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1. Introduction
Mean-value theorems play a fundamental role in the modern mathematics. In recent years, a number of authors have

written about extensions of the mean-value theorems, which are considered in [1]-[4]. Cauchy mean-value theorem is of huge
importance in mathematical analysis. A meaningful advancement in the theory of Cauchy type means is given in [5, 6]. Also,
see [7, 8] for more information about the means.

In [5], A. McD. Mercer gave a formula, from which one can obtain a family of two-sided inequalities involving the
elementary means values

(
∑

n
1 wkxr

k

)1/r and showed that one member of this family provides a new refinement of the arithmetic
mean-geometric mean inequality. In [6], J.E. Pečarić et al. gave a general method for deducing Cauchy type formulas and
obtained two Cauchy type formulas which are connected with Jensen’s inequality and classical trapezoid rule. In [9], M.
Anwar et al. discussed the log-convexity for the differences of the Popoviciu inequalities and introduced some mean-value
theorems and related results. Also, they gave the Cauchy means of the Popoviciu type and showed that these means are
monotonic. In [10], S. Abramovich et al. gave new results associated with Hermite-Hadamard inequalities for superquadratic
functions, derived a set of Cauchy type means from these Hermite-Hadamard-type inequalities and proved its log-convexity
and monotonicity. In [11], N. Mehreen and M. Anwar established Jensen’s inequality for s-convex functions in the first sense.
By using Jensen’s inequalities, they obtained some Cauchy type means for p-convex and s-convex functions in the first sense.
Also, by using Hermite–Hadamard inequalities for the respective generalized convex functions, they found new generalized
Cauchy type means. In [12], L. Horvath et al. defined some weighted mixed symmetric means and Cauchy type means. They
investigated the exponential convexity of some functions, studied some mean-value theorems, and proved the monotonicity
of the introduced means. In [13], M. Anwar et al. proved the positive semidefiniteness of matrices generated by differences



On Some Cauchy Type Mean-Value Theorems with Applications — 148/156

deduced from majorization type results which implied exponential convexity and log-convexity of these differences and also
obtained Lyapunov’s and Dresher’s inequalities for these differences. They introduced new Cauchy means and showed that
these means were monotonic. In [14], J.E. Pečarić et al. presented several further generalizations and applications of some
mean-value theorems of the Cauchy type, which are connected with Jensen’s inequality. In [15], S.S. Dragomir established
some two points Taylor type representations with integral remainders and applied them for the logarithmic and exponential
functions.

In [16], Chebychev’s inequality is given by the following theorem:

Theorem 1.1. Let f and g be real and integrable functions on [a,b] and let them both be either increasing or decreasing. Then

1
b−a

∫ b

a
f (x)g(x)dx≥ 1

b−a

∫ b

a
f (x)dx

1
b−a

∫ b

a
g(x)dx.

If one function is increasing and the other decreasing, the reverse inequality holds.

In [16], Steffensen’s inequality is given by the following theorem:

Theorem 1.2. Assume that two integrable functions f and g are defined on the interval (a,b), that f never increases and that
0≤ g(t)≤ 1 in (a,b). Then∫ b

b−λ

f (t)dt ≤
∫ b

a
f (t)g(t)dt ≤

∫ a+λ

a
f (t)dt,

where λ =
∫ b

a g(t)dt.

In this paper we give some Cauchy type mean-value theorems for Chebychev’s inequality, Steffensen’s inequality, midpoint
rule and Simpson’s rule and apply them to exponential and logarithmic functions, their Taylor polynomials and to some
trigonometric functions. Further, we write some applications for midpoint and Simpson’s rules.

For several recent results concerning Hermite-Hadamard’s inequality and convex functions, we refer the reader to [17]-[30].

2. Main Results
Firstly, we start by the following theorem, which is connected with Chebychev’s inequality.

Theorem 2.1. Let f ,g : [a,b] ⊂ R→ R be integrable functions and let them both be either increasing or decreasing. Let
h,w : [a,b]⊂ R→ R be integrable functions and let them both be either increasing or decreasing and f ,h ∈C2([a,b]). Then
we have, for some ζ ∈ [a,b]∫ b

a f (x)dx
∫ b

a g(x)dx−
∫ b

a f (x)g(x)dx∫ b
a h(x)dx

∫ b
a w(x)dx−

∫ b
a h(x)w(x)dx

=
(Q f )”(ζ )
(Qh)”(ζ )

(2.1)

provided that the denominator on the left-hand side of (2.1) is non-zero.

Proof. We consider the function

(Q f )(t) =
∫ b

a
f (tx+(1− t)A)dx

∫ b

a
g(x)dx−A,

where A =
∫ b

a f (x)g(x)dx. Taking the first and second derivatives of this function, we obtain

(Q f )′ (t) =
∫ b

a
(x−A) f ′(tx+(1− t)A)dx

∫ b

a
g(x)dx

and

(Q f )”(t) =
∫ b

a
(x−A)2 f ”(tx+(1− t)A)dx

∫ b

a
g(x)dx.

For the function

(Qh)(t) =
∫ b

a
h(tx+(1− t)B)dx

∫ b

a
w(x)dx−B,
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we obtain

(Qh)”(t) =
∫ b

a
(x−B)2h”(tx+(1− t)B)dx

∫ b

a
w(x)dx,

where B =
∫ b

a h(x)w(x)dx. We now write the function W (t) given by

W (t) = (Qh)(1)(Q f )(t)− (Q f )(1)(Qh)(t) .

Hence, we have

W (0) =W ′ (0) =W (1) = 0.

Since the function W (t) satisfies the conditions of the mean-value theorem, we can write two successive applications of the
mean-value theorem. Hence, we have

W”(η) = 0 for some η ∈ (0,1) .

This implies that

(Qh)(1)
[∫ b

a
(x−A)2 f ”(ηx+(1−η)A)dx

∫ b

a
g(x)dx

]
− (Q f )(1)

[∫ b

a
(x−B)2h”(ηx+(1−η)B)dx

∫ b

a
w(x)dx

]
= 0.

For any fixed η , the expressions in the two square brackets are continuous functions of x and hence they vanish for some value
of x in (a,b). Corresponding to this value of x ∈ (a,b) , we get a number ζ ∈ [a,b] such that

(Qh)(1)(Q f )”(ζ )− (Q f )(1)(Qh)”(ζ ) = 0.

This gives equality (2.1).

The following result is connected with midpoint rule.

Theorem 2.2. Let f ,g : [a,b]→ R be two functions, each of which possesses a continuous derivative of order n≥ 2. If

f (k) (a) = g(k) (a) = 0,(k = 2, . . . ,n−2),

then we have

(b−a) f
( a+b

2

)
−
∫ b

a f (x)dx

(b−a)g
( a+b

2

)
−
∫ b

a g(x)dx
=

f (n)
( a+ς

2

)
(ς −a)+2n f (n−1)

( a+ς

2

)
−2n f (n−1)(ς)

g(n)
( a+ς

2

)
(ς −a)+2ng(n−1)

( a+ς

2

)
−2ng(n−1)(ς)

, (2.2)

for some ς ∈ (a,b) .

Proof. Let us define the function

(Q f )(t) = f
(

a+ t
2

)
(t−a)−

∫ t

a
f (s)ds.

Taking the first three derivatives of this function gives us

(Q f )′(t) =
1
2

f ′
(

a+ t
2

)
(t−a)+ f

(
a+ t

2

)
− f (t),

(Q f )′′(t) =
1
22 f ′′

(
a+ t

2

)
(t−a)+ f ′

(
a+ t

2

)
− f ′(t),

and

(Q f )′′′ (t) =
1
23 f ′′′

(
a+ t

2

)
(t−a)+

1
22 f ′′

(
a+ t

2

)
+

1
2

f ′′
(

a+ t
2

)
− f ′′(t).
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Hence we write the k th derivative as follows

(Q f )(k) (t) =
1
2k f (k)

(
a+ t

2

)
(t−a)+

k
2k−1 f (k−1)

(
a+ t

2

)
− f (k−1) (t) , 2≤ k ≤ n.

We note that

(Q f )(a) = (Q f )′ (a) = (Q f )′′ (a) = · · ·= (Q f )(n) (a) = 0.

We now write the function W (t) given by

W (t) = (Qg)(b)(Q f )(t)− (Q f )(b)(Qg)(t) ,

where

(Qg)(t) = g
(

a+ t
2

)
(t−a)−

∫ t

a
g(s)ds.

Hence, we obtain

W (a) =W ′ (a) =W”(a) = · · ·=W (n−1)(a) =W (b) = 0.

Since the functions f and g possess continuous derivatives of order n ≥ 2, the function W (t) satisfies the conditions of the
mean-value theorem. For this reason, we can write n successive applications of the mean-value theorem. Hence, we have

W (n) (ς) = 0 for some ς ∈ (a,b).

That is,

W (n) (ς) = (Qg)(b)(Q f )(n) (ς)− (Q f )(b)(Qg)(n) (ς) = 0,

which is (2.2).

Now we give the following result, which is connected with Simpson’s rule.

Theorem 2.3. Let f ,g : [a,b]→ R be two functions, each of which possesses a continuous derivative of order n≥ 2. If

f (k) (a) = g(k) (a) = 0,(k = 2, . . . ,n−2),

then we have

b−a
6 [ f (a)+4 f

( a+b
2

)
+ f (b)]−

∫ b
a f (x)dx

b−a
6 [g(a)+4g

( a+b
2

)
+g(b)]−

∫ b
a g(x)dx

=
(Q f )(n)(ς)

(Qg)(n)(ς)
, (2.3)

for some ς ∈ (a,b), where

(Q f )(n) (ς) = f (n−1)
(

a+ ς

2

)
+2n−3 f (n−1) (ς)+(ς −a)

[
1

2n
f (n)
(

a+ ς

2

)
+

2n−3

n
f (n−1) (ς)

]
−3

2n−2

n
f (n−1) (ς) .

Proof. Let us consider the function

(Q f )(t) = (t−a)
[

2
3

f
(

a+ t
2

)
+

f (a)+ f (t)
6

]
−
∫ t

a
f (x)dx.

Taking the first three derivatives of this function, we obtain

(Q f )′(t) =
[

2
3

f
(

a+ t
2

)
+

f (a)+ f (t)
6

]
+(t−a)

[
1
3

f ′
(

a+ t
2

)
+

1
6

f ′(t)
]
− f (t),

(Q f )′′(t) = 2
[

1
3

f ′
(

a+ t
2

)
+

1
6

f ′ (t)
]
+(t−a)

[
1

2.3
f ′′
(

a+ t
2

)
+

1
6

f ′′ (t)
]
− f ′(t),
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and

(Q f )′′′(t) = 3
[

1
2.3

f ′′
(

a+ t
2

)
+

1
6

f ′′ (t)
]
+(t−a)

[
1

3.22 f ′′′
(

a+ t
2

)
+

1
6

f ′′′ (t)
]
− f ′′(t).

Hence we write the k th derivative as

(Q f )(k) (t) = k
[

1
3.2k−2 f (k−1)

(
a+ t

2

)
+

1
6

f (k−1) (t)
]
+(t−a)

[
1

3.2k−1 f (k)
(

a+ t
2

)
+

1
6

f (k) (t)
]
− f (k−1) (t) .

We note that

(Q f )(a) = (Q f )′ (a) = (Q f )′′ (a) = · · ·= (Q f )(n) (a) = 0.

We now define the function W (t) given by

W (t) = (Qg)(b)(Q f )(t)− (Q f )(b)(Qg)(t) ,

where

(Qg)(t) = (t−a)
[

2
3

g
(

a+ t
2

)
+

g(a)+g(t)
6

]
−
∫ t

a
g(x)dx.

Hence, we obtain

W (a) =W ′ (a) =W”(a) = · · ·=W (n−1)(a) =W (b) = 0.

Since the functions f and g possess continuous derivatives of order n ≥ 2, the function W (t) satisfies the conditions of the
mean-value theorem. For this reason, we can write n successive applications of the mean-value theorem. Hence, we have

W (n) (ς) = 0 for some ς ∈ (a,b)

.
That is,

W (n) (ς) = (Qg)(b)(Q f )(n) (ς)− (Q f )(b)(Qg)(n) (ς) = 0.

Thus we get (2.3).

Other results are given in the following theorems, which are connected with Steffensen’s inequality.

Theorem 2.4. Let f ,g,h,w : [a,b]⊂ R→ R be integrable functions and let f ,h ∈C2([a,b]). Let f ,h be never increasing and
0≤ g(t)≤ 1 and 0≤ w(t)≤ 1, for each t ∈ (a,b). Then we have, for some ζ ∈ [a,b],∫ b

b−λ1
f (x)dx−

∫ b
a f (x)g(x)dx∫ b

b−λ2
h(x)dx−

∫ b
a h(x)w(x)dx

=
(ϕ f g)′′ (ζ )
(ϕhw)′′ (ζ )

, (2.4)

provided that the denominator on the left-hand side of (2.4) is non-zero.

Proof. Let us define the function

(ϕ f g)(t) =
∫ b

b−λ1

f (ts+(1− t)A)ds−A,

where A =
∫ b

a f (s)g(s)ds and λ1 =
∫ b

a g(s)ds. Taking the first and second derivatives of this function, we obtain

(ϕ f g)′ (t) =
∫ b

b−λ1

(s−A) f ′(ts+(1− t)A)ds,

and

(ϕ f g)′′ (t) =
∫ b

b−λ1

(s−A)2 f ′′(ts+(1− t)A)ds.
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We now consider the function W (t) given by

W (t) = (ϕ f g)(1)(ϕhw)(t)− (ϕhw)(1)(ϕ f g)(t) ,

where (ϕhw)(t) =
∫ b

b−λ2
h(ts+(1− t)B)ds−B, B =

∫ b
a h(s)w(s)ds and λ2 =

∫ b
a w(s)ds. Hence, we write W (0) = W ′ (0) =

W (1) = 0. Since the function W (t) satisfies the conditions of the mean-value theorem, we can write two successive applications
of the mean-value theorem. Hence, we have W ′′ (ς) = 0 for some ς ∈ (0,1).
Since

W ′′ (t) = (ϕ f g)(1)(ϕhw)′′ (t)− (ϕhw)(1)(ϕ f g)′′ (t) ,

we get

(ϕ f g)(1)
[∫ b

b−λ2

(s−B)2h′′ (ςs+(1− ς)B)ds
]
− (ϕhw)(1)

[∫ b

b−λ1

(s−A)2 f ′′ (ςs+(1− ς)A)ds
]
= 0.

For any fixed ς , the expressions in the two square brackets are continuous functions of s and hence they vanish for some value
of s in (a,b). Corresponding to this value of s ∈ (a,b) , we get a number ζ ∈ [a,b] such that

(ϕ f g)(1)(ϕhw)′′ (ζ )− (ϕhw)(1)(ϕ f g)′′ (ζ ) = 0.

This gives equality (2.4).

Theorem 2.5. If the conditions of Theorem 2.4 hold, then we have for some ζ ∈ [a,b]∫ a+λ1
a f (x)dx−

∫ b
a f (x)g(x)dx∫ a+λ2

a h(x)dx−
∫ b

a h(x)w(x)dx
=

(ϕ f g)′′ (ζ )
(ϕhw)′′ (ζ )

, (2.5)

provided that the denominator on the left-hand side of (2.5) is non-zero.

Proof. The proof is analogous to that of Theorem 2.4, taking (ϕ f g)(t)=
∫ a+λ1

a f (ts+(1− t)B)ds−B, where B=
∫ b

a f (s)g(s)ds
and the values λ1, λ2 are as in Theorem 2.4.

3. Applications
Now, using Theorems 2.1-2.4, we give some applications for the exponential, logarithmic functions, their Taylor polynomials

and for some trigonometric functions. Finally, we write two inequalities for midpoint and Simpson’s rules.

Corollary 3.1. Let f (x) =−x, g(x) = e−x, h(x) = x, w(x) = lnx. Here f ,g are decreasing functions and h,w are increasing
functions. For [a,b] = [1,x] and 1 < x≤ 2, we have∫ b

a
f (x)dx

∫ b

a
g(x)dx−

∫ b

a
f (x)g(x)dx =

∫ x

1
(−x)dx

∫ x

1
e−xdx−

∫ x

1
(−xe−x)dx =

x2

2
e−x−xe−x− 3

2
e−x− x2

2
e−1+

5
2

e−1,

∫ b

a
h(x)dx

∫ b

a
w(x)dx−

∫ b

a
h(x)w(x)dx =

∫ x

1
xdx

∫ x

1
lnxdx−

∫ x

1
xlnx dx =

x3

2
lnx− x

2
lnx+

x2− x3

2
+

x
2
− 1

2
,

and

(ϕ f )′′ (ζ ) = c
∫ x

1
e−xdx = c

(
−e−x + e−1) , (ϕh)′′ (ζ ) = c(xlnx− x+1) ,

where c is a constant. From Theorem 2.1, we have

x2

2 e−x− xe−x− 3
2 e−x− x2

2 e−1 + 5
2 e−1

x3

2 lnx− x
2 lnx+ x2−x3+x−1

2

=
−e−x + e−1

xlnx− x+1
.

For x = 3/2, we have the following exponential equation

5e−3/2−3e−1 = 0.

From here, we obtain

e−1/2 = 3/5.

We note that the approximate value of e−1/2 obtained with a calculator is 0,6065. . .
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Corollary 3.2. i. For n = 2, Theorem 2.2 can be applied to Taylor polynomials. Let f (x) = ex. The Taylor expansion of
this function is ex = ∑

∞
n=0

xn

n . Let g(x) = 1+ x+ x2

2 . For n = 0,1,2, f (n) (0) = g(n) (0) = 1. From the equation (2.2) and
considering the interval [a,b] = [0,x], we obtain

xe
x
2 − ex +1 =

ςe
ς

2 +4e
ς

2 −4eς

−ς

(
x+

x2

2
+

x3

8

)
−
∫ x

0
(1+ x+

x2

2
)dx.

For ς = 1
2 and 1

2 < x≤ 1, we get

xe
x
2 − ex +1 =

9
2 e

1
4 −4e

1
2

−1/2

(
x+

x2

2
+

x3

8

)
−
(

x+
x2

2
+

x3

6

)
.

For x = 1, we obtain the exponential equation

e− 4
3

e
1
2 +

3
8

e
1
4 = 1.

ii. For 1
3 < x≤ 1 and taking ς = 1

3 in the equation (2.2), we get

xe
x
2 − ex +1 =

13
3 e

1
6 −4e

1
3

−1/3

(
x+

x2

2
+

x3

8

)
−
(

x+
x2

2
+

x3

6

)
.

For x = 1, we obtain the exponential equation

e− e
1
2 +

13
24

e
1
6 − 1

2
e1/3 = 1.

For different x and ς values, different exponential equations can be obtained.

Corollary 3.3. Let f (x) = lnx. The Taylor expansion of this function is lnx = ∑
∞
n=1

(−1)n−1(x−1)
n

n and convergent interval of

this series is (0,2]. Let g(x) = x−1− (x−1)2

2 . Here f (1) = g(1) = 0, f ′ (1) = g′ (1) = 1, f ′′ (1) = g′′ (1) =−1.
From the equation (2.2) and considering the interval [a,b] = [1,x] f or 1 < x≤ 2, we have

(x−1) ln
x+1

2
−
∫ x

1
lnx dx =

−1(
1+ς

2

)2 (ς −1)+4
(

2
1+ς

)
− 4

ς

ς −1

(
3
8
−
∫ x

1

(
x−1− (x−1)2

2

)
dx

)
.

Taking ς = 3
2 in the equation above, we obtain

(x−1) ln
x+1

2
− lnxx + x−1 =

32
75

(
3
8
− (x−1)2

2
+

(x−1)3

6

)
.

Getting x = 2 in the equation above, we have the following logarithmic equation ln 3
8 =− 221

225 =−0,9822. . .
We note that the approximate value of ln 3

8 obtained with a calculator is -0,9808. . .

Corollary 3.4. Let f (x) = − 1
2 x, g(x) = x2, h(x) = −x, w(x) = x3. Here f and h are never increasing and 0 ≤ g(x) ≤

1 and 0≤ w(x)≤ 1, f or 0≤ x≤ 1. Since

λ1 =
∫ x

0
g(t)dt =

x3

3
and λ2 =

∫ x

0
w(t)dt =

x4

4
,

we have∫ b

b−λ1

f (x)dx−
∫ b

a
f (x)g(x)dx =

∫ x

x− x3
3

−1
2

xdx−
∫ x

0
−1

2
x

3
dx =−x2

4
+

(
3x− x3

)2

36
+

x4

8

and

∫ b

b−λ2

h(x)dx−
∫ b

a
h(x)w(x)dx =

∫ x

x− x4
4

−xdx−
∫ x

0
−x4dx =

(
x− x4

4

)2

2
− x2

2
+

x5

5
.
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Since f ′′ (x) = h′′ (x) = 0 and using (ϕ f g)′′(ζ )
(ϕhw)′′(ζ )

= c in the equation (2.4), we obtain

−x2

4
+

(
3x− x3

)2

36
+

x4

8
= c

( (
4x− x4

)2

32
− x2

2
+

x5

5

)
.

For c = 1 and 0≤ x≤ 1, we have the following equation(
3x− x3

)2

36
−
(
4x− x4

)2

32
+

x2

4
+

x4

8
− x5

5
= 0.

Setting x = e−1 in the equation above, where 0 < e−1 < 1, we get the exponential equation(
3e−1− e−3

)2

36
−
(
4e−1− e−4

)2

32
+

e−2

4
+

e−4

8
− e−5

5
= 0.

Corollary 3.5. Let f (x) = cosx and g(x) = sinx, where |x| < ∞. For n = 2, we can apply Theorem 2.3. For [a,b] =
[0,x] and 0 < x≤ π

2 , we have

x
( 2

3 cos x
2 +

1+cosx
6

)
− sinx

x
( 2

3 sin x
2 +

sinx
6

)
+ cosx−1

=
−2
[ 1

3 sin ς

2 +
1
6 sinς

]
− ς

6

[
cos ς

2 + cosς
]
+ sinς

2
[ 1

3 cos ς

2 +
1
6 cosς

]
− ς

6

[
sin ς

2 + sinς
]
− cosς

.

When we arrange the equation above for x = π

2 , we get, for 0 < ς < π/2(
ς

6
− 2

3

)(
sin

ς

2
− cosς

)
+

(
ς

6
+

2
3

)(
sinς − cos

ς

2

)
= 0,

or

sinς − cos ς

2

cosς − sin ς

2
=

ς −4
ς +4

.

For ς = π

4 , ς = π

8 and ς = π

16 respectively, we get the following trigonometric equations

sin π

4 − cos π

8
cos π

4 − sin π

8
=

π−16
π +16

,

sin π

8 − cos π

16
cos π

8 − sin π

16
=

π−32
π +32

,

and

sin π

16 − cos π

32
cos π

16 − sin π

32
=

π−64
π +64

,

respectively. For different trigonometric functions, x and ς values, different trigonometric equations can be obtained. Further-
more, Theorem 2.3 can be applied for hyperbolic functions to obtain hyperbolic equations.

Corollary 3.6. Let g(x) = (x−a)n and let f (n−1) (x) = 0, f or x ∈ [a,b] in Theorem 2.2 and Theorem 2.3 Then the following
inequalities are satisfied from the equations (2.2) and (2.3), respectively:

f
(

a+b
2

)
− 1

b−a

∫ b

a
f (x)dx≤ (b−a)n

2n.n!
Mn,

and

1
6
[ f (a)+4 f

(
a+b

2

)
+ f (b)]− 1

b−a

∫ b

a
f (x)dx≤ (b−a)n

6.n!(n−5)2n−2 Mn,

where Mn = maxx∈[a,b] f (n)(x) and in the second inequality, we have used the facts that 2n ≥ n+1 and n−1
n+1 < 1.
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4. Conclusion
We proved some Cauchy type mean-value theorems for Chebychev’s inequality, Steffensen’s inequality, midpoint rule and

Simpson’s rule and gave some applications for the obtained results using the exponential and logarithmic functions, their Taylor
polynomials and for some trigonometric functions. Further, we wrote some exponential, logarithmic and trionometric equations
and gave two inequalities for midpoint and Simpson’s rules.
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