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Abstract: In this work we deal with the enterpolation of B-spline curves to 

fiven data points. B-spline curves are generated and compared with the given 

data points by various parameterization methods. To perform B-spline curve 

interpolation on the input data, the parameterization and the node vector must 

be generated using the input data. For parameterization purposes, uniform, 

chord length, centripetal, Foley, universal and similar methods have been 

developed. The uniform method gives good results if the data points are 

regular. Chord-to-beam parameterization can produce undesirable 

oscillations in long chords. Therefore, the centripetal method has been 

developed which operates according to the square root of the chord distance. 

In this study, these methods were compared with different data sets. 
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1. Introduction 

B-spline techniques for curves and surfaces were  proposed in the early 1940s and were developed 

by Rich Riesenfeld in  the 1970s. The B-spline structure is a generalized version of the Bezier curves 

developed by Pierre Bezier. The letter "B" refers to the word "basis" [1]. 

B-spline curves have been developed to address the following disadvantages in Bezier curves 

- The grade of the Bezier curve depends on the number of control points. 

- Bezier curves only provide global control, not local control. 

- While Bezier is easy to maintain 
1C  continuity of curve segments, it is insufficient to 

maintain continuity 
2C . 

B-spline curves provide local control. That is, the shifted control points change the neighborhoods 

affected by the control point only. In addition, B-spline curves can provide continuity of the curved parts 

at the desired level [1]. For example, when two curve segments 
2C  are combined with continuity, it is 

desirable that the first and second derivatives of the merging points of the curves are equal. If 
nC  

continuity is desired at the junction of two curves, both curves must be polynomials at 𝑛. degree. 
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B-spline curves are defined by control points and are used to approximate a targeted set of points 

or surfaces. Also, a parameter space, which is expressed as a node vector that is defined independently 

of the length of the points, is needed. The node vector may be uniformly uniform, or it may be defined 

as a nonuniform distribution with a variety of methods to approximate the target points. 

 

2. Recursive Computation of B-Spline Base Functions 

Computer-based B-spline curve computations use the Cox-de Boor algorithm, which recursively 

computes with respect to the input of the node vector. A sample B-spline curve at the 𝑝-th order is 

defined as follows: 
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In this definition, 
iP  denotes control points, whereas 

, ( )i pN u  denotes 𝑝-th degree B-spline basis 

functions. The U  vector consists of continuously increasing real numbers that operate independently of 

the object space and are called the node vector. 

Each 
iu  element of the U  vector is called a node. Under these definitions, the 𝑖-th base function 

of B-spline at the 𝑝-th grade is expressed in a computerized manner with the Cox-de Boor algorithm as 

follows: 
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(2)  

3. B-spline curve interpolation 

Bezier and B-spline curves work in computer graphics, animation applications and CAD-CAM 

surface modeling stages, according to the control points and node vector data from the designer. 

However, in reverse engineering applications and for data interpolation purposes, this process must be 

done in a inverse. In this case, it is desirable to generate the control points and the necessary node vector, 

while providing point data to enter the curve or the surface. At this stage, the operations are reversed. In 

Fig. 1, the node vector space and the independent state of the object space are given.  
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Fig. 1. Parameter space and independence of object space 

 

The equation for the B-spline curve is given as: 
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(3)  

In terms of parameterization, the value of the point to be calculated for each parameter value on the node 

vector is expressed as follows: 
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The values of the base functions in the parameter values are written in the matrix 𝑁: 
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(5)  

The computed 𝐷 destination points and the 𝑃 control points are expressed in matrix form as follows: 
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(6)  

While the control points are given, in the forward direction calculation, the B-spline curve equation is 

expressed in matrix form as follows: 

 

.D N P    (7) 

 

For curve interpolation operations where the control points are to be calculated, the following steps are 

taken to obtain the 𝑃 control points: 

 

.D N P      (8) 
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4. Data Parameterization Methods 

In B-spline interpolation and approximation problems, a set of points is given as input. If it is 

assumed that the node vector changes at [0,1], then some of the cut-off parameters in this range are 

required for the stoppages to correspond to the data points in the input set. For 
0,... nD D  data points, the 

unit parameter value is defined in the 
0 ,... nt t  region. If  C u  is defined as a curve passing through all 

the data points,  k kD C t  is for the 𝑘 values, 0 k n   at the cut-off points. Fig. 2 shows how 

parameters are associated with data points. 

Selection of parameter values includes uncertainty and there are infinitely many alternatives. 

However, careless selection of parameter values can cause undesirable shapes and fluctuations to be 

generated. 

During the parameterization phase, various methods called uniform, chord length, centripetal, 

universal are used. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Parameters and corresponding data points [8] 

4.1. Uniformly distributed parameterization 

 

Uniformly distributed parameterization is the simplest method for assigning parameters to given 

input data points. If it is assumed that parameters are to be distributed in the range [0,1], and if this range 

of pieces of input is considered to be divisible, then the parameters are defined as follows: 
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  (9) 
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4.2. Parameterization according to chord length 

 

If the distances between input data points are irregularly distributed, the chord-length method 

works better than uniform parameterization.  

Given
0 1, , nD D D  data points. The distance between point 1iD   and point iD  is expressed by 

1i iD D  . In this case, the sum of the beam distances between all data points is expressed as: 
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In this case, the chord length ratio from point 0D  to point kD  is expressed as follows: 
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In the normalized case, assuming that parameterization has been performed in the range [0,1], the 

distribution is as follows. 
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4.3. Centripetal method 

 

Lee proposed a centripetal parameterization. In the case of a car driving on a racetrack, it is 

desirable that the centrifugal force (or normal force) be very high in sharp turns when driving on a piste. 

For a safe ride, Lee suggests that along the way the centrifugal force must be proportional to the change 

in angle. The centripetal method presents this model approach. This model can be seen as an improved 

version of the chord length method [2].  

0 1, , nD D D  data points are given. If the base factor is defined as 1/ 2e  , the distance between 

point 1iD   and point iD  is denoted by 1i i

e
D D  . Kiriş- In the chord method, this expression was used 

topless. In this case, the length of the entire data polygon is expressed in terms of the centripetal metric 

as follows: 
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The ratio of the data beam length from point 0D  to point kD  to the total beam length is expressed as 

follows.  
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In the normalized case, assuming that parameterization is performed in the range [0,1], the values are 

distributed in the following manner. 
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4.4. Universal method 

 

Lim proposed a method that differs from other methods in 1999. In the previous methods, the 

new proposed method is based on calculating the parameter values from the uniformly distributed 

clamped node vector, while the node vector is generated from these parameter values after the parameter 

values are determined [3]. 

In the Lim method, base functions are generated, starting from a uniformly distributed node 

vector. The peak values of these base functions are considered as input to the parameter list. Although 

this method produces more natural-looking curves than previous methods, it produces undesirable 

oscillations in some cases [3].  

Suppose that we wanted to generate the necessary parameter values for 1n  data points using B-

spline at p . 1m n p   , the number of elements in the node vector is 1m . In this case a uniformly 

distributed, clamped-clamped node vector is obtained as:  
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4.5. Foley-Nielson method 

 

This method was proposed by Foley and Neilson. While the previous methods use the beam 

spacing between data points, the Foley-Nielson method adds an account between the adjacent points. 

This method uses the Nielson scale to measure the distance between points. On this count, geometry 

does not change when it enters rotation, translation and scaling operations. The transformed B-spline 

curve can be obtained from transformed data points [4]. 

2m  , when working with two-dimensional data points, the coefficient matrix { }ijQ q  , 
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In this case, the Neilson distance between points U  and V  is defined as: 

[ ]( , ) ( ) ( )TM P U V U V Q U V    (18) 

According to the computed Neilson distance, if chord distance parameterization is performed, affine-

invariant parameterization can be obtained which can be applied to transformations. In the Foley 

parameterization, the 
it  parameter step is defined as: 
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Here, i  is also an affine invariant angle, which is calculated by Neilson distance and is not 

affected when it enters transformations. In Fig. 3, the notations used in the Foley method are 

given..  

 

 

 

 

 

 

Fig. 3. Parameters used in the Foley method [5] 

 

4.6. Node vector production 

After the parameter values are generated, the node vector is generated from these values. 

Assuming we have 1n  parameter values defined in 
0 1, ,... nt t t  and we use 𝑝 th degree B-spline 

fragments, we need 1m  node values, defined as 1m n p    shaped. If the curve is defined as 

clamped, the first 1p   node value is 0. And the last 1p   knot value becomes 1. The n p  nodes in 

the middle are uniformly distributed according to various methods. 

If uniform parameterization is used, the median terms are divided into 1n p   pieces. 
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5. Applications 

The first dataset interpolated in Fig. 4 is taken from the work of Irvine et al. This data can be 

problematic for interpolation methods due to sudden directional changes and sparse data points [6]. 

 

Table 1. The maximum deviation table from the beam along the curve piece, 1. Dataset 

Method 1 2 3 4 5 6 7 Average RMS 
Max. 

Deviation 

Time 

(ms) 

Uniform 0.1918 0.0889 0.4133 0.1647 0.4564 0.1964 0.2765 0.255 0.2843 0.4564 49,860 

Chord 1.7113 0.5507 0.0524 2.877 0.3785 0.061 2.304 1.133 1.5569 2.877 50,739 

Universal 0.102 0.047 0.4007 0.1642 0.3667 0.2513 0.1360 0.2097 0.2439 0.4007 135,781 

Foley 0.0988 0.1354 0.2475 0.728 0.0976 0.0909 0.5904 0.2840 0.3753 0.728 77,506 

Centripetal 0.2135 0.1952 0.1777 0.7214 0.0832 0.0906 0.6385 0.3028 0.3889 0.7214 49,789 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Cubic Curves Produced by Various Parameterization Methods, 1. Dataset 

 

  Fig. 5 shows the cubic B-spline curves generated by the various methods of parameterization 

for the second dataset. The second data set I in Fig. 5 was taken without the same operation as the first 

data set. There are also sudden changes in direction and rare data difficulty similar to Larry Irvine et al 

[6]. 
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Fig. 5. Cubic Curves Produced by Various Parameterization Methods, 2. Dataset 

 

Table 2. The maximum deviation table from the beam along the curve piece, 2. Dataset 

Method 1 2 3 4 5 6 7 8 Average RMS 
Max. 

Deviation 
Time (ms) 

Uniform 0.209 0.259 0.473 0.049 0.482 0.152 0.35 0.376 0.2938 0.3271 0.4733 50,461 

Chord 1.847 0.118 0.106 0.841 0.067 0.053 0.259 0.431 0.4652 0.7420 1.847 49,805 

Universal 0.18 0.442 0.367 0.054 0.476 0.193 0.519 0.256 0.3109 0.3471 0.5187 133,821 

Foley 0.59 0.12 0.161 0.269 0.141 0.031 0.345 0.199 0.2319 0.2829 0.5895 76,887 

Centripetal 0.667 0.109 0.177 0.231 0.134 0.051 0.191 0.802 0.2952 0.3940 0.8024 52,574 

 

The third set of data in Fig. 6 is taken from the work of Fritsch and Carlson. Sudden distance changes 

are tested here [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Cubic Curves Produced by Various Parameterization Methods, 3. Dataset 
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Table 3. The maximum deviation table from the beam along the curve piece, 3. Dataset 

Method 1 2 3 4 5 6 7 8 9 10 Average RMS 

Max. 

Deviat

ion 

Time 

(ms) 

Uniform 0.123 0.359 0.142 0.078 0.185 0.337 1.168 0.19 0.652 0.651 0.3885 0.506 1.168 46,438 

Chord 3.347 0.057 0.011 0.008 0.082 0.053 0.583 3.915 0.238 0.806 0.91 1.661 3.915 49,580 

Universal 0.169 0.447 0.366 0.162 0.234 0.361 1.246 0.212 0.324 0.469 0.399 0.499 1.246 135,65 

Foley 0.164 0.354 0.111 0.131 0.079 0.057 0.516 0.412 0.13 0.597 0.255 0.316 0.597 75,379 

Centripetal 0.505 0.045 0.027 0.001 0.04 0.105 0.268 0.741 0.305 1.096 0.3132 0.467 1.096 49,11 

 

The fourth data set in Fig. 7 was taken from the work of Boeing employee ETY Lee [2]. Here, 

there are more data points near the corners. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Cubic Curves Produced by Various Parameterization Methods, 4. Dataset 

 

Table 4. Maximum deviations table from the beam along the curve piece, 4. Dataset 
Method Uniform Chord Universal Foley Centripetal 

1 0.4593 0.8607 0.4602 0.2704 0.3944 

2 0.9257 0.6698 0.9127 1.011 0.9574 

3 0.225 0.2848 0.2747 0.5958 0.2614 

4 0.109 0.8897 0.1558 0.1798 0.1449 

5 0.1584 0.4455 0.1461 0.1909 0.1756 

6 0.1879 5.224 0.2024 0.999 0.2223 

7 0.0998 0.4396 0.1009 0.1437 0.1264 

8 0.3779 0.084 0.3907 0.2422 0.1928 

9 0.4538 0.8721 0.4598 0.6513 0.3511 

10 0.3885 0.08393 0.3903 0.2422 0.1928 

11 0.06689 0.4396 0.092 0.1441 0.1278 

12 0.1419 5.224 0.2029 0.9916 0.2105 

13 0.1518 0.4433 0.1539 0.1937 0.1756 

14 0.1074 0.07757 0.1617 0.1655 0.1449 

15 0.2171 0.2919 0.2754 0.5958 0.2614 

16 0.9257 0.6717 0.9088 1.011 0.9574 

17 0.457 0.8607 0.4524 0.2782 0.3944 

Average 0.2830 1.0508 0.3377 0.4651 0.2718 

RMS 0.4111 1.8705 0.4148 0.5741 0.3991 

Max. 

Deviation. 
0.9257 5.224 0.9127 1.011 0.9574 

Time (ms) 44,255 43,387 127,132 69,769 43,429 



         Vol 7, Number 1, 2017   

         European Journal of Technic    
EJT 

31 

 

6. Conclusion 

In order to be able to interpolate input data with B-spline curves, it is necessary to parameterize 

the data in the first step. Various methods are used to parameterize the input data. Commonly used 

methods are uniform uniform parameterization, chord length, universal parameterization, Foley angle 

parameterization centripetal methods. 

The uniform method provides good results if the data points are regular. According to the chord 

distance, parameterization can produce unwanted oscillations in long beams. Therefore, the centripetal 

method has been developed which operates according to the square root of the beam spacing. The Foley 

method, on the other hand, has been successful in providing sharp rotations due to the addition of angle 

values. 

 

In this study, basic parametrization methods are tested for different data sets and the obtained 

curves and error measurements are given in Tables 1, 2, 3 and 4 with Figures 4, 5, 6 and 7. From these 

data sets, it was observed that for the first three data sets, the centripetal-centric method succeeded from 

the other methods and the performance approaches the Foley angle method. For the fourth data set 

containing intense data at the corners, the centripetal method was observed to be more successful. 

 

          In case of sudden change of the beam length between data points, the centripetal method that 

works according to the square root of the beam distance is preferred; in the datasets where there are 

sudden and sharp angular rotations, the Foley method, which adds the angle values, is preferred; In cases 

where the data are uniformly distributed, the chord-beam distance method would be preferable. Where 

surface details are insignificant and speed is important, it is seen that uniform methods can be preferred 

in terms of simplicity in calculations. 
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