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Abstract

This study examines the Grey Fuzzy Transportation Problem, which represents
decision-making processes under uncertainty in the transportation problem, a
significant issue in the logistics sector and academic studies. The study provides
comprehensive analysis and recommendations that contribute to the effective
solution of the Grey Fuzzy Transportation Problem and better management of
uncertain transportation problems. The research compares four different optimiza-
tion methods, Closed Path Method, Interval Optimization, Robust Optimization,
and Interval Optimization with Penalty Function, for the Grey Fuzzy Transportation
Problem (GFTP). The analyses were conducted on a total of 40 test problems across
four different problem sizes: small, medium, large, and extra-large. The results
showed that the Interval Optimization and Robust Optimization methods demon-
strated the best performance in terms of solution quality and computation time.
Specifically, detailed analyses of the Interval Optimization with Penalty Function
method confirmed that this method provides an effective and consistent solution
approach for the GFTP.
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1. Introduction

Logistics is an integrated system that manages the movement of products from raw materials to
the final consumer. Emerging as physical distribution management in the 1960s, this field rapidly
developed in the 1980s and 1990s due to globalization, technological advancements, and increasing
competitive pressure (Christopher, 1992). Scientific Management, proposed by Taylor in the early
20th century, aims to systematically analyze and improve work processes to increase efficiency
(Taylor, 1911). Operations Research, developed during World War II for the optimization of military
operations, began to rise academic and industrial applications in business management and deci8
sion8making processes in the post8war period (Gass & Assad, 2005).

Fuzzy Logic is a decision8making approach that mimics the human thought process using linguistic
variables and membership functions (Zadeh, 1965). Grey System Theory is a decision analysis
approach developed to analyze systems that contain partially known, partially unknown, incomplete,
or uncertain information (Deng, 1982). Both approaches have found widespread use in decision8
making processes under uncertainty in both academic studies and industrial applications and have
been extensively studied in the fields of Operations Research, Scientific Management, and Decision
Making.

Transportation Problems are one of the oldest and most fundamental application areas of Opera8
tions Research. First formulated by Hitchcock in 1941, the Transportation Problem is a mathematical
approach developed to determine how to transport goods from supply points to demand points at
the lowest cost (Hitchcock, 1941). Decision Making under Uncertainty is a core focus of Operations
Research and Scientific Management (Simon, 1960). Grey System Theory and Fuzzy Logic are widely
studied in modelling real industrial decision problems involving uncertain Transportation Problems
(Bai & Sarkis, 2010).

Nasseri & Khabiri (2019) considered the cost coefficients of the Transportation Problem as grey
numbers and the supply and demand quantities as fuzzy numbers. The problem is called the Grey
Fuzzy Transportation Problem.

In this research, 40 test problems were generated randomly in four different dimensions depending
on the parameters determined for the Grey Fuzzy Transportation Problem. The test problems were
coded in Julia language to ensure that the test problems were generated according to the specified
parameters. In this study, the initial solution algorithm proposed by Nasseri & Khabiri (2019) for
the Grey Fuzzy Transportation Problem and the Closed Path approach expressed as an improvement
algorithm are coded in Julia language and analyzed on test problems. In addition, Interval Optimiza8
tion and Robust Optimization algorithms used in the literature for different problems are adapted
to solve the Grey Fuzzy Transportation Problem and the algorithms are coded in Julia language. In
addition, a penalty function is added to the Interval Optimization approach and an approach that will
enable intelligent positioning of optimization parameters is proposed for this problem type. In terms
of the literature, the development of a test set for Grey Fuzzy Transportation problems proposed by
Nasseri & Khabiri (2019), the adaptation of the Interval and Robust Optimization approach to solve
these problems, and the design of an intelligent and adaptive solution approach with the penalty
function of the Interval Optimization approach can be stated as innovations.
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The second section of the study includes a literature review. The third section provides basic
information on Grey System Theory and Fuzzy Logic and explains the Grey Cost Fuzzy Transportation
Problem. The fourth section describes the solution approaches used. The fifth section presents a
set of test problems and analyses, and the final section shares the discussion and conclusions.

2. Literature Review

Fuzzy and Grey analysis and solution approaches are widely used in optimization studies in fields
such as artificial intelligence, production management, operations research, economics, and deci8
sion theory. Therefore, the development of general and applicable fuzzy and optimization methods
is important both theoretically and practically.

Various approaches have been proposed in the literature for solving problems involving uncertainty.
Yu et al. (2024) developed an interval8constrained multi8objective optimization algorithm using a
new penalty function to directly address problems with uncertain objectives and constraints. Jayswal
et al. (2022) established robust sufficient optimality conditions for multi8time first8order partial
differential equation8constrained control optimization problems in the face of data uncertainty. Fu
& Cao (2019) proposed adaptive sub8interval decomposition analysis and interval differential evolu8
tion approaches to solve these uncertain optimization problems when the parameters of nonlinear
optimization problems take interval values.

Karmakar & Bhunia (2014) presented an interval8focused solution approach aimed at obtaining
solutions with low cost and high efficiency for optimization problems where uncertainty is expressed
in intervals. Steuer (1981) proposed three different algorithms for linear programming problems
where the objective function coefficients are expressed in intervals. Guerra et al. (2017) developed
linear programming solutions based on the Hukuhara difference for optimization problems where
uncertainty is expressed as intervals.

Fuzzy logic and fuzzy set theory are important methods used to solve problems involving uncertainty.
Klir & Yuan (1995) highlighted theoretical advancements and application opportunities in the field
of fuzzy set theory and fuzzy logic. Zimmermann (1996) provided an instructive and guiding study
on fuzzy set models, addressing linear programming, logistics, transportation problems, and their
relationships with fuzzy logic.

Fu et al. (2006), presented a framework where different heuristic algorithms can produce effective
solutions for the rapid solution of transportation problems. Aydemir (2020) proposed a new
approach for determining and analyzing the nth degree of greyness for the characterization and
dimension measurement of uncertain information. Aydemir et al. (2020) examined the analysis of
production planning under uncertainty conditions using fuzzy linear programming and four different
grey linear programming models.

Grey system theory and fuzzy logic are also used in logistics and transportation. Şahin & Karagül
(2023) examined the motivation for purchasing tractors in a company engaged in road transportation
in the logistics sector using grey relational analysis. Tokat et al. (2022) designed key performance
indicators for warehouse loading operations using a fuzzy logic clustering approach. Aydemir et al.
(2023) analyzed the relationships between customer expectations, requirements, and prices using
grey system theory.
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Li & Jin (2008) proposed a fuzzy optimization approach based on a comparison of indices and devel8
oped a new solution approach by integrating it with genetic algorithms. Teodorović (1999) modelled
traffic and transportation processes using fuzzy logic approaches and argued that fuzzy logic is a
universal structure for solving engineering problems in this field.

Voskoglou (2018), solved different linear programming examples structured with grey numbers using
the simplex algorithm. Moore et al. (2009) provided an important and fundamental resource for
interval numbers. Pourofoghi et al. (2019) defined the transportation problem as a grey transporta8
tion problem when transportation costs, supply, and demand data are interval grey numbers and
proposed a new solution approach using the concepts of center and width of grey numbers. Ben8Tal
& Nemirovski (1998; 2002) proposed the Robust Optimization approach to formulate optimization
problems where data is uncertain and belongs to a certain uncertainty set. Nasseri & Khabiri (2019),
considered the cost coefficients of the Transportation Problem as grey numbers and the supply and
demand quantities as fuzzy numbers and proposed improving the solution using the closed path
approach with classical Transportation Problem initial solutions.

When the recent literature was searched with the keywords Grey, fuzzy, and transportation problem,
no studies that directly correspond to the subject of this study were found. However, indirectly
related studies are summarized below.

Table 1. Recent literature with the grey, fuzzy and transportation problem keywords

Paper Summary of Research

Moslem et al. (2023a) IMF SWARA and Fuzzy Bonferroni methods were used to determine the preferences
of decision8makers to improve the supply quality of urban bus transportation in
Mersin. While traceability was identified as the most important criterion, service
quality was the least important.

Çelikbilek et al. (2022) A study was conducted to evaluate Budapest’s public transportation system using
a grey decision model. BWM, AHP and MOORA methods were combined.

Kumar et al. (2023) The uncertain multiobjective transportation problem with a neutrosophic
hyperbolic programming approach is considered and optimal solutions with
different confidence levels are analyzed.

Mardanya & Roy (2023) The Multi8objective Multi8product Solid Transportation Problem (MMSTP) in a
fuzzy environment is investigated. Fuzzy parameters are treated with trapezoidal
fuzzy numbers and different models are developed.

Ghosh et al. (2022) A model has been developed with time window and preservation technology for
the transportation of perishable products. The spoilage rate was minimized by
finding optimal solutions.

Moslem et al. (2023b) A study was conducted to systematically examine the applications of AHP in
solving transportation problems. The research shows that there is widespread use
in solving public transportation and logistics problems with AHP.

Bilişik et al. (2024) An IVIFS8based CRITIC8TOPSIS methodology is proposed for transportation mode
selection for a glass manufacturing company. The railway is identified as the most
suitable transportation mode.

Kacher & Singh (2023) A general parameter approach for fuzzy parameter8based multi8objective
transportation problems is proposed. This approach covers the decomposition of
fuzzy data into different levels and the solution of classical transportation
problems.
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Paper Summary of Research

Zhang et al. (2024) The multi8objective low carbon multimodal transportation planning problem
under fuzzy demand and time conditions is considered and a new model is
developed with the sparrow search algorithm.

Baidya (2024) A multi8stage solid transportation problem is addressed using grey number
theory. This approach focuses on solving logistics problems with uncertainty.

As can be seen from the literature review, the Grey Fuzzy Transportation Problem emerges as a
relatively new logistics problem. The solution approaches proposed and developed for this problem
also indicate a new break in the literature. Although the solution approaches proposed in this
research are used in different problem areas, they can be considered as new solution approaches
for Grey Fuzzy Transportation. From this point on, we will continue to explain the approaches that
introduce the concept of uncertainty to reveal the details of the research.

3. Approaches Under Uncertainty

In classical optimization problems, parameters take on specific values, and in such cases, exact solu8
tions can be obtained using classical optimization methods. However, real industrial applications
do not always meet this certainty condition, and therefore, uncertainties arise due to incomplete,
incorrect, or insufficient information. In this case, scientific management requires new approaches
for the process of compiling and modeling problem data under these uncertainties. Approaches
that can be proposed for decision problems where uncertainty arises can be grouped under three
headings:

‣ Probabilistic approach: Uncertain parameters are designed as random variables with probability
distributions.

‣ Fuzzy approach: Uncertain parameters are designed as fuzzy sets and/or fuzzy numbers.
‣ The grey system approach: Uncertain parameters are designed as grey numbers using the Grey

System Theory.

For decision problems under uncertainty conditions that arise in the industry, these approaches can
be used individually or in various combinations. In this study, the Grey System Theory approach and
Fuzzy Logic approaches will be considered together to define the optimization problem and seek
solution approaches. In this context, basic information about Fuzzy Logic and Grey System Theory
will be provided within the scope of the article.

3.1. Grey Numbers and Operations

A grey number is a number whose exact value is unknown but is known to lie within a certain interval.
It is usually denoted by the symbol (⊗). It is expressed as follows (Aydemir et al., 2020; Liu & Lin,
2006; Nasseri & Khabiri, 2019):

⊗ 𝑥 = [𝑥, 𝑥] = 𝑡 ∈ 𝑥 : 𝑥 ⩽ 𝑥 ⩽ 𝑥 (1)

Here, (𝑥) is the lower bound, and (𝑥) is the upper bound.

An interval grey number is denoted as ⊗ 𝑥 = [𝑎, 𝑏] and is a grey number with a lower and upper
bound. If ⊗ 𝑥 = [𝑎, 𝑎], it is called a white number, and if ⊗ 𝑥 = [−∞, ∞], it is called a black number.
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Every real number (𝑎) can be expressed as a grey number (⊗ 𝑎 = [𝑎, 𝑎]).

The grey zero is (⊗ 0 = [0, 0]).

The set of all grey numbers is denoted by (ℜ(⊗)). Let (⊗ 𝑎 = [𝑎, 𝑎]) and (⊗ 𝑏 = [𝑏, 𝑏]) be two grey
numbers.

The addition operation is as follows: ⊗ 𝑎 + ⊗ 𝑏 = [𝑎 + 𝑏, 𝑎 + 𝑏]

The multiplication of two grey numbers (⊗ 𝑎 = [𝑎, 𝑎]) and (⊗ 𝑏 = [𝑏, 𝑏]) is:

⊗ 𝑎 ∗ ⊗ 𝑏 = [min 𝑃 , max 𝑃 ] Here, (𝑃 = 𝑎 ∗ 𝑏, 𝑎 ∗ 𝑏, 𝑎 ∗ 𝑏, 𝑎 ∗ 𝑏) contains the products. The multiplication
of the grey number (⊗ 𝑎 = [𝑎, 𝑎]) by a positive real number (𝑘) is: 𝑘 ⊗ 𝑎 = [𝑘𝑎, 𝑘𝑎] For the grey number
(⊗ 𝑥 = [𝑥, 𝑥]), the whitenization is:

𝑥 = 𝛼𝑥 + (1 − 𝛼)𝑥, 𝛼 ∈ [0, 1]

is converted to a white number. Typically, (𝛼 = 0.5) is used. For the grey number (⊗ 𝑥 = [𝑥, 𝑥]), the
kernel (center) is: 𝑥 = 1

2(𝑥 + 𝑥)

The whitening function is used to rank grey numbers. (𝐺 : ℜ(⊗) → ℜ) assigns a real number value
to each grey number. Accordingly:
‣ 𝐺(⊗ 𝑥) < 𝐺(⊗ 𝑦) ⇒ ⊗ 𝑥 < ⊗ 𝑦
‣ 𝐺(⊗ 𝑥) = 𝐺(⊗ 𝑦) ⇒ ⊗ 𝑥 = ⊗ 𝑦
‣ 𝐺(⊗ 𝑥) > 𝐺(⊗ 𝑦) ⇒ ⊗ 𝑥 > ⊗ 𝑦

3.2. Fuzzy Sets and Fuzzy Numbers

The definitions related to fuzzy sets and fuzzy numbers are provided at a very basic level below
(Nasseri & Khabiri, 2019; Zimmermann, 1996).

Let 𝑋 be a universal set, and 𝐴 be a fuzzy set on 𝑋 defined by the membership function 𝜇𝐴(𝑥), 𝑥 ∈ 𝑋.
The value 𝜇𝐴(𝑥) represents the degree of membership of 𝑥 in 𝐴 within the interval [0, 1]. For the fuzzy
set 𝐴, the 𝜆8cut is defined as 𝜆 ∈ [0, 1] and 𝐴𝜆 = 𝑥 ∈ 𝑋 : 𝜇𝐴(𝑥) ≥ 𝜆. The support set of the fuzzy set
𝐴 is defined as 𝑆(𝐴) = 𝑥 ∈ 𝑋 : 𝜇𝐴(𝑥) > 0. A fuzzy set is called a fuzzy number if it is convex, normal,
and bounded. A triangular fuzzy number is usually expressed as 𝒶 = (𝑎𝐿, 𝑎, 𝑎𝑈). The membership
function is:

𝜇𝒜(𝑋) =

{{
{{
{{
{𝑥−𝑎𝐿

𝑎−𝑎𝐿 , if 𝑎𝐿 ⩽ 𝑥 ⩽ 𝑎
𝑎𝑈−𝑥
𝑎𝑈−𝑎 , if 𝑎 ⩽ 𝑥 ⩽ 𝑎𝑈

0 , otherwise
(2)

is as follows 𝑎𝐿: lower bound, 𝑎: peak value, 𝑎𝑈 : upper bound. The set of fuzzy numbers is denoted
by ℱ(ℝ). For ranking, the Yager index is:

𝑅(𝒜) = 1
4(𝑎𝐿 + 2𝑎 + 𝑎𝑈)

Defuzzification: The process of converting a fuzzy number into a single number. Usually, the center
of gravity method is used. For 𝒶 = (𝑎𝐿, 𝑎, 𝑎𝑈) ⇒ 𝑎𝑅 = (𝑎𝐿+2𝑎+𝑎𝑈)

4

alphanumeric 12 (3), 169–194 174



Comparative Analysis of Optimization Methods for Grey Fuzzy Transportation Problems in Logistics | Karagül, 2024

3.3. Grey Fuzzy Transportation Problem

Let there be 𝑚 supply points (𝐴1, …, 𝐴𝑚) and 𝑛 demand points (𝐵1, …, 𝐵𝑛). The supplies and
demands are given by the triangular fuzzy numbers (𝒶𝑖, 𝑖 = 1, …, 𝑚) and (𝒷𝑗, 𝑗 = 1, …, 𝑛), respectively,
and the transportation costs are given by the grey numbers ⊗ 𝑐𝑖𝑗, 𝑖 = 1, …, 𝑚, 𝑗 = 1, …, 𝑛. By defuzzi8
fying the fuzzy values and whitening the grey values, we will transform the problem into a classical
transportation problem (Nasseri & Khabiri, 2019).

Grey Fuzzy Transportation Problem (GFTP):

min 𝑍 = ∑
𝑚

𝑖=1
∑

𝑛

𝑗=1
⊗ 𝑐𝑖𝑗𝑥𝑖𝑗

s.t.∑
𝑛

𝑗=1
𝑥𝑖𝑗 ≤ 𝒶𝑖, 𝑖 = 1, 2, 3, …, 𝑚

∑
𝑚

𝑖=1
𝑥𝑖𝑗 ≥ 𝒷𝑗, 𝑗 = 1, 2, 3, …, 𝑛

𝑥𝑖𝑗 ≥ 0, 𝑖 = 1, 2, 3, …, 𝑚; 𝑗 = 1, 2, 3, …, 𝑛

(3)

Here, 𝑥𝑖𝑗 is the quantity to be transported from point 𝐴𝑖 to point 𝐵𝑗

4. Solution Approaches for the Grey Fuzzy Transportation Problem

This section of the research includes the Closed Path Approach proposed by Nasseri & Khabiri (2019),
the Interval Optimization Approach, the Robust Optimization, and the Interval Optimization with
Penalty Function methods.

4.1. Closed Path Method

Algorithm 1 step8by8step explanations summarize the main steps of the “Grey Fuzzy Transportation
Problem Solver” approach. The code is created by implementing the approach proposed by Nasseri
& Khabiri (2019). The authors find the initial solution by transforming the structure into a classical
Transportation problem and using the North8West Corner Method or the Least Cost Cell method.
Then, the Closed Path Approach is applied to the initial solution, and in each iteration, the improve8
ment index for the Transportation Problem with uncertainty conditions is calculated to check if the
solution has improved. The least8cost cell method is used as the initial solution method.
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Algorithm 1. Closed Path Method Step8by8Step Explanation

1. Load the test data from the “testset.json” file.
2. Create an empty dictionary to store the results.
3. For each problem group:

‣ Get the problem list.
‣ Create an empty list to store the solutions.
‣ For each problem:

‣ Create the transportation data.
‣ Solve the fuzzy situation and calculate the crisp supply/demand values.
‣ Solve the grey situation and calculate the whitenized costs.
‣ Find the initial solution.
‣ Calculate the initial cost.
‣ Find the optimal solution.
‣ Calculate the optimal cost.
‣ Calculate the improvement ratio.
‣ Create the solution object.
‣ Add the solution to the solutions list.
‣ Generate a report.

‣ Add the solutions to the results dictionary.
4. Return the results.

4.2. Interval Optimization

The mathematical model defining the Interval Optimization approach for the Grey Fuzzy Transporta8
tion Problem is provided. This model is designed to be solved using the Julia JuMP and SCIP
open8source solvers. The detailed explanation of the Interval Optimization model for the Grey Fuzzy
Transportation Problem is as follows:

Interval Optimization Mathematical Model:
‣ Decision Variables:

‣ 𝑥𝑖𝑗: The quantity transported from supply point i to demand point j
‣ 𝛼𝑖𝑗: The weighting factor between the lower and upper bounds of the transportation cost from

supply point 𝑖 to demand point 𝑗 (0 ≤ 𝛼𝑖𝑗 ≤ 1)
‣ 𝛽𝑖: The weighting factor between the lower and upper bounds of supply point 𝑖 (0 ≤ 𝛽𝑖 ≤ 1)
‣ 𝛾𝑗: The weighting factor between the lower and upper bounds of demand point 𝑗 (0 ≤ 𝛾𝑗 ≤ 1)

‣ Constraints:
‣ Supply Constraint: For each supply point, the total quantity transported cannot exceed the

weighted sum of the lower and upper bounds of the supply quantity
∑𝑗 𝑥𝑖𝑗 ≤ 𝛽𝑖 ∗ supply𝑖[3] + (1 − 𝛽𝑖) ∗ supply𝑖[1], ∀𝑖

‣ Demand Constraint: For each demand point, the total quantity transported must be greater
than or equal to the weighted sum of the lower and upper bounds of the demand quantity
 ∑𝑖 𝑥𝑖𝑗 ≥ 𝛾𝑗 ∗ demand𝑗[1] + (1 − 𝛾𝑗) ∗ demand𝑗[3], ∀𝑗

‣ Objective Function:
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‣ To minimize the total transportation cost:
min ∑𝑖 ∑𝑗(𝛼𝑖𝑗 ∗ costs𝑖𝑗[1] + (1 − 𝛼𝑖𝑗) ∗ costs𝑖𝑗[2]) ∗ 𝑥𝑖𝑗

In the interval optimization model, lower and upper bounds are used for supply and demand quan8
tities, as well as transportation costs. Values between these bounds are selected using weighting
factors (𝛼, 𝛽, 𝛾). The objective is to minimize the total transportation cost.

Below is the formal structure of the mathematical model for the Interval Optimization approach:

Nomenclature:

‣ 𝐼 : Supply points set (𝑖 ∈ 𝐼)
‣ 𝐽 : Demand points set (𝑗 ∈ 𝐽 )
‣ [𝑆𝑖, 𝑆𝑖]: 𝑖8th supply point’s lower and upper bounds
‣ [𝐷𝑗, 𝐷𝑗]: 𝑗8th demand point’s lower and upper bounds
‣ [𝐶𝑖𝑗, 𝐶𝑖𝑗]: The lower and upper bounds of the unit transportation cost from the 𝑖8th supply point

to the 𝑗8th demand point
‣ 𝑥𝑖𝑗: The quantity transported from the 𝑖8th supply point to the 𝑗8th demand point
‣ 𝛼𝑖𝑗: The weighting factor between the lower and upper bounds of the transportation cost from

the 𝑖8th supply point to the j8th demand point (0≤αᵢⱼ≤1)
‣ 𝛽𝑖: The weighting factor between the lower and upper bounds of the 𝑖8th supply point (0 ≤ 𝛽𝑖 ≤ 1)
‣ 𝛾𝑗: The weighting factor between the lower and upper bounds of the 𝑗8th demand point (0 ≤

𝛾𝑗 ≤ 1)

Interval Optimization Formal Model:

‣ Objective Function:
‣ min ∑𝑖 ∑𝑗 𝛼𝑖𝑗 ∗ 𝐶𝑖𝑗 + (1 − 𝛼𝑖𝑗) ∗ 𝐶𝑖𝑗) ∗ 𝑥𝑖𝑗

‣ Constraints:
‣ Supply Constraint:

∑𝑗 𝑥𝑖𝑗 ⩽ 𝛽𝑖 ∗ 𝑆𝑖 + (1 − 𝛽𝑖) ∗ 𝑆𝑖, ∀𝑖 ∈ 𝐼
‣ Demand Constraint:

∑𝑖 𝑥𝑖𝑗 ≥ 𝛾𝑗 ∗ 𝐷𝑗 + (1 − 𝛾𝑗) ∗ 𝐷𝑗, ∀𝑗 ∈ 𝐽
‣ Non8negativity Constraints:

𝑥𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽
‣ Weighting Factors Constraints:

0 ≤ 𝛼𝑖𝑗 ≤ 1, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽
0 ≤ 𝛽𝑖 ≤ 1, ∀𝑖 ∈ 𝐼
0 ≤ 𝛾𝑗 ≤ 1, ∀𝑗 ∈ 𝐽

In the interval optimization model, lower and upper bounds are used for supply and demand
quantities as well as transportation costs. By using weighting factors (𝛼𝑖𝑗, 𝛽𝑖, 𝛾𝑗), a value is selected
within these bounds. The objective function aims to minimize the total transportation cost.

4.3. The Robust Optimization Model

‣ Decision Variables:
𝑥𝑖𝑗: The quantity transported from supply point 𝑖 to demand point 𝑗
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𝛼𝑖𝑗: The weighting factor between the lower and upper bounds of the transportation cost from
supply point 𝑖 to demand point 𝑗 (0 ≤ 𝛼𝑖𝑗 ≤ 1)

‣ Constraints:
‣ Supply Constraint: For each supply point, the total quantity transported cannot exceed the

weighted sum of the lower and upper bounds of the supply quantity
∑𝑗 𝑥𝑖𝑗 ⩽ supply𝑖[3], ∀𝑖

‣ Demand Constraint: For each demand point, the total quantity transported must be greater
than or equal to the weighted sum of the lower and upper bounds of the demand quantity
∑𝑖 𝑥𝑖𝑗 ≥ demand𝑗[1], ∀𝑗

‣ Objective Function: To minimize the total transportation cost:
min ∑𝑖 ∑𝑗(𝛼𝑖𝑗 ∗ costs𝑖𝑗[1] + (1 − 𝛼𝑖𝑗) ∗ costs𝑖𝑗[2]) ∗ 𝑥𝑖𝑗

In the robust optimization model, upper bounds are used for supply quantities and lower bounds
are used for demand quantities. A weighting factor (α) is again used for transportation costs. The
objective is to minimize the total transportation cost even in the worst8case scenario.

Robust Optimization Formal Model:
‣ Objective Function:

min ∑𝑖 ∑𝑗(𝛼𝑖𝑗 ∗ 𝐶𝑖𝑗 + (1 − 𝛼𝑖𝑗 ∗ 𝐶𝑖𝑗) ∗ 𝑥𝑖𝑗

‣ Constraints:
‣ Supply Constraint:

∑𝑗 𝑥𝑖𝑗 ⩽ 𝑆𝑖, ∀𝑖 ∈ 𝐼
‣ Demand Constraint:

∑𝑖 𝑥𝑖𝑗 ≥ 𝐷𝑗, ∀𝑗 ∈ 𝐽
‣ Non8negativity Constraints:

𝑥𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽
‣ Weighting Factors Constraints:

0 ≤ 𝛼𝑖𝑗 ≤ 1, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽

In the robust optimization model, upper bounds are used for supply quantities and lower bounds
are used for demand quantities. A weighting factor α_ij is also used for transportation costs. The
objective function aims to minimize the total transportation cost even in the worst8case scenario.

These models can be used to address transportation problems involving uncertainty. Interval
optimization expresses uncertainty as intervals, while robust optimization offers a more protective
approach against uncertainty.

4.4. Interval Optimization Approach with Penalty Function

This model defines the interval optimization approach with a penalty function. Here, the decision
variables ((x,α,β,γ)), constraints, and objective function are provided. A term that penalizes devia8
tions from the mid8interval values is added to the objective function.

Nomenclature:

‣ 𝐽 : demandpointsset(𝑗 ∈ 𝐽)
‣ 𝐼 : supplypointsset(𝑖 ∈ 𝐼)
‣ [𝑆𝑖, 𝑆𝑖]: Lower and upper bounds of the 𝑖8th supply point
‣ [𝐷𝑗, 𝐷𝑗]: Lower and upper bounds of the 𝑗8th demand point
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‣ [𝐶𝑖𝑗, 𝐶𝑖𝑗]: Lower and upper bounds of the unit transportation cost from the 𝑖8th supply point to
the 𝑗8th demand point

‣ 𝑥𝑖𝑗: Quantity transported from the 𝑖8th supply point to the 𝑗8th demand point
‣ 𝛼𝑖𝑗: Weighting factor between the lower and upper bounds of the transportation cost from the 𝑖

8th supply point to the 𝑗8th demand point (0 ≤ 𝛼𝑖𝑗 ≤ 1)
‣ 𝛽𝑖: Weighting factor between the lower and upper bounds of the 𝑖8th supply point (0 ≤ 𝛽𝑖 ≤ 1)
‣ 𝛾𝑗: Weighting factor between the lower and upper bounds of the 𝑗8th demand point (0 ≤ 𝛾𝑗 ≤ 1)
‣ 𝜆: Penalty factor for deviations from the mid8interval values

Interval Optimization Approach with Penalty Function Mathematical Model:

‣ Objective Function: min ∑𝑖 ∑𝑗 𝛼𝑖𝑗 ∗ 𝐶𝑖𝑗 + (1 − 𝛼𝑖𝑗 ∗ 𝐶𝑖𝑗 ∗ 𝑥𝑖𝑗 + 𝜆 ∗ (∑𝑖 ∑𝑗 (𝛼𝑖𝑗 − 0.5)2 +
∑𝑖 (𝛽𝑖 − 0.5)2 + ∑𝑗 (𝛾𝑗 − 0.5)2)

‣ Constraints:
‣ Supply Constraint:

∑𝑗 𝑥𝑖𝑗 ⩽ 𝛽𝑖 ∗ 𝑆𝑖 + (1 − 𝛽𝑖) ∗ 𝑆𝑖, ∀𝑖 ∈ 𝐼
‣ Demand Constraint:

∑𝑖 𝑥𝑖𝑗 ≥ 𝛾𝑗 ∗ 𝐷𝑗 + (1 − 𝛾𝑗) ∗ 𝐷𝑗, ∀𝑗 ∈ 𝐽
‣ Non8negativity Constraint: 𝑥𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽
‣ Weighting Factors Constraints: 0 ≤ 𝛼𝑖𝑗 ≤ 1, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽  0 ≤ 𝛽𝑖 ≤ 1, ∀𝑖 ∈ 𝐼  0 ≤ 𝛾𝑗 ≤ 1, ∀𝑗 ∈ 𝐽

The objective function consists of two components:
1. Total transportation cost:

∑𝑖 ∑𝑗(𝛼𝑖𝑗 ∗ 𝐶𝑖𝑗 + (1 − 𝛼𝑖𝑗 ∗ 𝐶𝑖𝑗 ∗ 𝑥𝑖𝑗

Here, each transportation cost is calculated by interpolating between the lower and upper
bounds using the corresponding weighting factor (𝛼𝑖𝑗).

2. Penalty for deviations from the mid8interval values:
𝜆 ∗ (∑𝑖 ∑𝑗 (𝛼𝑖𝑗 − 0.5)2 + ∑𝑖 (𝛽𝑖 − 0.5)2 + ∑𝑗 (𝛾𝑗 − 0.5)2)
Here, the sum of the squares of the deviations of the weighting factors (𝛼𝑖𝑗, 𝛽𝑖, 𝛾𝑗) from 0.5 (the
mid8value) is taken and multiplied by the penalty factor (𝜆). This term encourages the weighting
factors to be close to the mid8interval values and prevents the selection of extreme values. The
constraints ensure that the supply and demand remain within their bounds and guarantee that
the weighting factors are between 0 and 1.

This model addresses transportation problems involving uncertainty by expressing transportation
costs and supply/demand quantities as intervals. The objective is to minimize the total transporta8
tion cost while ensuring that the weighting factors are close to the mid8interval values. This balances
the effect of uncertainty, resulting in more reliable solutions.

5. Computational Analysis

In this section, the analysis of the four proposed approaches for the Grey Fuzzy Transportation
Problem will be conducted. All proposed algorithms were implemented using the Julia language,
JuMP mathematical programming language, and the open8source solver SCIP. To analyze the algo8
rithms, 40 synthetic Grey Fuzzy Transportation Problems were randomly generated. These problems
were categorized into four groups: small, medium, large, and extra8large, with 10 problems in each
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group. The computer used for analyzing the test set is described as having 8 GB RAM, an Intel(R)
Core™ i783520M CPU @ 2.90GHz, and the operating system Linux Mint 21.3/Virginia.

Table 2 provides the design parameters for the test problems. When looking at the design parameters
of the test problems, the problem group ‘small’ is planned to have 10 problems, with problem sizes
of 2x3, a supply range of (10.0, 50.0), a demand range of (5.0, 30.0), and unit variable cost ranges of
(1.0, 20.0).

Table 2. Designed test instances parameters

Group
Number of
Problems

Problem
Size

Supply Range
(Min, Max)

Demand Range
(Min, Max)

Cost Range
(Min, Max)

Small 10 2x3 (10.0,50.0) (5.0,30.0) (1.0,20.0)

Medium 10 4x5 (50.0, 200.0) (30.0, 100.0) (10.0, 50.0)

Large 10 6x7 (200.0, 500.0) (100.0, 300.0) (20.0, 100.0)

Extra8large 10 8x10 (500.0, 1000.0) (300.0, 800.0) (50.0, 200.0)

Table  3 provides the actual parameters for the generated test problems. When examining the
generated test problems, the problem group ‘small’ has 10 problems, with problem sizes of 2x3, a
supply range of (10.89, 49.97), a demand range of (6.26, 29.99), and a cost range of (1.43, 19.99).

Table 3. Produced test instances parameters

Group
Number of
Problems

Problem
Size

Supply Range
(Min, Max)

Demand Range
(Min, Max)

Cost Range
(Min, Max)

Small 10 2x3 (10.89, 49.97) (6.16, 29.99) (1.43, 19.99)

Medium 10 4x5 (54.87, 199.94) (30.04, 100.0) (10.0, 50.0)

Large 10 6x7 (200.25, 499.97) (102.19, 299.69) (20.44, 99.99)

Extra8large 10 8x10 (500.87, 999.99) (302.46, 799.43) (50.02, 199.99)

Table 4 provides the solutions for 10 problems in the ‘small’ problem group. When examining the
solutions for this group, the initial solutions and the closed path approaches are listed with the
same results. This indicates that the closed path approach did not improve any solutions in this
problem group. When looking at the mathematical programming approaches, it can be asserted
that the Interval Optimization (IO), Robust Optimization (RO), and Interval Optimization with Penalty
Function (IOWPF) approaches yielded the same results.
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Table 4. Small size problems solutions with algorithms

No of
Problem

Problem
Size

Initial Cost CP Cost Imp (%) IO Cost RO Cost
IOWPF
Cost

1 2x3 422.6 422.6 0 171.54 171.54 171.69

2 2x3 740.75 740.75 0 362.84 362.84 362.99

3 2x3 798.65 798.65 0 468.32 468.32 468.47

4 2x3 836.7 836.7 0 424.71 424.71 424.88

5 2x3 610.7 610.7 0 283.34 283.34 283.49

6 2x3 569.35 569.35 0 237.8 237.8 237.95

7 2x3 582.7 582.7 0 311.06 311.06 311.21

8 2x3 647.25 647.25 0 292.64 292.64 292.8

9 2x3 799.4 799.4 0 552.73 552.73 552.88

10 2x3 935.65 935.65 0 346.49 346.49 346.64

Table 5 provides the solutions for 10 problems in the ‘medium’ problem group. When examining
the solutions for this group, it is observed that the closed path approach improved the solutions
for all, but four problems compared to the initial solutions. When looking at the mathematical
programming approaches, it can be asserted that the Interval Optimization (IO), Robust Optimization
(RO), and Interval Optimization with Penalty Function (IOWPF) approaches yielded the same results.
Additionally, these methods have produced significantly superior solutions compared to the closed
path approach.

Table 5. Medium size problems solutions with algorithms

No of
Problem

Problem
Size

Initial Cost CP Cost Imp (%) IO Cost RO Cost
IOWPF
Cost

1 4x5 10043.9 10011.2 0.33 4447.03 4447.03 4447.28

2 4x5 12796.85 12639.8 1.23 5854.59 5854.59 5854.89

3 4x5 12318.45 12318.45 0 5844.04 5844.04 5844.29

4 4x5 11253.65 10749.95 4.48 6241.67 6241.67 6241.97

5 4x5 13164.85 13066.4 0.75 6728.95 6728.95 6729.25

6 4x5 12736.5 12736.5 0 6800.01 6800.01 6800.31

7 4x5 14480.85 14466.9 0.1 8307.64 8307.64 8307.99

8 4x5 11465.55 10796.7 5.83 6369 6369 6369.25

9 4x5 10947.55 10865.05 0.75 5845.73 5845.73 5845.98

10 4x5 11493.55 11493.55 0 6217.61 6217.61 6217.86

Table  6 provides the solutions for 10 problems in the ‘large’ problem group. When examining
the solutions for this group, it is observed that the closed path approach improved all solutions
compared to the initial solutions. When looking at the mathematical programming approaches, it can
be asserted that the Interval Optimization (IO), Robust Optimization (RO), and Interval Optimization
with Penalty Function (IOWPF) approaches yielded the same results. Additionally, these methods
have produced significantly superior solutions compared to the closed8path approach.
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Table 6. Large size problems solutions with algorithms

No of
Problem

Problem
Size

Initial Cost CP Cost Imp (%) IO Cost RO Cost
IOWPF
Cost

1 6x7 104024.45 102541.15 1.43 49822.87 49822.87 49823.32

2 6x7 105871.25 95250.25 10.03 54568.56 54568.56 54568.96

3 6x7 78391.9 72318.7 7.75 44861.31 44861.31 44861.66

4 6x7 82868.7 82847.8 0.03 44197.48 44197.48 44197.83

5 6x7 80411.95 79699.15 0.89 42602.21 42602.21 42602.61

6 6x7 98358.65 97120.2 1.26 49163.55 49163.55 49164.05

7 6x7 86516.95 85997.7 0.6 40124.66 40124.66 40125.16

8 6x7 89493.45 86491.25 3.35 45460.44 45460.44 45460.84

9 6x7 111170.3 101898.8 8.34 65531.9 65531.9 65532.35

10 6x7 102810.25 102483.7 0.32 44406.46 44406.46 44406.85

Table 7 provides the solutions for 10 problems in the ‘extra large’ problem group. When examining
the solutions for this group, it is observed that the closed path approach improved all solutions
except for one problem compared to the initial solutions. When looking at the mathematical
programming approaches, it can be asserted that the Interval Optimization (IO), Robust Optimization
(RO), and Interval Optimization with Penalty Function (IOWPF) approaches yielded the same results.
Additionally, these methods have produced significantly superior solutions compared to the closed8
path approach.

Table 7. Extra large size problems solutions with algorithms

No of
Problem

Problem
Size

Initial Cost CP Cost Imp (%) IO Cost RO Cost
IOWPF
Cost

1 8x10 686598.85 686150.85 0.07 305855.81 305855.81 305856.38

2 8x10 672057.2 663530.3 1.27 403755.99 403755.99 403756.73

3 8x10 618454.3 610538.35 1.28 353941.8 353941.8 353942.44

4 8x10 679429.8 664164.45 2.25 322422.59 322422.59 322423.28

5 8x10 612326.95 610274.95 0.34 346980.83 346980.83 346981.52

6 8x10 678037.85 678037.85 0 380024.59 380024.59 380025.28

7 8x10 741827.65 717347.3 3.3 401703.37 401703.37 401704.12

8 8x10 621685.5 616008.3 0.91 334730.08 334730.08 334730.73

9 8x10 751334.95 723157.25 3.75 322584.71 322584.71 322585.45

10 8x10 631604.15 610758.7 3.3 355147.62 355147.62 355148.31

The variables used in Table 8 are defined as follows:
‣ 𝑇0: Initial Solution Time (seconds)
‣ 𝑇1: Closed Path Solution Time (seconds)
‣ 𝑇2: Interval Optimization Solution Time (seconds)
‣ 𝑇3: Robust Optimization Solution Time (seconds)
‣ 𝑇4: Interval Optimization with Penalty Function Solution Time (seconds)

The maximum value for Initial Solution Time, T_0, has been determined as 0.0001 seconds in 40
problems. The remaining times have been recorded as 0.0000 seconds. Therefore, it has been
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excluded from Table 8. Table 8 is presented in four groups as (a), (b), (c), and (d). Each group shows
the solution times in seconds for small (a), medium (b), large (c), and extra8large (d), respectively.

Table 8. Solution times of algorithms by problem groups (seconds)

Problem Problem Size T1 T2 T3 T4

1 2x3 0.0072 0.0091 0.0072 0.049

2 2x3 0.0058 0.0103 0.0068 0.1027

3 2x3 0.0028 0.0158 0.0061 0.0697

4 2x3 0.008 0.0075 0.0063 0.0487

5 2x3 0.0082 0.0105 0.0079 0.0778

6 2x3 0.0049 0.0083 0.0096 0.0848

7 2x3 0.003 0.0093 0.0076 0.0635

8 2x3 0.0037 0.0141 0.0074 0.0662

9 2x3 0.0049 0.0128 0.0191 0.0741

(a)

10 2x3 0.0076 0.0066 0.0278 0.0773

1 4x5 0.0147 0.012 0.0065 0.2199

2 4x5 0.0188 0.0162 0.0133 0.1479

3 4x5 0.0078 0.0175 0.0167 0.1161

4 4x5 0.0209 0.0185 0.0105 0.1354

5 4x5 0.0137 0.0167 0.0075 0.1018

6 4x5 0.0037 0.0099 0.0119 0.144

7 4x5 0.0206 0.0074 0.0101 0.2113

8 4x5 0.0359 0.009 0.0083 0.1382

9 4x5 0.0166 0.0075 0.0229 0.1258

(b)

10 4x5 0.0067 0.0078 0.0145 0.1216

1 6x7 0.0357 0.0127 0.0231 0.3654

2 6x7 0.187 0.0171 0.0093 0.2758

3 6x7 0.0992 0.0109 0.0209 0.2788

4 6x7 0.0481 0.0181 0.0114 0.2593

5 6x7 0.0489 0.025 0.007 0.2382

6 6x7 0.0783 0.0065 0.0145 0.3185

7 6x7 0.0495 0.0105 0.0227 0.2721

8 6x7 0.0589 0.0178 0.0203 0.2874

9 6x7 0.1604 0.0161 0.0112 0.7377

(c)

10 6x7 0.0582 0.0224 0.0064 0.1988

1 8x10 1.475 2.2918 0.0078 3.645

2 8x10 0.2461 0.0066 0.0074 0.8444

3 8x10 0.4781 0.0107 0.0129 1.0813

4 8x10 0.1551 0.0378 0.0366 0.9456

5 8x10 0.0689 0.0246 0.0271 0.6429

6 8x10 0.0451 0.0181 0.0118 0.6398

7 8x10 0.1862 0.0173 0.014 0.7765

8 8x10 0.1479 0.0083 0.0238 0.7431

(d)
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Problem Problem Size T1 T2 T3 T4

9 8x10 0.2543 0.0276 0.0076 0.826

10 8x10 0.4399 0.0172 0.0207 0.9082

Table 9 provides solutions for Problem 5 in the large problem group regarding the behavior of para8
meters in mathematical models. Additionally, Appendix 2 shares the detailed solution records for
all solutions obtained with the Interval Optimization with Penalized Function algorithm concerning
the 𝛼, 𝛽, and 𝛾 parameters on a problem8by8problem basis.

Table 9. Solution details and parameters for the algorithms
-----------------------------------------------------------
Interval Optimization Solution Report
-----------------------------------------------------------
Problem Group: large
Problem Size: 6x7
Problem No: 5
Best Objective Value: 42602.20999999999
Best Alpha: [1.0 1.0 1.0 1.0 1.0 1.0 1.0;
             1.0 1.0 1.0 1.0 1.0 1.0 1.0;
             1.0 1.0 1.0 1.0 1.0 1.0 1.0;
             1.0 1.0 1.0 1.0 1.0 1.0 1.0;
             1.0 1.0 1.0 1.0 1.0 1.0 1.0;
             1.0 1.0 1.0 1.0 1.0 1.0 1.0]
Best Beta: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
Best Gamma: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
Solution Time: 0.024971961975097656 seconds
---------------------------------------------------------
Robust Optimization Solution Report
---------------------------------------------------------
Problem Group: large
Problem Size: 6x7
Problem No: 5
Best Objective Value: 42602.20999999999
Best Alpha: [1.0 1.0 1.0 1.0 1.0 1.0 1.0;
             1.0 1.0 1.0 1.0 1.0 1.0 1.0;
             1.0 1.0 1.0 1.0 1.0 1.0 1.0;
             1.0 1.0 1.0 1.0 1.0 1.0 1.0;
             1.0 1.0 1.0 1.0 1.0 1.0 1.0;
             1.0 1.0 1.0 1.0 1.0 1.0 1.0]
Solution Time: 0.007044076919555664 seconds
------------------------------------------------------------------------------------------------
Interval Optimization with Penalized Function Solution Report
------------------------------------------------------------------------------------------------
Problem Group: large
Problem Size: 6x7
Problem No: 5
Best Objective Value: 42602.6
Best Alpha: [0.5 0.5 0.5 0.5 0.5 0.5 0.5;
             1.0 1.0 0.5 0.5 0.5 0.5 0.5;
             0.5 1.0 0.5 0.5 0.5 1.0 1.0;
             0.5 0.5 0.5 1.0 0.5 0.5 0.5;
             0.5 0.5 0.5 0.5 0.5 0.5 0.5;
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             0.5 0.5 1.0 0.5 1.0 0.5 0.5]
Best Beta: [0.5, 1.0, 0.5, 0.5, 0.5, 0.5]
Best Gamma: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
Solution Time: 0.2382 seconds

Comparative comparison table according to 𝑇3 solution time in Table 10. In this table, 𝑇3 is consid8
ered as 1 unit; values less than 1 indicate better solution times, and values greater than 1 indicate
higher solution times. A detailed comparative comparison table on a problem8by8problem basis is
provided in Appendix 1.

Table 10. Comparative comparison table according to 𝑇3 solution time

Group Size T1 T2 T3 T4 Units

2x3 0.0056 0.0104 0.0106 0.0714 Average8seconds
Small

𝑇𝑗/𝑇3 0.5 1 1 6.7 rate

4x5 0.0159 0.0123 0.0122 0.1462 Average8seconds
Medium

𝑇𝑗/𝑇3 1.3 1 1 12 rate

6x7 0.0824 0.0157 0.0147 0.3232 Average8seconds
Large

𝑇𝑗/𝑇3 5.6 1.1 1 22 rate

8x10 0.3497 0.246 0.017 1.1053 Average8seconds
extra8large

𝑇𝑗/𝑇3 20.6 14.5 1 65.1 rate

Experimental studies conducted on a test set of 40 problems have observed that all methods
provided better results compared to the initial solution. Interval Optimization and Robust Optimiza8
tion methods achieved the same optimal cost in most of the tested problems, while the Interval
Optimization with Penalty Function method produced slightly higher8cost solutions compared to
the other methods. The Closed Path Method showed improvements ranging from 0.0% to 3.75%
compared to the initial solution in the extra8large problem group, with improvements of 0.0% to
4.48% in the medium group, and 0.03% to 10.03% in the large group.

In terms of computation time, the comparative time coefficients of the Robust Optimization algo8
rithm varied depending on the problem size. For small and medium8sized problems, the Interval
Optimization and Robust Optimization methods showed similar computation times, while for large
and extra8large problems, the Robust Optimization method provided faster results. The Closed
Path Algorithm and Interval Optimization with Penalty Function methods became computationally
disadvantaged as the problem size increased. When compared to the Robust Optimization algorithm,
the Closed Path Algorithm, Interval Optimization, Robust Optimization, and Interval Optimization
with Penalty Function methods had comparative time coefficients of 0.5, 1.0, 1.0, and 6.7 for small
problems, 1.3, 1.0, 1.0, and 12.0 for medium problems, 5.6, 1.1, 1.0, and 22.0 for large problems, and
20.6, 14.5, 1.0, and 65.1 for extra8large problems, respectively.

In conclusion, among the four methods examined, Interval Optimization and Robust Optimization
methods were found to be more effective in solving the Grey Fuzzy Transportation Problem (GFTP).
However, it is thought that the performance of the Interval Optimization with Penalty Function
method could be improved by dynamically adjusting the weight factors.

The Interval Optimization with Penalty Function method uses lower and upper bounds for supply
and demand quantities and transportation costs to solve the GFTP. The effectiveness of the method
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depends on the appropriate assignment of weight factors (𝛼, 𝛽, 𝛾). The method manages uncertainty
by assigning weight factors (𝛼, 𝛽, 𝛾) and adds a term to the objective function that penalizes
deviations from the middle interval values. In all problem sizes, the demand weight factor (𝛾) values
were consistently set to 1.0, indicating that the method focuses on the upper bound of demand
quantities. The transportation cost weight factor (𝛼) values were balanced between 0.5 and 1.0 in all
problem sizes, indicating that the method balances the lower and upper bounds of transportation
costs. The supply weight factor (𝛽) values were mostly set to 0.5 or 1.0, but some intermediate values
such as 0.59, 0.65, 0.81, 0.92, and 0.99 were also observed, showing that the method adapts to the
characteristics of the problems. In terms of solution time, it was observed that the computation
time of the Interval Optimization with the Penalty Function method increased as the problem size
increased. However, even for the largest problems, the average solution time was approximately 1
second, indicating that the method can solve large8scale problems in a reasonable time.

6. Conclusion and Recommendations

The Grey Fuzzy Transportation Problem (GFTP) is a model developed to address transportation prob8
lems involving uncertainty. In this study, four different optimization methods (Closed Path Method,
Interval Optimization, Robust Optimization, and Interval Optimization with Penalty Function) were
used to solve the GFTP, and their performances were comprehensively analyzed. The analyses were
conducted on a total of 40 test problems across four different problem sizes: small, medium, large,
and extra8large. The results showed that the Interval Optimization and Robust Optimization methods
demonstrated the best performance in terms of solution quality and computation time.

Detailed analyses focusing on the Interval Optimization with the Penalty Function method revealed
that this method provides an effective and consistent solution approach for the GFTP. The method
focuses on the upper bound of demand quantities while adopting a more balanced approach for
supply quantities and transportation costs. In assigning weight factors (𝛼, 𝛽, 𝛾), the method adapts
to the characteristics of the problems. Additionally, it consistently performs well across different
problem sizes, successfully managing uncertainty. Although the solution times increase with prob8
lem size, even the largest problems can be solved in a reasonable time.

This study highlights the potential of the Interval Optimization with Penalty Function method for
solving the GFTP, while also showing that other methods can be effective. Future research can focus
on determining the optimal value of the penalty factor, exploring different weight factor assignment
strategies, and applying the methods to real8world problems. Comparative analyses with other fuzzy
optimization methods will also help determine the most suitable solution approaches for the GFTP.
The comprehensive analysis and suggestions provided by this study will contribute to the effective
solution of the GFTP and better management of uncertain transportation problems.

It can be argued that the solution approaches used in this study can be used for the Fixed8Charge
Transportation Problem (FCTP) in addition to the Transportation Problem. Analyses can be improved
by adapting the proposed solution approaches for FCTP.
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Appendix

Appendix 1. Detailed Solution Times of all test problems and Time Comparisons

Problem
Problem

Size
T1 T2 T3 T4 T1/T3 T2/T3 T3/T3 T4/T3

1 2x3 0.0072 0.0091 0.0072 0.049 1 1.3 1 6.8

2 2x3 0.0058 0.0103 0.0068 0.1027 0.9 1.5 1 15.1

3 2x3 0.0028 0.0158 0.0061 0.0697 0.5 2.6 1 11.4

4 2x3 0.008 0.0075 0.0063 0.0487 1.3 1.2 1 7.7

5 2x3 0.0082 0.0105 0.0079 0.0778 1 1.3 1 9.8

6 2x3 0.0049 0.0083 0.0096 0.0848 0.5 0.9 1 8.8

7 2x3 0.003 0.0093 0.0076 0.0635 0.4 1.2 1 8.4

8 2x3 0.0037 0.0141 0.0074 0.0662 0.5 1.9 1 8.9

9 2x3 0.0049 0.0128 0.0191 0.0741 0.3 0.7 1 3.9

10 2x3 0.0076 0.0066 0.0278 0.0773 0.3 0.2 1 2.8

Average 0.0056 0.0104 0.0106 0.0714 0.5 1 1 6.7

1 4x5 0.0147 0.012 0.0065 0.2199 2.3 1.8 1 33.8

2 4x5 0.0188 0.0162 0.0133 0.1479 1.4 1.2 1 11.1

3 4x5 0.0078 0.0175 0.0167 0.1161 0.5 1 1 7

4 4x5 0.0209 0.0185 0.0105 0.1354 2 1.8 1 12.9

5 4x5 0.0137 0.0167 0.0075 0.1018 1.8 2.2 1 13.6

6 4x5 0.0037 0.0099 0.0119 0.144 0.3 0.8 1 12.1

7 4x5 0.0206 0.0074 0.0101 0.2113 2 0.7 1 20.9

8 4x5 0.0359 0.009 0.0083 0.1382 4.3 1.1 1 16.7

9 4x5 0.0166 0.0075 0.0229 0.1258 0.7 0.3 1 5.5

10 4x5 0.0067 0.0078 0.0145 0.1216 0.5 0.5 1 8.4

Average 0.0159 0.0123 0.0122 0.1462 1.3 1 1 12

1 6x7 0.0357 0.0127 0.0231 0.3654 1.5 0.5 1 15.8

2 6x7 0.187 0.0171 0.0093 0.2758 20.1 1.8 1 29.7

3 6x7 0.0992 0.0109 0.0209 0.2788 4.7 0.5 1 13.3

4 6x7 0.0481 0.0181 0.0114 0.2593 4.2 1.6 1 22.7

5 6x7 0.0489 0.025 0.007 0.2382 7 3.6 1 34

6 6x7 0.0783 0.0065 0.0145 0.3185 5.4 0.4 1 22

7 6x7 0.0495 0.0105 0.0227 0.2721 2.2 0.5 1 12

8 6x7 0.0589 0.0178 0.0203 0.2874 2.9 0.9 1 14.2

9 6x7 0.1604 0.0161 0.0112 0.7377 14.3 1.4 1 65.9

10 6x7 0.0582 0.0224 0.0064 0.1988 9.1 3.5 1 31.1

Average 0.0824 0.0157 0.0147 0.3232 5.6 1.1 1 22

1 8x10 1.475 2.2918 0.0078 3.645 189.1 293.8 1 467.3

2 8x10 0.2461 0.0066 0.0074 0.8444 33.3 0.9 1 114.1

3 8x10 0.4781 0.0107 0.0129 1.0813 37.1 0.8 1 83.8
T1: Closed Path Solution Time (seconds) T2: Interval Optimization Solution Time (seconds) T3: Robust Optimization Solution Time (seconds) T4: Interval Optimization with Penalty

Function Solution Time (seconds)
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Problem
Problem

Size
T1 T2 T3 T4 T1/T3 T2/T3 T3/T3 T4/T3

4 8x10 0.1551 0.0378 0.0366 0.9456 4.2 1 1 25.8

5 8x10 0.0689 0.0246 0.0271 0.6429 2.5 0.9 1 23.7

6 8x10 0.0451 0.0181 0.0118 0.6398 3.8 1.5 1 54.2

7 8x10 0.1862 0.0173 0.014 0.7765 13.3 1.2 1 55.5

8 8x10 0.1479 0.0083 0.0238 0.7431 6.2 0.3 1 31.2

9 8x10 0.2543 0.0276 0.0076 0.826 33.5 3.6 1 108.7

10 8x10 0.4399 0.0172 0.0207 0.9082 21.3 0.8 1 43.9

Average 0.3497 0.246 0.017 1.1053 20.6 14.5 1 65.1
T1: Closed Path Solution Time (seconds) T2: Interval Optimization Solution Time (seconds) T3: Robust Optimization Solution Time (seconds) T4: Interval Optimization with Penalty

Function Solution Time (seconds)

Appendix 2. Behaviors of mathematical model parameters for the solutions of the test problem
instances

Group Size Problem α11 α12 α13 α21 α22 α23

S 2x3 1 1 0.5 1 0.5 1 0.5

S 2x3 2 0.5 1 1 1 0.5 0.5

S 2x3 3 1 1 0.5 0.5 0.5 1

S 2x3 4 1 0.5 0.5 0.5 1 1

S 2x3 5 1 1 0.5 0.5 0.5 1

S 2x3 6 0.5 0.5 0.5 1 1 1

S 2x3 7 0.5 1 0.5 1 0.5 1

S 2x3 8 1 1 0.5 0.5 0.5 1

S 2x3 9 0.5 0.5 0.5 1 1 1

S 2x3 10 1 1 0.5 0.5 0.5 1

Group Size Problem α11 α12 α13 α14 α15 α21 α22 α23 α24 α25

M 4x5 1 0.5 1 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5

M 4x5 2 1 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5

M 4x5 3 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5

M 4x5 4 0.5 1 0.5 0.5 0.5 0.5 0.5 1 1 0.5

M 4x5 5 1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5

M 4x5 6 0.5 0.5 1 0.5 0.5 0.5 1 0.5 1 0.5

M 4x5 7 1 1 0.5 1 0.5 0.5 0.5 0.5 1 0.5

M 4x5 8 0.5 0.5 0.5 1 1 0.5 0.5 0.5 0.5 0.5

M 4x5 9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 0.5

M 4x5 10 0.5 0.5 0.5 0.5 0.5 1 0.5 1 0.5 0.5

Group Size Problem α31 α32 α33 α34 α35 α41 α42 α43 α44 α45

M 4x5 1 1 0.5 0.5 0.5 1 0.5 0.5 0.5 1 0.5

M 4x5 2 0.5 0.5 0.5 1 1 0.5 0.5 0.5 0.5 0.5

M 4x5 3 0.5 0.5 1 0.5 1 0.5 1 0.5 1 0.5

M 4x5 4 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 1 1

M 4x5 5 0.5 0.5 1 0.5 0.5 0.5 1 0.5 1 1

M 4x5 6 1 0.5 1 0.5 1 0.5 0.5 0.5 0.5 0.5

S: Small, M: Medium, L: Large, XL: Extra Large
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M 4x5 7 0.5 0.5 1 0.5 0.5 0.5 1 0.5 0.5 1

M 4x5 8 0.5 0.5 0.5 0.5 0.5 1 1 1 0.5 0.5

M 4x5 9 0.5 1 0.5 0.5 1 1 0.5 0.5 0.5 0.5

M 4x5 10 0.5 1 0.5 0.5 1 0.5 0.5 0.5 1 0.5

Group Size Problem α11 α12 α13 α14 α15 α16 α17 α21 α22 α23 α24 α25 α26 α27

L 6x7 1 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

L 6x7 2 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 1

L 6x7 3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

L 6x7 4 1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5

L 6x7 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 0.5 0.5 0.5 0.5 0.5

L 6x7 6 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 1 1 0.5 1 1 0.5

L 6x7 7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 1

L 6x7 8 0.5 0.5 0.5 0.5 1 1 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5

L 6x7 9 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 0.5

L 6x7 10 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5

Group Size Problem α31 α32 α33 α34 α35 α36 α37 α41 α42 α43 α44 α45 α46 α47

L 6x7 1 0.5 0.5 1 0.5 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5

L 6x7 2 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

L 6x7 3 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5

L 6x7 4 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

L 6x7 5 0.5 1 0.5 0.5 0.5 1 1 0.5 0.5 0.5 1 0.5 0.5 0.5

L 6x7 6 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

L 6x7 7 0.5 1 0.5 1 1 0.5 0.5 1 0.5 0.5 0.5 0.5 1 0.5

L 6x7 8 0.5 0.5 1 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

L 6x7 9 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 1

L 6x7 10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5

Group Size Problem α51 α52 α53 α54 α55 α56 α57 α61 α62 α63 α64 α55 α66 α67

L 6x7 1 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 1 0.5 1 0.5

L 6x7 2 0.5 1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5

L 6x7 3 0.5 0.5 1 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5

L 6x7 4 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 1

L 6x7 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 1 0.5 0.5

L 6x7 6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 1 0.5 0.5 1

L 6x7 7 0.5 0.5 0.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 1 0.5

L 6x7 8 0.5 1 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

L 6x7 9 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 1

L 6x7 10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 1

Group Size Problem α11 α12 α13 α14 α15 α16 α17 α18 α19 α110

XL 8x10 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

XL 8x10 2 0.5 0.5 0.5 1 0.5 0.5 0.5 1 0.5 0.5

XL 8x10 3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5

XL 8x10 4 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 1

XL 8x10 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5

XL 8x10 6 0.5 0.5 0.5 0.5 1 0.5 1 0.5 0.5 0.5

S: Small, M: Medium, L: Large, XL: Extra Large

alphanumeric 12 (3), 169–194 191



Comparative Analysis of Optimization Methods for Grey Fuzzy Transportation Problems in Logistics | Karagül, 2024

XL 8x10 7 1 0.5 1 0.5 0.5 0.5 1 0.5 0.5 0.5

XL 8x10 8 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 9 1 0.5 1 0.5 1 0.5 0.5 0.5 0.5 0.5

XL 8x10 10 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 1

Group Size Problem α21 α22 α23 α24 α25 α26 α27 α28 α29 α210

XL 8x10 1 0.5 0.5 1 1 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 2 1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5

XL 8x10 3 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 4 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 1

XL 8x10 6 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 7 0.5 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 8 0.5 0.5 1 0.5 1 0.5 1 0.5 0.5 0.5

XL 8x10 9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 10 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5

Group Size Problem α31 α32 α33 α34 α35 α36 α37 α38 α39 α310

XL 8x10 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5

XL 8x10 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 3 0.5 0.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5

XL 8x10 4 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 5 0.5 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 6 0.5 0.5 0.5 1 0.5 0.5 0.5 1 0.5 0.5

XL 8x10 7 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 1 0.5

XL 8x10 8 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

XL 8x10 9 0.5 0.5 1 0.5 0.5 1 0.5 1 0.5 0.5

XL 8x10 10 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 1

Group Size Problem α41 α42 α43 α44 α45 α46 α47 α48 α49 α410

XL 8x10 1 0.5 0.5 0.5 0.5 1 0.5 0.5 1 0.5 0.5

XL 8x10 2 0.5 1 1 0.5 0.5 0.5 0.5 0.5 0.5 1

XL 8x10 3 0.5 1 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 4 0.5 0.5 0.5 1 0.5 0.5 1 0.5 0.5 0.5

XL 8x10 5 0.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5

XL 8x10 6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 7 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 1

XL 8x10 8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 9 0.5 0.5 0.5 1 0.5 0.5 1 0.5 0.5 0.5

XL 8x10 10 0.5 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5

Group Size Problem α51 α52 α53 α54 α55 α56 α57 α58 α59 α510

XL 8x10 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 2 0.5 0.5 0.5 0.5 1 1 0.5 0.5 0.5 0.5

XL 8x10 3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

XL 8x10 4 1 0.5 0.5 0.5 0.5 1 0.5 1 1 0.5

XL 8x10 5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 1

XL 8x10 6 0.5 0.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5

S: Small, M: Medium, L: Large, XL: Extra Large
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XL 8x10 7 0.5 0.5 1 1 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

XL 8x10 9 0.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5 1

XL 8x10 10 0.5 0.5 0.5 1 0.5 0.5 0.5 1 0.5 0.5

Group Size Problem α61 α62 α63 α64 α55 α66 α67 α68 α69 α610

XL 8x10 1 0.5 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5

XL 8x10 2 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 1 0.5

XL 8x10 3 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5

XL 8x10 4 0.5 0.5 1 1 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 6 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 7 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 1 0.5

XL 8x10 8 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 1 0.5

XL 8x10 9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1

XL 8x10 10 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5

Group Size Problem α71 α72 α73 α74 α75 α76 α77 α78 α79 α710

XL 8x10 1 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5

XL 8x10 2 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 3 0.5 0.5 0.5 0.5 1 0.5 1 0.5 0.5 0.5

XL 8x10 4 0.5 0.5 0.5 0.5 1 0.5 0.5 1 0.5 0.5

XL 8x10 5 1 1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5

XL 8x10 6 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 1 0.5

XL 8x10 7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 8 0.5 0.5 0.5 0.5 0.5 0.5 1 1 0.5 0.5

XL 8x10 9 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5

XL 8x10 10 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5

Group Size Problem α81 α82 α83 α84 α85 α86 α87 α88 α89 α810

XL 8x10 1 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 2 1 0.5 0.5 0.5 0.5 0.5 1 1 0.5 0.5

XL 8x10 3 0.5 0.5 0.5 1 0.5 1 0.5 0.5 1 0.5

XL 8x10 4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

XL 8x10 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5

XL 8x10 6 1 0.5 0.5 0.5 1 0.5 0.5 1 0.5 1

XL 8x10 7 0.5 0.5 0.5 0.5 1 0.5 0.5 1 0.5 0.5

XL 8x10 8 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5

XL 8x10 9 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 1 0.5

XL 8x10 10 1 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5

Group Size Problem β1 β2 γ1 γ2 γ3

S 2x3 1 0.5 0.5 1 1 1

S 2x3 2 0.5 0.5 1 1 1

S 2x3 3 0.5 0.5 1 1 1

S 2x3 4 0.5 0.94 1 1 1

S 2x3 5 0.5 0.5 1 1 1

S 2x3 6 0.5 0.65 1 1 1

S: Small, M: Medium, L: Large, XL: Extra Large
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S 2x3 7 0.5 0.5 1 1 1

S 2x3 8 0.81 0.5 1 1 1

S 2x3 9 0.5 0.5 1 1 1

S 2x3 10 0.5 0.5 1 1 1

Group Size Problem β1 β2 β3 β4 γ1 γ2 γ3 γ4 γ5

M 4x5 1 0.5 0.5 0.5 0.5 1 1 1 1 1

M 4x5 2 1 0.5 0.5 0.5 1 1 1 1 1

M 4x5 3 0.5 0.5 0.5 0.5 1 1 1 1 1

M 4x5 4 0.5 0.5 0.5 1 1 1 1 1 1

M 4x5 5 0.59 0.5 0.5 1 1 1 1 1 1

M 4x5 6 0.5 0.5 1 0.5 1 1 1 1 1

M 4x5 7 1 0.5 0.5 1 1 1 1 1 1

M 4x5 8 0.5 0.5 0.5 0.5 1 1 1 1 1

M 4x5 9 0.5 0.5 0.5 0.5 1 1 1 1 1

M 4x5 10 0.5 0.5 0.5 0.5 1 1 1 1 1

Group Size Problem β1 β2 β3 β4 β5 β6 γ1 γ2 γ3 γ4 γ5 γ6 γ7

L 6x7 1 0.5 0.5 1 0.5 1 0.5 1 1 1 1 1 1 1

L 6x7 2 0.5 1 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1

L 6x7 3 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1

L 6x7 4 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1

L 6x7 5 0.5 1 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1

L 6x7 6 0.5 1 1 0.5 0.5 1 1 1 1 1 1 1 1

L 6x7 7 0.5 1 0.5 1 1 0.5 1 1 1 1 1 1 1

L 6x7 8 0.5 0.5 1 0.5 0.5 0.5 1 1 1 1 1 1 1

L 6x7 9 0.5 1 0.5 1 0.5 0.5 1 1 1 1 1 1 1

L 6x7 10 0.92 0.5 0.5 0.5 0.5 0.99 1 1 1 1 1 1 1

Group P.
Size

Problem β1 β2 β3 β4 β5 β6 β7 β8 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10

XL 8x10 1 0.5 0.8 0.5 0.85 0.5 1 0.5 0.5 1 1 1 1 1 1 1 1 1 1

XL 8x10 2 1 0.5 0.5 1 1 1 0.5 1 1 1 1 1 1 1 1 1 1 1

XL 8x10 3 0.5 0.5 1 1 0.5 0.5 1 0.5 1 1 1 1 1 1 1 1 1 1

XL 8x10 4 0.5 0.5 0.5 1 1 1 1 0.5 1 1 1 1 1 1 1 1 1 1

XL 8x10 5 0.5 0.5 1 1 1 0.5 1 0.5 1 1 1 1 1 1 1 1 1 1

XL 8x10 6 0.5 0.5 1 0.5 1 0.5 1 1 1 1 1 1 1 1 1 1 1 1

XL 8x10 7 1 1 0.5 1 1 1 0.5 0.8 1 1 1 1 1 1 1 1 1 1

XL 8x10 8 0.5 1 1 0.5 0.5 0.5 1 0.71 1 1 1 1 1 1 1 1 1 1

XL 8x10 9 1 0.5 1 1 1 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1

XL 8x10 10 1 1 1 0.5 1 0.5 0.5 0.5 1 1 1 1 1 1 1 1 1 1

S: Small, M: Medium, L: Large, XL: Extra Large
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