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Abstract − Bladder cancer is among the ten most common types of cancer worldwide, with 

approximately 550,000 new cases occurring each year. It accounts for comprehensively compared 

to 3% of all newly diagnosed cancer cases and contributes to 2.1% of cancer-related deaths globally. 

This article introduces goodness-of-fit tests that aim to fit the exponentialized exponential 

distribution. These tests are based on the Kullback-Leibler difference and have been applied to 

censored and complete samples of Bladder Cancer Patients. We calculated critical values and 

statistical power measurements, considering the best and worst bandwidth scenarios. We then 

comprehensively compared essential values and power across various parameters, accounting for 

optimal and suboptimal bandwidth choices derived from the Kullback–Leibler difference. In the 

final phase of our study, we used a dataset of individuals diagnosed with bladder cancer to 

demonstrate the practical applicability of our proposed research. Finally, this modeling type can 

benefit researchers and healthcare professionals through time-to-event analysis (survival analysis), 

investigation of events, medical decision-making, and risk prediction. 

Subject Classification (2020): 62N02, 62N03 

1. Introduction 

Bladder cancer is one of the ten most prevalent types of cancer worldwide, representing a significant global 

health concern. Each year, approximately 550,000 new cases are diagnosed, making bladder cancer a 

substantial contributor to the worldwide cancer burden. This type of cancer accounts for about 3% of all 

newly diagnosed cancer cases, reflecting its widespread impact. Furthermore, bladder cancer is responsible 

for approximately 2.1% of all cancer-related deaths, highlighting its severity and the challenges associated 

with its treatment and management. Various risk factors, including smoking, exposure to certain industrial 

chemicals, chronic bladder inflammation, and a history of schistosomiasis in certain regions, influence the 

incidence of bladder cancer. Despite advances in medical research and treatment options, bladder cancer 

remains a formidable disease, with significant implications for patient quality of life and overall public 

health. Ongoing research and clinical efforts focus on improving early detection, treatment outcomes, and 

survival rates for individuals diagnosed with bladder cancer [1].  

An exponentiated exponential distribution is a statistical model describing a measured variable's 

distribution. For example, a patient's survival times. This model determines the probability of an event, e.g., 
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death, occurring within a given time and calculates this probability over the distribution of the observed 

variable, e.g., survival time of patients. The exponential distribution is primarily used to model how events 

occur over time, and this distribution is particularly suitable for rare or irregularly occurring events. Thus, 

using this distribution allows us to understand specific patterns and trends in the data better, such as the 

survival time of patients. Modeling the mortality rates of bladder cancer patients with an exponentiated 

exponential distribution can be used to examine the probability of a death event over a given time. 

This type of modeling can provide researchers and healthcare professionals with the following benefits: 

i. Event Duration Analysis (Survival Analysis): Exponentialized exponential distribution is a frequently 

used model for event duration analysis. This analysis evaluates how long patients survive until a 

specific event (e.g., death) by examining the time for a particular event. 

ii. Examining Events: Modeling mortality rates of bladder cancer patients can be used to understand what 

factors influence the risk of death in a particular population. These factors may include genetic 

characteristics, treatment methods, age, and gender. 

iii. Medical Decision Making: Modeling results can help determine treatment processes and strategies for 

patients with bladder cancer. For example, it can be used to evaluate how a particular treatment method 

or medication affects patients' survival. 

iv. Risk Forecasting: Exponentialized exponential distribution can be used to estimate the probability of 

an event occurring within a given time. This could be useful for predicting patients' future survival and 

adapting treatment plans accordingly. 

Moreover, states, public institutions, organizations, and businesses use decision-making tools when 

planning for the future. The most crucial step in this observation-based decision-making process is 

modeling the population from which the observations are obtained. Naturally, the model's accuracy will be 

a critical consideration for the decision-making process. Inaccurate findings from a model that isn't 

determined appropriately could be irreversible. A probability distribution is a model representing this 

population, and goodness of fit tests are performed to determine whether a given probability distribution is 

appropriate for that population. Since the beginning, statisticians have begun their analysis by distributing 

the observed data. Then, they verified that their chosen distribution was suitable for the observed data. As 

a result, various test processes have been developed over time, and the study of these procedures is known 

as goodness of fit [2]. Pearson [3] invented the chi-square test in 1900, which helped to pioneer 

appropriateness tests. Since then, numerous more tests have been devised, each reflecting the subject's 

relevance and demands. 

Furthermore, it is impossible to dispute the significance of statistical or probabilistic modeling in the 

modern world. High-speed computers have enabled the development and using complicated models for 

crucial operations. These models facilitate Effective decision-making and associated statistical analyses in 

various domains, including marketing, medicine, management, politics, military systems, and food science. 

Evaluating the validity of models with statistical distributions is known as "goodness of fit."  

It is a fundamental and occasionally overlooked part of modeling work. Nonetheless, a wide range of 

statistical or probabilistic distribution models have found widespread use in engineering, science, 

economics, and medicine. It's critical to assess these models' applicability or determine how well the data 

fits the suggested distribution model. To ensure that the selected model accurately represents the underlying 

population, various distribution families have been proposed for goodness of fit tests, particularly in 

complete and censored samples. These families are chosen because they offer a flexible framework for 

capturing the characteristics of different types of data, and the Kullback-Leibler divergence measure is 

utilized to quantify the fit between the data and the proposed distribution. This approach is critical as it 

allows for a more precise assessment of the model's suitability across various applications. Here are a few 

of these studies. Arizona and Ohta [4] presented a normal distribution appropriateness test for a complete 
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sample based on the Kullback-Leibler divergence measure, the extended version of entropy. To determine 

which test was the strongest compared to other tests using normal distributions, they compared it to the 

Durbin version of the K-S test, Cramer Von Mises, weighted Cramer Von Mises, and Chi-Square tests. 

Şenoğlu and Sürücü [5] used the Kullback-Leibler divergence measure, Shapiro Wilk, Tiku's test, and 

sample correlation test for Normal, Exponential, and Uniform distributions to compare tests for various 

distributions (skewed, long, and short-tailed symmetric). Based on the test results, it was observed that the 

test with the Kullback-Leibler divergence measure generally has more power in distributions with short 

tails than in distributions with long tails. Choi et al. [6] put out an exponential test that relied on the 

divergence metric of Kullback-Leibler. Van Es and Correa's entropy was utilized as an estimator of 

Shannon entropy. Its more significant power than other tests has been determined by comparison with 

different goodness of fit tests. Park [7] proposed an exponentiality test specifically tailored for type-2 

censored data, leveraging Kullback-Leibler insights. When scrutinizing the test's statistical power across 

alternative distributions such as Gamma, Weibull, and Chi-square, it was observed that the suggested 

statistical metric exhibited greater sensitivity when applied to distributions with hazard functions that show 

a consistent upward trend. 

In a related study, Lim and Park [8] compared statistical power comprehensively, focusing on partial 

Kullback-Leibler divergence within the context of type-2 censored samples. This comparison encompassed 

distributions characterized by monotone decreasing, increasing, and non-monotone hazard functions, 

particularly for the Exponential and Normal distributions. Notably, the Tukey test exhibited superior power 

in the normality test. At the same time, distributions marked by monotonically increasing hazard functions 

displayed greater power compared to other tests in the context of the exponentiality test. 

Expanding on the theme of goodness-of-fit tests, Balakrishnan et al. [9] proposed an exponentiality 

goodness-of-fit test grounded in Kullback-Leibler principles, specifically for progressive type-2 censored 

data. This test demonstrated strength, particularly in scenarios involving alternatives with non-monotonic 

hazard functions, as revealed through comparisons with various options. 

Lim and Park [10] aim to develop a Kullback-Leibler Divergence-based information measure and goodness 

of fit test for working with censored datasets. In particular, they focus on how this test can be applied to 

cases of Type II censoring. Rad et al. [11] proposed a goodness-of-fit test for progressive type-2 censored 

data based on Kullback-Leibler information. For model parameters related to Pareto, Log-normal, and 

Weibull distributions, their analysis considered both maximum and approximate maximum likelihood 

estimators, evaluating the test's effectiveness over various choices and sample sizes. Gurevich and 

Davidson [12] show how statistical tests based on the Kullback-Leibler Divergence can be standardized to 

test their suitability for particular distributions. 

Furthermore, Park and Pakyari [13] presented Kullback-Leibler data and conducted a comparative analysis 

of goodness-of-fit test results, focusing on progressive type-2 censored data. Meanwhile, Elsherpieny et al. 

[14] delved into the challenge of discriminating between gamma and log-logistic distributions in the context 

of progressive type-censored samples. They employed the minimized Kullback-Leibler divergence ratio 

method and the maximum likelihood ratio approach to differentiate between these two distributions. 

Simulation experiments were conducted to identify optimal choices, especially in cases with limited sample 

sizes. Additionally, asymptotic findings and selection probabilities were estimated to determine the minimal 

sample size required for effective discrimination. 

Lastly, Bitaraf et al. [15] proposed a novel Kullback-Leibler distance test based on Verma's entropy, adding 

to the statistical methods used in similar research. The results regarding mean square error, critical values, 

and powers were examined against a few alternatives for conformity with the normal and exponential 

distributions. The differential entropy 𝐻(𝑓) of the random variable 𝑋 with distribution function 𝐹and 

continuous density function 𝑓is defined as follows: 
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𝐻(𝑓) = −∫ 𝑓(𝑥) log 𝑓(𝑥)𝑑𝑥
∞

−∞

 

Using a novel Kullback-Leibler knowledge under the type 2 censored sample that advanced in his paper, 

Noughabi [16] created a general goodness of fit test. He contrasted the test's robustness under various 

censorship models for the exponential distribution. While Kullback-Leibler divergence has been used in 

the literature to build goodness of fit tests for numerous distribution families in complete sampling, this 

number is notably inadequate when considering both complete and censored samples. The progressive type 

of censored samples is the most widely used among the censored samples. This study is crucial to calculate 

critical values, obtain power comparisons under various alternatives, and handle goodness of fit tests for 

various continuous distribution families based on Kullback-Leibler divergence under complete and 

progressive type censored samples. Among the estimators used, the Vasicek estimator, Van Es's estimator, 

and Correa estimator are given by  
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Where the window size m is a positive integer smaller than 𝑛/2, 𝑋(𝑖) = 𝑋(1) if 𝑖 < 1, 𝑋(𝑖) = 𝑋(𝑛), 𝑖 > 𝑛, 

and 𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛) the order statistics are based on a random sample of size 𝑛. The main topic of 

this article is Kullback-Leibler information-based appropriateness tests for exponential and exponentiated 

exponential Poisson distributions. Some new goodness-of-fit tests are offered for given distributions using 

various entropy estimates. Next, the critical values of the suggested test statistics for different sample sizes 

were found using a Monte Carlo simulation. Under the best and worst bandwidth, essential values and 

powers are produced. Furthermore, power values have been contrasted with other options. 

2. The Proposed Tests 

2.1 Goodness of Fit Test for Exponentiated Exponential Distribution 

The Exponentiated Exponential distribution introduced by Gupta and Kundu [17] has attracted much 

attention with the generalization of the Exponential distribution. Here, the exponential distribution is 

obtained when 𝜆 = 1 in Figure 1 and scale parameter distribution. With the exponential distribution 𝑥 >

0, 𝛽 > 0, and 𝜆 > 0, the probability density and distribution functions are as follows: 

𝑓(𝑥) = 𝜆𝛽𝑒−𝑥𝛽(1 − 𝑒−𝑥𝛽)
𝜆−1

 

and 

𝐹(𝑥) = (1 − 𝑒−𝑥𝛽)
𝜆
 

For a random variable with an Exponentiated Exponential distribution with λ and  parameters, its 

representation will be used (𝑋~Exponentiated Exponential(𝜆, 𝛽)). A random variable's expected value and 

variance expressed in this way are as follows: 
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𝐸(𝑋) = {𝜓(𝜆 + 1) + 𝐶}/𝛽 

and 

𝑉𝑎𝑟(𝑋) = {𝜋2 − 6𝜓′(𝜆 + 1)/6𝛽2} 

2.1.1. Complete Sample Status 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent random variables having Exponentiated Exponential(𝜆, 𝛽) distribution 

with λ and  parameters. Then, the log-likelihood function is provided by, 

ln 𝐿 (𝜆, 𝛽) =∑ln𝑓 (𝑥𝑖)

𝑛

𝑖=1

≅ 𝑛 ln 𝜆 + 𝑛 ln𝛽 − 𝛽∑𝑥𝑖 +

𝑛

𝑖=1

(𝜆 − 1)∑ln(1 − 𝑒−𝑥𝑖𝛽)

𝑛

𝑖=1

 (2.1) 

The hypothesis to be tested here, 

𝐻0: The population probability distribution is Exponentiated Exponential 

𝐻1: is not 

or is provided by 

𝐻0: 𝐹0(𝑥) = (1 − 𝑒
−𝑥𝛽)

𝜆
 

𝐻1: 𝐹0(𝑥) ≠ (1 − 𝑒
−𝑥𝛽)

𝜆
 

The statistics to be utilized for testing the mentioned hypothesis, based on the log-likelihood function 

provided in (2.1), are as follows: 

i. Vasicek's test (TV) 

ii. VanEs' test (TVE) 

iii. Correa's test (TC) 

These statistics are commonly employed in the context of the hypothesis being discussed [18-20]. We reject 

𝐻0 large values 𝑇𝑉𝑚𝑛 [1].  
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2.1.2 Progressively Type-II Censored Status 

Let 𝑋1:𝑚:𝑛
𝑹 , 𝑋2:𝑚:𝑛

𝑹 , … , 𝑋𝑚:𝑚:𝑛
𝑹  be independent random variables having Exponentiated Exponential  

(𝜆, 𝛽) distribution with λ and  parameters. Then, the log-likelihood function is given by 

ln 𝐿 (𝜆, 𝛽) ∝ 𝑚 ln 𝜆 +𝑚 ln𝛽 − 𝛽∑𝑥𝑖 +

𝑚

𝑖=1

(𝜆 − 1)∑ln(1 − 𝑒−𝑥𝑖𝛽)

𝑚

𝑖=1

+∑𝑅𝑖 ln (1 − (1 − 𝑒
−𝑥𝑖𝛽)

𝜆
)

𝑚

𝑖=1

 

Maximum likelihood estimators of the 𝜆 and 𝛽 parameters are obtained from the solution of the likelihood 

equations concerning �̂� and �̂�. 
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𝜕 ln 𝐿 (𝜆, 𝛽)

𝜕𝛽
=
𝑚

𝛽
−∑𝑥𝑖 + (𝜆 − 1)

𝑚

𝑖=1

∑
𝑥𝑖𝑒

−𝑥𝑖𝛽

(1 − 𝑒−𝑥𝑖𝛽)

𝑚

𝑖=1

− 𝜆∑𝑅𝑖
(1 − 𝑒−𝑥𝑖𝛽)

𝜆
𝑥𝑖𝑒

−𝑥𝑖𝛽

(1 − (1 − 𝑒−𝑥𝑖𝛽)𝜆)
= 0

𝑚

𝑖=1

 

Since these equations have no analytical solutions, they are only solved through numerical techniques and 

maximum likelihood estimations of their parameters. The following hypotheses are put out in this context 

to verify conformance to the Exponentiated Exponential distribution. 

𝐻0: 𝐹0 = (1 − 𝑒
−𝑥𝛽)

𝜆
 

𝐻𝐴: 𝐹0 ≠ (1 − 𝑒
−𝑥𝛽)

𝜆
 

The suitability of the Exponentiated Exponential distribution for progressive type-censored samples is 

assessed by calculating the Kullback-Leibler information, which is obtained as follows: 

𝐼1...𝑚:𝑚:𝑛(𝑓: 𝑓
0) = −𝑛�̄�1...𝑚:𝑚:𝑛 −

(
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𝑚
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𝑚
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      −∑𝑅𝑖 𝑙𝑛 (1 − (1 − 𝑒
−𝑥𝑖𝛽)

𝜆
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𝑚

𝑖=1

 

The estimators are the above-mentioned by taking derivatives from the following parameters 𝜆 and 𝛽 the 

Kullback-Leibler the aforesaid data. The test statistic below is generated by substituting the maximum 

likelihood estimators for the 𝜆 and 𝛽 parameters. The following formula is used to get the Kullback-Leibler 

information test statistics for the progressive type of censored sample. 

TA(𝑤, 𝑛,𝑚) = −
1

𝑛
∑log𝑚∑{

𝐺(𝑋(𝑖+𝑤:𝑚:𝑛); 𝜃) − 𝐺(𝑋(𝑖−𝑤:𝑚:𝑛); 𝜃)
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} +

1

𝑛
∑𝑅𝑖 log∑ {

1 −𝑚/𝑛
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}
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3. Simulation Study 

This section discusses the goodness of fit tests based on the Kullback-Leibler mismatch under complete 

and progressively censored samples for the Exponentially Expanded Distribution. TV, TVE, and TC test 

statistics are given in the complete sample case, and critical values with 0.05 significance levels for these 

tests were obtained with the simulation study. In addition, the powers of this goodness of fit test for the 

relevant distribution under different alternatives are obtained and compared with the famous test K-S test. 

Critical values are obtained for the distributions considered under progressively censored samples, and 

complete sample cases and power analysis are performed using different alternatives. All simulations 

mentioned here are performed over 10000 repetitions, considering various sample sizes. Inf values  in 

calculations indicate cases where the critical value is numerically infinite, while NA values indicate cases 

where calculation is impossible. These cases reflect testing limitations encountered at specific sample sizes 

or bandwidths. Since the distribution of test statistics is complex for analytical evaluation, critical values 

are calculated using Monte Carlo simulation. The following steps are followed to determine the critical 

values of the proposed test statistics.  

i. Create a sample of size n from the exponentially exponential distribution, 

ii. Calculate the proposed statistics according to the created samples. 

3.1. Critical Values for Exponentiated Exponential Distribution 

Tables 1-4 present the critical values for the Exponentiated Exponential Distribution obtained through 

simulation. 

Table 1. Critical values for the Exponentiated Exponential test in case n = 10, 20, 30, and 40 

n 10 20 30 40 

Tests TV TVE TC TV TVE TC TV TVE TC TV TVE TC 

B
a

n
d

w
id

th
 (

w
) 

1 NA -2.79 -0.83 NA -8.82 -6.75 NA -14.90 -12.75 NA -20.92 -18.62 

2 NA -2.38 -0.95 NA -8.23 -6.73 NA -14.45 -12.82 NA -20.43 -18.66 

3 -0.34 -2.26 -0.94 NA -8.00 -6.71 NA -14.17 -12.76 NA -20.38 -18.90 

4 -0.61 -2.27 -0.99 NA -8.09 -6.85 NA -14.16 -12.87 NA -20.12 -18.72 

5 0 0 0 Inf -7.79 -6.63 NA -14.05 -12.82 NA -20.02 -18.72 

6 0 0 0 -6.42 -8.01 -6.89 NA -13.74 -12.57 NA -20.25 -18.97 

7 0 0 0 -6.55 -8.00 -6.90 NA -13.78 -12.63 NA -20.03 -18.84 

8 0 0 0 -6.51 -7.83 -6.73 -12.04 -13.84 -12.77 NA -19.86 -18.71 

9 0 0 0 -6.52 -7.80 -6.69 -12.38 -13.88 -12.76 NA -19.99 -18.88 

10 0 0 0 0 0 0 -12.36 -13.69 -12.61 Inf -19.77 -18.70 

11 0 0 0 0 0 0 -12.36 -13.73 -12.65 -18.18 -19.84 -18.74 

12 0 0 0 0 0 0 -12.60 -13.85 -12.76 -18.47 -19.93 -18.85 

13 0 0 0 0 0 0 -12.44 -13.60 -12.58 -18.46 -19.77 -18.72 

14 0 0 0 0 0 0 -12.65 -13.72 -12.69 -18.51 -19.80 -18.78 

15 0 0 0 0 0 0 0 0 0 -18.76 -20.00 -18.97 

16 0 0 0 0 0 0 0 0 0 -18.70 -19.88 -18.83 

17 0 0 0 0 0 0 0 0 0 -18.66 -19.81 -18.79 

18 0 0 0 0 0 0 0 0 0 -18.47 -19.58 -18.54 

19 0 0 0 0 0 0 0 0 0 -18.78 -19.77 -18.79 

20 and above 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 2. Critical values for the Exponentiated Exponential test in case n = 50, 60, and 70 

n 50 60 70 

Tests TV TVE TC TV TVE TC TV TVE TC 

B
a

n
d

w
id

th
 (

w
) 

1 NA -26.93 -24.53 NA -33.52 -30.98 NA -39.88 -37.32 

2 NA -26.79 -25.03 NA -33.12 -31.22 NA -39.58 -37.56 

3 NA -26.55 -24.91 NA -32.89 -31.30 NA -39.11 -37.38 

4 NA -26.26 -24.80 NA -32.57 -31.09 NA -38.77 -37.18 

5 NA -26.17 -24.85 NA -32.61 -31.14 NA -38.84 -37.35 

6 NA -26.33 -25.07 NA -32.49 -31.17 NA -39.02 -37.64 

7 NA -26.13 -24.87 NA -32.51 -31.20 NA -38.66 -37.34 

8 NA -25.98 -24.80 NA -32.44 -31.20 NA -38.67 -37.37 

9 NA -25.96 -24.82 NA -32.47 -31.24 NA -38.58 -37.33 

10 NA -26.24 -25.09 NA -32.26 -31.11 NA -38.61 -37.40 

11 NA -25.88 -24.74 NA -32.41 -31.25 NA -38.61 -37.40 

12 NA -26.02 -24.93 NA -32.48 -31.29 NA -38.58 -37.42 

13 -24.09 -25.92 -24.86 NA -32.30 -31.17 NA -38.52 -37.40 

14 -24.27 -25.79 -24.75 NA -32.40 -31.31 NA -38.62 -37.48 

15 -24.67 -26.07 -25.04 Inf -32.20 -31.15 NA -38.82 -37.75 

16 -24.57 -25.86 -24.82 -30.66 -32.31 -31.25 NA -38.66 -37.57 

17 -24.65 -25.91 -24.89 -30.88 -32.36 -31.35 NA -38.45 -37.39 

18 -24.49 -25.74 -24.72 -30.83 -32.18 -31.14 -36.69 -38.57 -37.56 

19 -24.69 -25.91 -24.89 -30.93 -32.21 -31.19 -36.87 -38.41 -37.38 

20 -24.65 -25.79 -24.78 -31.10 -32.32 -31.28 -37.06 -38.50 -37.48 

21 -24.99 -26.15 -25.10 -31.00 -32.22 -31.24 -36.96 -38.33 -37.30 

22 -24.81 -25.95 -24.88 -31.16 -32.39 -31.38 -37.18 -38.44 -37.45 

23 -24.72 -25.76 -24.75 -30.84 -31.96 -31.02 -37.62 -38.83 -37.83 

24 -25.00 -25.90 -24.92 -30.87 -31.97 -30.99 -37.27 -38.46 -37.52 

26 0 0 0 -30.94 -32.04 -31.06 -37.45 -38.61 -37.66 

27 0 0 0 -31.09 -32.14 -31.15 -37.20 -38.33 -37.42 

28 0 0 0 -31.27 -32.24 -31.27 -37.01 -38.16 -37.15 

29 0 0 0 -30.80 -31.78 -30.77 -37.12 -38.20 -37.21 

30 0 0 0 0 0 0 -37.48 -38.46 -37.52 

31 0 0 0 0 0 0 -37.67 -38.65 -37.71 

32 0 0 0 0 0 0 -37.64 -38.62 -37.63 

33 0 0 0 0 0 0 -37.34 -38.31 -37.32 

34 0 0 0 0 0 0 -37.49 -38.35 -37.37 

35 and above 0 0 0 0 0 0 0 0 0 
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Table 3. Critical values for the Exponentiated Exponential test in case n = 80, 90, and 100 

n 80 90 100 

Tests TV TVE TC TV TVE TC TV TVE TC 
B

a
n

d
w

id
th

 (
w

) 
1 NA -46.19 -43.54 NA -52.49 -49.79 NA -59.27 -56.53 

2 NA -45.69 -43.69 NA -52.31 -50.20 NA -58.67 -56.56 

3 NA -45.70 -43.89 NA -51.87 -50.05 NA -58.41 -56.53 

4 NA -45.41 -43.74 NA -51.78 -50.11 NA -58.07 -56.35 

5 NA -45.26 -43.68 NA -51.82 -50.25 NA -58.32 -56.71 

6 NA -45.43 -43.94 NA -51.79 -50.26 NA -57.81 -56.27 

7 NA -45.37 -43.99 NA -51.85 -50.37 NA -58.22 -56.73 

8 NA -45.12 -43.77 NA -51.57 -50.18 NA -58.25 -56.82 

9 NA -44.97 -43.68 NA -51.35 -50.02 NA -57.80 -56.42 

10 NA -44.77 -43.51 NA -51.43 -50.16 NA -57.74 -56.37 

11 NA -45.54 -44.28 NA -51.30 -50.04 NA -57.79 -56.51 

12 NA -44.91 -43.69 NA -51.38 -50.11 NA -57.89 -56.58 

13 NA -45.02 -43.86 NA -51.31 -50.09 NA -57.92 -56.66 

14 NA -44.78 -43.61 NA -51.44 -50.26 NA -57.88 -56.64 

15 NA -45.17 -44.00 NA -51.27 -50.07 NA -57.73 -56.50 

16 NA -44.81 -43.69 NA -51.16 -50.01 NA -58.01 -56.81 

17 NA -44.92 -43.84 NA -51.54 -50.42 NA -57.99 -56.84 

18 NA -44.53 -43.47 NA -51.09 -49.96 NA -57.62 -56.47 

19 NA -44.74 -43.71 NA -51.16 -50.11 NA -57.85 -56.72 

20 Inf -45.12 -44.07 NA -51.31 -50.20 NA -57.61 -56.49 

21 -43.1 -44.9 -43.8 NA -51.11 -50.03 NA -57.65 -56.58 

22 -43.1 -44.7 -43.6 NA -51.19 -50.12 NA -57.85 -56.76 

23 -43.4 -44.8 -43.8 -49.31 -51.26 -50.20 NA -57.67 -56.60 

24 -43.4 -44.8 -43.8 -49.87 -51.52 -50.47 NA -57.67 -56.60 

26 -43.5 -44.8 -43.8 -49.76 -51.20 -50.17 NA -57.98 -56.98 

27 -43.8 -45.0 -44.0 -49.69 -51.09 -50.09 -55.77 -57.51 -56.44 

28 -43.5 -44.7 -43.7 -49.84 -51.18 -50.16 -56.12 -57.68 -56.68 

29 -43.2 -44.4 -43.4 -49.49 -50.76 -49.76 -56.48 -57.92 -56.92 

30 -43.5 -44.7 -43.7 -50.13 -51.34 -50.36 -56.29 -57.70 -56.67 

31 -43.5 -44.7 -43.7 -50.26 -51.40 -50.41 -56.63 -57.93 -56.94 

32 -43.5 -44.6 -43.6 -49.85 -51.01 -50.04 -56.63 -57.90 -56.91 

33 -43.6 -44.7 -43.7 -49.97 -51.19 -50.20 -56.18 -57.39 -56.40 

34 -44.0 -45.0 -44.1 -49.94 -51.09 -50.13 -56.27 -57.43 -56.48 

35 -43.7 -44.7 -43.7 -49.70 -50.88 -49.87 -56.19 -57.35 -56.38 

36 -43.7 -44.8 -43.8 -50.16 -51.25 -50.32 -56.72 -57.89 -56.92 

37 -43.7 -44.6 -43.6 -50.14 -51.19 -50.24 -56.36 -57.49 -56.54 

38 -43.9 -44.7 -43.8 -50.04 -51.10 -50.14 -56.34 -57.44 -56.52 

39 -43.9 -44.7 -43.7 -49.91 -50.93 -49.96 -56.31 -57.37 -56.45 

40 0 0 0 -50.16 -51.09 -50.17 -56.54 -57.55 -56.63 

41 0 0 0 -50.49 -51.39 -50.44 -56.46 -57.46 -56.55 

42 0 0 0 -50.08 -51.05 -50.05 -56.62 -57.66 -56.69 

43 0 0 0 -50.29 -51.14 -50.21 -56.67 -57.64 -56.69 

44 0 0 0 -50.29 -51.11 -50.12 -56.71 -57.65 -56.71 

45 0 0 0 0 0 0 -56.63 -57.58 -56.64 

46 0 0 0 0 0 0 -56.57 -57.42 -56.55 

47 0 0 0 0 0 0 -56.84 -57.72 -56.77 

48 0 0 0 0 0 0 -56.78 -57.57 -56.63 

49 0 0 0 0 0 0 -56.85 -57.64 -56.65 
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Figure 1. Critical values with 0.05 significance level for tests for goodness to Exponentiated Exponential 

distribution versus bandwidth for n = 100 

Observing the graphs of critical values for n = 100 in Figure 1, it becomes evident that as the 

bandwidth w increases, the critical values for the TVE test remain relatively constant. On the other 

hand, the critical values for the TV test tend to stabilize as they decrease, and the critical values 

for the TC test show an increasing trend in stability. 

3.2. Exponentiated Exponential under Complete Sample  

This section analyzes the best and worst powers concerning the choice of bandwidth w under 

various distributions and parameter scenarios, assuming that the true distribution is the 

Exponentiated Exponential distribution. 

Table 5. If the true distribution is 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(5,3), the best bandwidth w and corresponding 

powers (Complete Sample) 

 n 

K-S TV TVE TC 

Power w 

Critical 

Values 

(%95) 

Power w 

Critical 

Values 

(%95) 

Power w 

Critical 

Values 

(%95) 

Power 

10 0 4 -0.53472 0.0057 1 -2.80384 0.0064 1 -0.87421 0.0063 

20 0.0025 6 -6.5173 0.0015 6 -8.0926 0.0015 6 -6.98912 0.0016 

30 0.01 8 -12.1032 4.00E-04 4 -14.0371 6.00E-04 4 -12.7877 6.00E-04 

40 0.0193 14 -18.4543 2.00E-04 4 -20.2122 2.00E-04 4 -18.8493 2.00E-04 

50 0.0338 20 -24.7359 1.00E-04 3 -26.3433 1.00E-04 10 -24.9431 1.00E-04 

60 0.0563 1 NA 0 1 -33.5308 0 1 -30.9908 0 

70 0.0777 1 NA 0 1 -39.903 0 1 -37.2755 0 

80 0.1141 1 NA 0 18 -44.9686 1.00E-04 18 -43.9219 1.00E-04 

90 0.1491 1 NA 0 1 -52.6165 0 1 -49.8152 0 

100 0.1678 1 NA 0 1 -59.2637 0 1 -56.5043 0 

-60

-59

-58

-57

-56

-55

-54

1 3 5 7 9 1113151719212325272931333537394143454749

TV

TVE

TC



94 

 

Gencer / JNRS / 13(2) (2024) 84-100 

Table 6. If the true distribution is 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(5,3), worst bandwidth w and corresponding powers 

(Complete Sample) 

n 

TV TVE TC 

w 
Critical Values 

(%95) 
Power w 

Critical 

Values 

(%95) 

Power w 

Critical 

Values 

(%95) 

Power 

10 2 NA 0 4 -2.16067 0.0047 4 -0.87718 0.0048 

20 5 Inf 0 9 -7.74306 0.0012 1 -6.56822 0.0011 

30 7 NA 0 14 -13.4926 4.00E-04 14 -12.4562 4.00E-04 

40 19 -18.7924 0 19 -19.7692 0 19 -18.7544 0 

50 24 -25.0013 0 24 -25.9611 0 24 -24.9456 0 

60 29 -31.2907 0 29 -32.1708 0 29 -31.2009 0 

70 34 -37.6988 0 34 -38.5237 0 34 -37.5905 0 

80 39 -43.9757 0 39 -44.7696 0 39 -43.8098 0 

90 44 -50.1323 0 44 -50.9229 0 44 -49.9419 0 

100 49 -56.5206 0 49 -57.2733 0 49 -56.3515 0 

It was understood that TV, TVE, and TC tests could not be performed against the worst w, and 

they did not have power; this situation is somewhat important for selecting w for TV, TVE, and 

TC tests. When Tables 5 and 6 are examined for testing the suitability of 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(5,3) the 

population with A distribution to the Exponentiated Exponential distribution, the power of TV, 

TVE, and TC tests is almost equal to the best bandwidth w, and the power of K-S test is higher 

than TV, TVE, and TC tests. 

Table 7. If the true distribution is 𝐸𝐺(0.4,2), worst bandwidth w and corresponding powers (Complete 

Sample) 

n 

K-S TV TVE TC 

Power w 
Critical 

Values (%95) 
Power w 

Critical 

Values 

(%95) 

Power w 

Critical 

Values 

(%95) 

Power 

10 4.00E-04 3 -0.33979 0.839 4 -2.26843 0.8384 1 -0.83 0.8561 

20 0.001 7 -6.54705 0.987 7 -8.00128 0.9852 1 -6.75347 0.9888 

30 0.0034 9 -12.3847 0.999 5 -14.0542 0.9989 3 -12.7581 0.9995 

40 0.0042 11 -18.1826 1 7 -20.0335 1 2 -18.6572 1 

50 0.0036 13 -24.0919 1 1 -26.932 1 1 -24.5333 1 

60 0.006 16 -30.6575 1 1 -33.5186 1 1 -30.9845 1 

70 0.0059 18 -36.6944 1 1 -39.8808 1 1 -37.3195 1 

80 0.0096 21 -43.1355 1 1 -46.1896 1 1 -43.5357 1 

90 0.0115 23 -49.3148 1 1 -52.494 1 1 -49.7867 1 

100 0.0114 26 -55.7665 1 1 -59.2729 1 1 -56.5291 1 
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Table 8. If the true distribution is 𝐸𝐺(0.4,2), the best bandwidth w and corresponding powers 

(Complete Sample) 

n 

TV TVE TC 

w 
Critical Values 

(%95) 
Power w 

Critical 

Values (%95) 
Power w 

Critical 

Values (%95) 
Power 

10 2 NA 0 1 -2.84598 0.8183 4 -0.9794 0.8428 

20 5 Inf 0 1 -8.64008 0.9788 9 -6.64341 0.985 

30 7 NA 0 1 -14.6716 0.9984 14 -12.5628 0.9991 

40 10 Inf 0 4 -20.3324 0.9995 19 -18.9264 0.9997 

50 12 NA 0 24 -25.8575 1 24 -24.8451 1 

60 15 Inf 0 29 -32.1584 1 29 -31.2042 1 

70 17 NA 0 34 -38.7469 1 34 -37.7665 1 

80 20 Inf 0 39 -44.4957 1 39 -43.535 1 

90 22 NA 0 44 -51.0945 1 44 -50.1238 1 

100 25 Inf 0 49 -57.6001 1 49 -56.6904 1 

Upon examining Tables 7 and 8 for assessing the suitability of a population with an actual 

distribution to the Exponentiated Exponential Distribution, the following observations can be 

made: 

The powers of the TV, TVE, and TC tests when using the best bandwidth are nearly equal, and 

they all surpass the power of the K-S (Kolmogorov-Smirnov) test. Among these, the TC test 

exhibits slightly superior performance.  

It is worth noting that the TV test cannot be executed effectively when employing the worst 

bandwidth w, emphasizing the significance of carefully selecting w for the TV test. 

The power of both the TVE and TC tests experiences a decline as the sample size is reduced to n 

= 10, 20, 30, and 40, particularly when the worst bandwidth w is chosen. Thus, the choice of 

bandwidth w for these tests becomes somewhat crucial in such scenarios. 

3.3. Exponentiated Exponential under Censored Sample  

The Exponentiated Exponential test critical values, derived from simulation, are utilized to 

investigate the best and worst powers for different distributions and parameter settings, contingent 

on the bandwidth 𝑤 selection. We used the Noughabi [21] censoring scheme. This is assuming 

that the real distribution follows an exponential distribution. Tables 9 and 10 present the findings 

from these analyses.  
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Table 9. Best bandwidth w and corresponding power obtained for different alternative distributions 

(Progressive Type Censored Sample) 

Censoring 

Scheme No 

Weibull(5.3) EP(2.2) EG(0.4.2) 

w 
Critical 

value (%95) 
Power w 

Critical 

value (%95) 
Power w 

Critical 

value (%95) 
Power 

1 1 -0.1517 0.1173 3 -0.2720 0.1197 3 -0.2720 0.2820 

2 1 0.1370 0.0443 1 0.1370 0.0526 2 0.0703 0.5159 

3 1 0.0892 0.0439 2 0.0221 0.0549 2 0.0221 0.5543 

4 2 -0.2738 0.2276 5 -0.3449 0.1357 5 -0.3449 0.2479 

5 1 0.2040 0.0577 2 0.1004 0.0612 2 0.1004 0.6613 

6 4 -0.1666 0.2915 2 -0.1252 0.0787 5 -0.1584 0.1429 

7 3 -0.2442 0.3088 7 -0.3110 0.1413 7 -0.3110 0.1987 

8 1 0.2758 0.0905 3 0.0957 0.0850 2 0.1247 0.6050 

9 7 -0.2472 0.3690 3 -0.1907 0.0998 3 -0.1907 0.0705 

10 2 -0.1689 0.1990 4 -0.1947 0.1377 4 -0.1947 0.4651 

11 1 0.0925 0.0460 2 0.0478 0.0529 2 0.0478 0.7259 

12 1 0.0667 0.0490 1 0.0667 0.0555 2 0.0236 0.4914 

13 3 -0.2909 0.4518 8 -0.3313 0.1798 8 -0.3313 0.3833 

14 1 0.1828 0.0633 2 0.0884 0.0643 2 0.0884 0.9376 

15 1 0.0850 0.1099 3 -0.0447 0.1005 3 -0.0447 0.1153 

16 4 -0.2862 0.5980 13 -0.3383 0.1832 13 -0.3383 0.2810 

17 1 0.2646 0.1171 7 0.0624 0.0991 3 0.0903 0.9425 

18 1 0.1618 0.1611 5 -0.0351 0.1152 14 -0.0726 0.8783 

19 3 -0.2291 0.5032 8 -0.2565 0.1760 8 -0.2565 0.5211 

20 1 0.1216 0.0648 3 0.0475 0.0599 2 0.0617 0.9717 

21 1 0.0791 0.0749 3 0.0053 0.0627 2 0.0186 0.6923 

22 4 -0.3102 0.7423 16 -0.3577 0.2134 17 -0.3584 0.3614 

23 1 0.2345 0.1196 6 0.0599 0.0864 3 0.0814 0.9965 

24 4 -0.1055 0.3736 5 -0.1155 0.1557 5 -0.1155 0.1297 

25 5 -0.2456 0.8172 21 -0.2939 0.2190 22 -0.2943 0.2748 

26 1 0.2839 0.2222 8 0.0597 0.1315 4 0.0775 0.9835 

27 2 0.0381 0.3167 8 -0.0449 0.1762 24 -0.0725 0.9340 
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Table 10. Worst bandwidth w and corresponding power obtained for different alternative distributions 

(Progressive Type Censored Sample) 

Censoring 

Scheme No 

Weibull(5.3) EP(2.2) EG(0.4.2) 

w 

Critical 

value 

(%95) 

Power w 

Critical 

value 

(%95) 

Power w 

Critical 

value 

(%95) 

Power 

1 3 -0.2720 0.0551 1 -0.1517 0.0593 1 -0.1517 0.1298 

2 3 0.0343 0.0260 3 0.0343 0.0416 1 0.1370 0.4659 

3 3 -0.0111 0.0194 3 -0.0111 0.0508 1 0.0892 0.4853 

4 5 -0.3449 0.0832 1 -0.1355 0.0515 1 -0.1355 0.0734 

5 4 0.0523 0.0137 5 0.0326 0.0527 1 0.2040 0.5474 

6 1 0.0138 0.1423 5 -0.1584 0.0310 2 -0.1252 0.0697 

7 7 -0.3110 0.2055 1 -0.0255 0.0520 1 -0.0255 0.0603 

8 6 0.0474 0.0044 1 0.2758 0.0591 1 0.2758 0.4321 

9 1 0.0216 0.2126 7 -0.2472 0.0321 7 -0.2472 0.0489 

10 4 -0.1947 0.0391 1 -0.1092 0.0609 1 -0.1092 0.1846 

11 3 0.0304 0.0309 4 0.0141 0.0467 1 0.0925 0.6450 

12 4 -0.0085 0.0202 4 -0.0085 0.0450 1 0.0667 0.4309 

13 9 -0.3290 0.0120 1 -0.1521 0.0507 1 -0.1521 0.0841 

14 7 0.0309 0.0129 9 0.0179 0.0364 1 0.1828 0.8564 

15 9 -0.0938 0.0091 1 0.0850 0.0554 9 -0.0938 0.0501 

16 14 -0.3366 0.0570 1 -0.0700 0.0499 1 -0.0700 0.0605 

17 11 0.0384 0.0014 1 0.2646 0.0557 1 0.2646 0.8201 

18 14 -0.0726 0.0004 1 0.1618 0.0629 1 0.1618 0.6458 

19 9 -0.2543 0.0053 1 -0.1362 0.0479 1 -0.1362 0.1178 

20 6 0.0281 0.0174 9 0.0100 0.0286 1 0.1216 0.9276 

21 8 -0.0274 0.0090 9 -0.0325 0.0416 1 0.0791 0.5432 

22 19 -0.3561 0.0043 1 -0.1252 0.0528 1 -0.1252 0.0660 

23 16 0.0267 0.0007 19 0.0229 0.0470 1 0.2345 0.9719 

24 19 -0.1494 0.0063 19 -0.1494 0.0397 18 -0.1502 0.0550 

25 24 -0.2933 0.1099 1 -0.0023 0.0478 1 -0.0023 0.0527 

26 24 0.0282 0.0000 1 0.2839 0.0655 1 0.2839 0.8965 

27 24 -0.0725 0.0000 1 0.1856 0.0710 1 0.1856 0.6935 
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Examining Tables 9 and 10 will help determine whether a population with an 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(5,3) 𝐸𝑃(2,2) or 

𝐸𝐺(0.4,2) distribution is suitable for the exponential distribution. The censoring systems for the 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙(5,3) distribution show notable shifts in the authorities. When the initial observation is made, the 

level of censorship in the 𝑅𝑚 = 12 and 𝑅𝑖 = 0, 𝑖 ≠ 12-shaped censorship schemes is higher, outcomes that 

are comparable to the distribution 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(5,3) are also obtained for distribution 𝐸𝑃(2,2), the powers for 

the 𝐸𝑃(2,2) dispersion are typically minimal, for the 𝐸𝐺(0.4,2) distribution, The censoring schemes 

indicate substantial shifts in the authorities. It has been established that the choice of bandwidth w is 

important since there is a difference between the distribution's best and worst powers. The powers are more 

significant in the 𝑅𝑚 = 20,𝑅𝑖 = 0,i=1,2,… ,m-1--shaped censoring schemes where all censorship is made 

after the last observation is collected. 

3.4. Real Data Analysis in Bladder Cancer 

This section demonstrates the proposed method with a real data set. Since this real dataset is publicly 

available, it does not require ethics committee approval. The actual data set is from Abbas et al. [22]. The 

proposed dataset representing recovery times (in months) of a random sample of 128 bladder cancer patients 

was used in Abbas et al. [22] (n=128, m=20). 

The Real dataset shows the number of months that 128 patients with bladder cancer went into remission. 

0.08 0.2 0.4 0.5 0.51 0.81 0.9 1.05 1.19 1.26 1.35 1.4 1.46 1.76 2.02 2.02 

2.07 2.09 2.23 2.26 2.46 2.54 2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.31 

3.36 3.36 3.48 3.52 3.57 3.64 3.7 3.82 3.88 4.18 4.23 4.26 4.33 4.34 4.4 4.5 

4.51 4.87 4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41 5.41 5.49 5.62 5.71 5.85 6.25 

6.31 6.54 6.76 6.93 6.94 6.97 7.09 7.26 7.28 7.32 7.39 7.59 7.62 7.63 7.66 7.87 

7.93 8.26 8.37 8.53 8.65 8.66 9.02 9.22 9.47 9.74 10.06 10.34 10.66 10.75 11.25 11.64 

11.79 11.98 12.02 12.03 12.07 12.63 13.11 13.29 13.8 14.24 14.76 14.77 14.83 15.96 16.62 17.12 

17.14 17.36 18.1 19.13 20.28 21.73 22.69 23.63 25.74 25.82 32.15 34.26 36.66 43.01 46.12 79.05 

Censored Data-1, m = 20 

0.08 0.2 0.4 0.5 0.51 0.81 0.9 1.05 1.19 1.26 1.35 1.4 1.46 

1.76 2.02 2.02 2.07 2.09 2.23 2.26             

We test exponentiation using the proposed procedure.  

i. The value of the test statistics for w = 2 are calculated as follows: TA(w = 2) = −0.8017, normally 

0.0981 are critical values corresponding to 0.05.  

ii. The value of the test statistics for w = 3 are calculated as follows: TA(w = 3) = -2.3271, normally 

0.0867 are critical values corresponding to 0.05.  

iii. The value of the test statistics for w = 6 are calculated as follows: TA(w = 6) = −1.9900, normally 

0.0607 are critical values corresponding to 0.05.  

iv. The value of the test statistics for w = 9 are calculated as follows: TA(w = 9) = −0.4562, normally 

0.0502 are critical values corresponding to 0.05.  

Therefore, the hypothesis that Type-II censored people are from an exponentiated exponential distribution 

is accepted at the 0.05 significance level. Test statistics and corresponding values were calculated on 

censored datasets via R software. 
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4. Conclusion 

In conclusion, utilizing the best and worst bandwidths, comparing critical values and power was performed 

under different conditions, based on Kullback-Leibler divergence, for both complete and censored sampling 

scenarios. It was shown that the test's power rose as the sample size grew in all comparisons. The differences 

between the best and worst bandwidths in most cases highlight the importance of the bandwidth selection 

(denoted as 'w') while addressing the goodness-of-fit testing problem. 

Furthermore, it became evident that when bandwidth 'w' is generally selected for the TV test, the test cannot 

be effectively performed, highlighting the pivotal role of 'w' in this particular test. Among the tests with 

bandwidth comparisons, the TC test consistently emerged as the strongest, followed by the TV test, with 

the TVE test showing the lowest performance. 

As a result of numerous comparisons, it can be concluded that the choice of bandwidth 'w' holds 

considerable importance, as substantial differences in power were observed between the best and worst 

bandwidths in nearly all cases. 

To demonstrate the usefulness of our suggested research, we used a dataset of people who had been 

diagnosed with bladder cancer in the last phase of our investigation. Ultimately, models like this can help 

academics and medical practitioners with tasks like risk prediction, investigation of events, medical 

decision-making, and time-to-event analysis (survival analysis). 
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