1.1690; x2=1.2288; x4=1.6670; x5=-0.5597; 
x3=0.2106; x7=0.5226; x8 =1.9056;  

=-26.38°;s0=0.6932; emax=0.002516; 
In Galerkin method: Weighting function(Wi,i=1,4)=

1, sin ,cos ,sin cose , x x x xx   

Solution: x1=1.3348; x2=1.2565; x4=1.6845; x5=-0.5675; 
x3=0.1128; x7=0.6505; x8 =1.9431; 

 =-26.38°; s0=0.6932; emax=0.002319; 
 
Example 7: A six-bar of Fig.9 is required to trace the given 

path y=x 0x1   as one input link drives the whole 
mechanism through a  360 degree rotation. Applying the 
modular approach, circle points of the four-bar coupler of 
Example 3 with Galerkin method are determined first, thus 
yielding the length and swing angle of rocker. Then, the 

matching crank-rocker module is designed to be 
supplemented to the four-bar with a revolute joint at the 
circle point. The process described leads to the following 
numerical results:  
In Precision-point method: Precision 

points(p(i),i=1,..,5)=0°,-20°,-45°,-85°,-90°; 
Solution: x4=2.6823; x5=1.4993;xm=-

1.6625;ym=2.0322;R=3.5657; =15.08°; =0.00°; 

=30.00°; =-67.54°; u/p=-0.5044; 
r/p=0.8660;q/p=0.0662; emax=0.001027; 
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In Subdomain method: Subdomains (s(i),i=1,..,6)=0,-
20°,-45°,-80°,-85°,-90°; 
Solution: x4=2.3670;x5=1.1354;xm=0.5972;ym=0.5024; 

R=1.3182; =30.91°; =0.00°; =30.00°; =-75.46°; 
u/p=-0.5188; r/p=0.8660;q/p=0.1383; emax=0.003378; 
In Galerkin method: Weighting function(Wi,i=1,5) 

e ,e e e e− − − − −    2 3 4 5

, , ,   

Solution: x4=2.4016; x5=1.1546 

;xm=0.4867;ym=0.6101;R:=1.4329;=29.23°; =0.00°; 

=30.00°;  =-74.61°;u/p=-0.5167; 
r/p=0.8660;q/p=0.13035; emax=0.003207; 
 
Example 8: Five-link mechanism of Fig. 10(a) is to be 

designed to generate the path y=x 0x1   with in an input 
clockwise rotation of 90°. In accordance with the modular 
approach, the solution lies in finding the line points of the 
four-bar coupler of Example 3 with Galerkin method. The 
following outcome will define the sought design:  
In Precision-point method: Precision 

points(p(i),i=1,..,4)=0°,-20°,-80°,-90°;  
Solution: x4=3.4292;x5=2.0461;m=1.2588;n=-0.1204; 
emax=-0.0022637; 

In Subdomain method: Subdomains (s(i),i=1,..,5)=0°,-
10°,-45°,-85°,-90°; 
Solution:  x4=3.5415;x5=1.8451;m=1.0597;n=-0.0524; 

emax=-0.0008472; 
In Galerkin method: Weighting function(Wi,i=1,4) 

432

,,  −−−− eee,e  

Solution:  x4=3.5081;x5=1.8999;m=1.1115;n=-0.07930; 
emax=0.0006162; 

 
Example 9: Mechanisms which have an input link driving 
the whole mechanism through a 360-degree rotation with 
circular and linear paths are widely used in practice. In this 
example, applying the modular approach, a crank-rocker 
module is designed with circle and line points on its 
coupler.  The following results are obtained: 
Selected dimensions of crank-rocker: q=0.2682; p=1; 
R=2.7902; u=2.2487; 

Four-bar mechanisms: x1=q; x2=R; x3=u; x6=p; x7=0; x8=0; 
x9=0; 

The initial angle (0 )  and the crank rotation ( ) of the 

input link are specified by designer. Here, 0=30°; =90° 
(counter clockwise) are selected. The numerical results of 
design for circle points in Galerkin method are the 
following: 
x4=-1.9750; x5=-1.5291; xm=0.5586; ym=-0.8751; 
R=1.8226; emax=0.001833; 
The numerical results of design for line points in  Galerkin 
method are the following: 

x4=2.2515; x5=-1.5646;m=-1.5602; n=4.4946;  
emax=0.035378; 
 

In view of the numerical results displayed above, it can 
be said that as the number of links and joints increases the 
degree of precision in governing the desired path improves, 
as is to be expected. This justifies also the possible cost of 
using more elements in the preferred mechanism with 

respect to very fine errors. 
 

5. CONCLUSION 
 

A novel approach, termed as a modular approach, has 
been devised to design path-generating mechanisms with 

lower pairs. The essence of the approach lies in 
constructing the multi-link mechanisms out of two-link 

assemblies, called modules, which provide closed-form 
solutions for the design equations. Thus, there is always 
solution assurance for any physically feasible problem of 
path generation.  Furthermore, there is the possibility of 
choosing the most appropriate one from among many 
possible solutions that may result from the process. 
This approach can easily be extended to other areas of 
mechanism synthesis too.  
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