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Abstract. Here, the fractional integral operators which are generated by Laplace-Bessel differential operator will
be examined. It will also be shown that Mαν , Iαν : Lp(·),ν(Rn

k,+) → Lq(·),ν(Rn
k,+) are bounded, where Mαν is B-fractional

maximal operator, Iαν is B-Riesz potential and
1

p(·)
−

1
q(·)
=
α

Q
.
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1. Introduction

Fractional maximal and Riesz potential operators, indeed, fractional integral operators have big importance in har-
monic analysis, PDEs and theory of functions. Fractional maximal operators, Riesz potentials have been introduced
by Muckenhoupt and Wheeden [26], Riesz [27], respectively. Then, these operators acting from Lebesgue space and
weighted Lebesgue space into itself have been studied by Stein [30], Muckenhoupt and Wheeden [26].

Nowadays, there is a big attention to Riesz potential and fractional maximal operators on variable Lebesgue spaces.
On these spaces, the problem of boundedness of classical singular integral, maximal, fractional maximal and Riesz
potential operators and related topics have been investigated in [2, 3, 6–10, 28].

As it is well-known Laplace-Bessel differential operator is defined by

∆B :=
k∑

i=1

Bi +

n∑
i=k+1

∂2

∂x2
i

, Bi =
∂2

∂x2
i

+
νi
xi

∂

∂xi
, 1 ≤ k ≤ n,

and here we consider the fractional integral operators which are generated by ∆B. On various function spaces, B-Riesz
potential and B-fractional maximal operators have been studied by many researchers [1, 4, 5, 13, 15–17, 20, 29, 31, 32].
From this perspective, we generalize above results in variable Lebesgue spaces. We obtain that B-fractional maximal
and B-Riesz potential operators are bounded from Lp(·),ν(Rn

k,+) to Lq(·),ν(Rn
k,+). Our results on fractional integral operators

in variable Lebesgue spaces are key tools to solve PDEs of mathematical physics and inverse problems. Therefore,
they will make enough contribution to the existing literature.

Throughout the paper A will be a constant.
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2. Preliminaries

We first give some basic concepts, notations and known results which are beneficial for us.
Let x = (x′, x′′), x′ = (x1, . . . , xk) ∈ Rk, and x′′ = (xk+1, . . . , xn) ∈ Rn−k. Denote Rn

k,+ = {x ∈ R
n : x1 > 0, . . . , xk >

0, 1 ≤ k ≤ n}, ν = (ν1, . . . , νk), ν1 > 0, . . . , νk > 0, |ν| = ν1 + . . . + νk, (x′)ν = xν11 · · · x
νk
k , (x′)νdx = xν11 · · · x

νk
k dx1 · · · dxk,

and B+(x, r) = {y ∈ Rn
k,+ : |x − y| < r}. The measure of a measurable set A ⊂ Rn

k,+ is defined as |A|ν =
∫

A
(x′)νdx. If

B+(0, r) ⊂ Rn
k,+ be a measurable set, then

|B+(0, r)|ν =
∫

B+(0,r)
(x′)νdx = ω(n, k, ν)rQ,

where ω(n, k, ν) =
π

n−k
2

2k

k∏
i=1

Γ
(
νi+1

2

)
Γ
(
νi
2

) , Q = n + |ν|. We denote the Schwartz space of all complex-valued, infinitely

differentiable and rapidly decreasing functions on Rn
k,+ by S+(Rn

k,+) and the dual space of all tempered distributions on
Rn

k,+ by S′+(Rn
k,+). The Fourier-Bessel transform of a function f ∈ S+(Rn

k,+) is defined as

Fν( f )(x) =
∫
Rn

k,+

f (y)e−i(x′,y′)
k∏

i=1

jνi− 1
2
(x′′y′′)(y′)νdy,

where (x′, y′) = x1y1 + . . . + xkyk, jν is the normalized Bessel function of the first kind

jν(t) = 2νΓ(ν + 1)
Jν(t)

tν
,

and Jν(x) is the Bessel function of the first kind [21, 25].
The definition of generalized translation operator is as follows:

T y f (x) := Aν,k

∫ π

0
. . .

∫ π

0
f
[
(x1, y1)α1 , . . . , (xk, yk)αk , x

′′ − y′′
]
dν(α).

Here, Aν,k = π−
k
2 Γ( ν j+1

2 )[Γ( ν j

2 )]−1, (x j, y j)α j = (x2
j − 2x jy j cosα j + y2

j )
1
2 , 1 ≤ j ≤ k, 1 ≤ k ≤ n, and dν(α) =

k∏
j=1

sinν j−1 α j dα j [22, 24]. Observe that generalized translation operator is related to Laplace-Bessel differential oper-

ator. The following is well known from [24]:∫
Rn

k,+

|T y f (x)|(y′)νdy ≤
∫
Rn

k,+

| f (y)|(y′)νdy. (2.1)

B-convolution operator connected with T y is given by

( f ⊗ g)(x) =
∫
Rn

k,+

f (y)T yg(x)(y′)νdy.

We will now recall the spaces Lp(·),ν(Rn
k,+) and their fundamental properties.

Let P(Rn
k,+) =

{
p(·) : Rn

k,+ → [1,∞] : p(·) is measurable
}
. Any element of P(Rn

k,+) is said to be a variable exponent
function and also let

p− := ess inf
x∈Rn

k,+

p(x), p+ := ess sup
x∈Rn

k,+

p(x).

If p(·) satisfies

|p(x) − p(y)| ≤
A0

− log |x − y|
, (2.2)

and

|p(x) − p∞| ≤
A∞

log(e + |x|)
, (2.3)
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for all |x − y| ≤
1
2

, x, y ∈ Rn
k,+, then it is denoted by p(·) ∈ Plog(Rn

k,+), and p(·) ∈ Plog
∞ (Rn

k,+), respectively. Here,
p∞ = lim

x→∞
p(x) > 1. Moreover, if p(·) provides log-Hölder continuity conditions both locally and at infinity, then it

is denoted by p(·) ∈ LH(Rn
k,+), i.e LH(Rn

k,+) consists of p(·) such that (2.2) and (2.3) are satisfied together. Conjugate
exponent function is given by

1
p(·)
+

1
p′(·)

= 1, x ∈ Rn
k,+,

for a given p(·).
Let f be a measurable function and p(·) ∈ P(Rn

k,+). Then, variable Lebesgue space is defined as follows:

Lp(·),ν(Rn
k,+) :=

{
f : ∥ f ∥Lp(·),ν(Rn

k,+) = inf
{
µ > 0 : ϱp(·),ν ( f /µ) ≤ 1

}
< ∞

}
,

where

ϱp(·),ν( f ) :=
∫
Rn

k,+\(R
n
k,+)∞
| f (x)|p(x)(x′)νdx + ∥ f ∥L∞,ν(Rn

k,+)∞ < ∞.

Note that Lp(·),ν(Rn
k,+) are Banach spaces for 1 < p− ≤ p(x) ≤ p+ < ∞.

The following lemma is analog of Hölder’s inequality for Lp(·),ν(Rn
k,+).

Lemma 2.1 ( [11]). Let p(·) : Rn
k,+ → [1,∞). Then,∫

Rn
k,+

| f (x)h(x)| (x′)νdx ≤ A ∥ f ∥p(·),ν∥h∥p′(·),ν,

holds for all f ∈ Lp(·),ν(Rn
k,+) and h ∈ Lp′(·),ν(Rn

k,+), where A = A (p(·), p′(·), ν) > 0 is a constant.

Now, we give the analogs of fundamental results dealing with variable Lp(·),ν spaces. One can obtain their proofs in
a similar way as in [23].

Lemma 2.2. Let p(·) : Rn
k,+ → [1,∞) and p+ < ∞. Then, the followings are equivalent:

(i) ∥ f ∥p(·),ν < A1,

(ii)
∫
Rn

k,+

| f (y)|p(y)(y′)νdy < A2.

If one of the constant is 1, then we can pick the other one is also 1.

Lemma 2.3. Let p(·), q(·) : Rn
k,+ → [1,∞). If p(x) ≤ q(x), then ∥ f ∥p(·),ν ≤ A ∥ f ∥q(·),ν.

Lemma 2.4 ( [12]). Let p(·) : Rn
k,+ → [1,∞). Then, p(·) satisfying (2.2) is uniformly continuous if and only if

|B+|
p−−p+
ν ≤ A for every open balls B+.

The next lemma is the analog lemma due to Diening [9].

Lemma 2.5. Let p(·) : Rn
k,+ → [1,∞) be an exponent function satisfying (2.2) and p+ < ∞. Then,

∥χB+∥p(·),ν ≤ A |B+|
1/p(·)
ν

holds for all open balls B+ with 0 < |B+|ν ≤ 1.

Proof. Let p+ < ∞ and |B+|ν ≤ 1. Then, the Lp(·),ν norm of χB+ is

∥χB+∥p(·),ν = inf
{
µ > 0 :

∫
B+
µ−p(x)(x′)νdx ≤ 1

}
= inf

{
0 < µ < 1 :

∫
B+
µ−p(x)(x′)νdx ≤ 1

}
≤ inf

{
0 < µ < 1 :

∫
B+
µ−p+ (x′)νdx ≤ 1

}
= |B+|

1/p(·)
ν ,
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and using Lemma 2.4, we find

|B+|
1

p+
ν = |B+|

1
p(x)
ν |B+|

1
p+
− 1

p(x)
ν

≤ |B+|
1

p(x)
ν |B+|

p−−p+
p2
−

ν ≤ A |B+|
1

p(x)
ν .

Therefore, the proof is completed. □

The following lemma allows us to use the condition LH(Rn
k,+) to replace a variable exponent function with a constant

exponent.

Lemma 2.6. Let F be a set, p(·) and q(·) be two nonnegative functions and let βt(x) = (e + |x|)−tn for t > 0. Suppose
that

|p(x) − q(x)| ≤
A

log(e + |x|)
,

for each x ∈ F. Then, there exists a constant A = A(t, ν) such that∫
F
| f (x)|q(x)(x′)νdx ≤ A

∫
F
| f (x)|p(x)(x′)νdx +

∫
F
βt(x)q−(F)(x′)νdx,

for every function f with | f (x)| ≤ 1 and x ∈ F.

Proof. Define Fβt = {x ∈ F : | f (x)| ≥ βt(x)}. Then, we have∫
F
| f (x)|q(x)(x′)νdx =

∫
Fβt
| f (x)|q(x)(x′)νdx +

∫
F\Fβt
| f (x)|q(x)(x′)νdx.

Firstly, for x ∈ Fβt ,

| f (x)|q(x) = | f (x)|p(x)| f (x)|q(x)−p(x) ≤ | f (y)|p(x)βt(x)
A

log(e+|x|) ≤ A | f (x)|p(x).

Also, since βt ≤ 1, we have∫
F\Fβt
| f (x)|q(x)(x′)νdx ≤

∫
F\Fβt
βt(x)q(x)(x′)νdx ≤

∫
F
βt(x)q−(F)(x′)νdx,

which is the desired result. □

In Theorem 2.7, the necessary condition for boundedness of the generalized translation operator has been recalled.
For more details, one can see [12, Theorem 4.1].

Theorem 2.7. Let p(·) : Rn
k,+ → [1,∞) with 1 < p− ≤ p+ < ∞. Then,

∥T y f ∥p(·),ν ≤ A∥ f ∥p(·),ν

holds for all f ∈ Lp(·),ν ∩ S
′
+(Rn

k,+) with suppFν f ⊂ {ξ ∈ Rn
k,+ : |ξ| ≤ 2η+1}, η ∈ N0, where Fν f is the Fourier-Bessel

transform and A > 0 is a constant.

3. On B-fractionalMaximal Operator

Here, our aim is to show that B-fractional maximal operator from Lp(·),ν(Rn
k,+) to Lq(·),ν(Rn

k,+) is bounded. First, let us
recall definitions of B-maximal and B-fractional maximal operators.

B-maximal and B-fractional maximal operators are defined as follows:

Mν f (x) = sup
r>0
|B+(0, r)|−1

ν

∫
B+(0,r)

T y| f (x)|(y′)νdy,

Mαν f (x) = sup
r>0
|B+(0, r)|

α
Q−1
ν

∫
B+(0,r)

T y| f (x)|(y′)νdy, 0 ≤ α < Q,

for a given f ∈ Lloc
1,ν(R

n
k,+). One can easily observe that M0

ν f = Mν f for α = 0 (see [15]).
The next theorem deals with Lp(·),ν(Rn

k,+)-boundedness of B-maximal operator.

Theorem 3.1 ( [11, 18, 19]). Let p(·) ∈ LH(Rn
k,+) with 1 < p− ≤ p+ < ∞. Then, B-maximal operator is bounded in

Lp(·),ν(Rn
k,+).



E. Kaya, Turk. J. Math. Comput. Sci., 16(2)(2024), 333–345 337

The following two propositions give us very important inequalities which allow us to obtain one of our main results.

Proposition 3.2. Let p(·) : Rn
k,+ → [1,∞), 1 ≤ p− ≤ p+ <

Q
α

satisfying (2.2), 0 < α < Q and also let q(·) be
1

p(x)
−

1
q(x)

=
α

Q
. Then,

Mαν f (x) ≤ A Mν f (x)
p(x)
q(x) ,

holds for every f ∈ Lp(·),ν(Rn
k,+) such that ∥ f ∥p(·),ν ≤ 1 and | f (x)| ≥ 1 or f (x) = 0, x ∈ Rn

k,+, where A = A(n, p(·), α, ν) is
a positive constant.

Proof. Let x ∈ Rn
k,+ be fixed and also let B+ be a ball including x. Then, we have

|B+|
α
Q−1
ν

∫
B+(0,r)

T y| f (x)|(y′)νdy

= |B+|
α
Q
ν

(
|B+|−1

ν

∫
B+

T y| f (x)|(y′)νdy
) αp(x)

Q
(
|B+|−1

ν

∫
B+

T y| f (x)|(y′)νdy
)1− αp(x)

Q

≤ |B+|
α
Q
ν

(
|B+|−1

ν

∫
B+

T y| f (x)|(y′)νdy
) αp(x)

Q

Mν f (x)
p(x)
q(x) .

It is necessary to illustrate that

|B+|
α
Q
ν

(
|B+|−1

ν

∫
B+

T y| f (x)|(y′)νdy
) αp(x)

Q

≤ A,

which allow us to obtain the desired result. Here, there are two cases: (i) |B+|ν ≥ 1, (ii) |B+|ν ≤ 1. Firstly, for |B+|ν ≥ 1,
by Lemma 2.2 and Chebyschev’s inequality, we find

| supp f | ≤
∫
Rn

k,+

| f (y)|p(y)(y′)νdy ≤ ∥ f ∥p(·),ν ≤ 1.

Since p(x) ≥ 1, and by (2.1), we have

|B+|
α
Q
ν

(
|B+|−1

ν

∫
B+

T y| f (x)|(y′)νdy
) αp(x)

Q

≤

(∫
B+

T y| f (x)|(y′)νdy
) αp(x)

Q

≤

(∫
B+
| f (y)|(y′)νdy

) αp(x)
Q

≤ ∥ f ∥
αp(x)

Q

1,ν

≤
(
A (1 + | supp f |)∥ f ∥p(·),ν

) αp(x)
Q

≤ A,

with the use of Lemma 2.3, Theorem 2.7 and (2.1). We now estimate for |B+|ν ≤ 1. If p− > 1, then p′(·) satisfies (2.2)
and p′+ < ∞. Hence, by Lemma 2.1 and Lemma 2.5,

|B+|
α
Q
ν

(
|B+|−1

ν

∫
B+

T y| f (x)|(y′)νdy
) αp(x)

Q

≤ |B+|
α
Q−

αp(x)
Q

ν ∥χB+∥
αp(x)

Q

p′(·),ν∥ f ∥
αp(x)

Q

p(·),ν

≤ |B+|
α
Q−

αp(x)
Q

ν ∥χB+∥
αp(x)

Q

p′(·),ν

≤ A |B+|
α
Q−

αp(x)
Q

ν |B+|
αp(x)

Qp′(x)
ν

≤ A.
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From Lemma 2.3, we have

∥χB+∥
αp(x)

Q

Lp′(·),ν(Rn
k,+) = ∥χB+∥

αp(x)
Q

Lp′ (·),ν(B+) ≤ A (1 + |B+|ν) ∥χB+∥
αp(x)

Q
∞,ν ≤ A.

Then, by Lemma 2.4, we get

|B+|
α
Q−

αp(x)
Q

ν ≤ |B+|
(p−−p+) αQ
ν ≤ A,

which gives us the desired result. □

Proposition 3.3. Let p(·) : Rn
k,+ → [1,∞), 1 ≤ p− ≤ p+ <

Q
α

satisfying (2.3), 0 < α < Q and also let q(·) be
1

p(x)
−

1
q(x)

=
α

Q
. Then,

Mαν f (x) ≤ A Mν f (x)
p(x)

q∗ (x)

holds for all f ∈ Lp(·),ν(Rn
k,+) such that ∥ f ∥p(·),ν ≤ 1 and | f (x)| ≤ 1, x ∈ Rn

k,+, where q∗(x) = sup|y|≥|x| q(y).

Proof. Let x ∈ Rn
k,+ be fixed and also let B+ be a ball including x. Then, one can write

1
p∗(x)

−
1

q∗(x)
=
α

Q
and by using

Lemma 2.1, we get

|B+|
α
Q−1
ν

∫
B+

T y| f (x)|(y′)νdy = |B+|
α
Q
ν

(
|B+|−1

ν

∫
B+

T y| f (x)|(y′)νdy
) αp∗ (x)

Q
(
|B+|−1

ν

∫
B+

T y| f (x)|(y′)νdy
)1− αp∗ (x)

Q

≤

(∫
B+

T y| f (x)|p
∗(x)(y′)νdy

) α
Q

Mν f (x)
p∗ (x)
q∗ (x) .

Taking into account that | f (x)| ≤ 1, Mν f (x) ≤ 1 and therefore Mν f (x)
p∗ (x)
q∗ (x) ≤ Mν f (x)

p(x)
q∗ (x) . Then,∫

B+
T y| f (x)|p

∗(x)(y′)νdy =
∫
{x∈B+: |y|≤|x|}

T y| f (x)|p
∗(x)(y′)νdy +

∫
{x∈B+: |y|>|x|}

T y| f (x)|p
∗(x)(y′)νdy.

We estimate the first integral by applying Lemma 2.6. If y ∈ {x ∈ B+ : |y| ≤ |x|}, then by (2.3),

|p(y) − p∗(x)| ≤
A

log(e + |y|)
.

Thus, for any t > 1,∫
{x∈B+: |y|≤|x|}

T y| f (x)|p
∗(x)(y′)νdy ≤ At,ν

∫
{x∈B+: |y|≤|x|}

T y| f (x)|p(y)(y′)νdy +
∫
{x∈B+: |y|≤|x|}

βt(y)(p∗)− (y′)νdy

≤ A.

We now estimate the second integral. If y ∈ {x ∈ B+ : |y| > |x|}, then we have p∗(x) ≥ p(y). Taking into account that
| f (y)| ≤ 1 and Lemma 2.2, we find∫

{x∈B+: |y|>|x|}
T y| f (x)|p

∗(x)(y′)νdy ≤
∫
{x∈B+: |y|>|x|}

| f (y)|p
∗(x)(y′)νdy

≤

∫
{x∈B+: |y|>|x|}

| f (y)|p(y)(y′)νdy

≤

∫
Rn

k,+

| f (y)|p(y)(y′)νdy ≤ 1,

which gives us the desired result. □

The next theorem contains an important inequality for averages over balls.
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Theorem 3.4. Let p(·) : Rn
k,+ → [1,∞) satisfy (2.2) and (2.3). Suppose that∫

Rn
k,+

| f (y)p(y)(y′)νdy ≤ 1,

and f (x) = 0 or | f (x)| ≥ 1, x ∈ Rn
k,+. Then, for all x ∈ Rn

k,+,(
|B+|−1

ν

∫
B+
| f (y)|(y′)νdy

)p(x)

≤ A
(
|B+|−1

ν

∫
B+
| f (y)|

p(y)
p− (y′)νdy

)p−

+ A βt(x)p− . (3.1)

Proof. Suppose that f ≥ 0 and set f1 = fχ{x: f (x)≤1} and f2 = fχ{x: f (x)>1}. Then

Mν f (x)p(x) ≤ 2p+
(
Mν f1(x)p(x) + Mν f2(x)p(x)

)
.

To complete the proof, we consider the cases: the first is f (x) ≥ 1 or f (x) = 0 and the second is f (x) ≤ 1. Throughout
this section, fix

β(y) = β1(y) =
1

(e + |y|)n ,

and set p(x) = p(x)
p−

. Then p(x) ≥ 1, and (2.3) holds with p substituted by p.
We first estimate (3.1) for f (x) ≥ 1 or f (x) = 0. Let x ∈ Rn

k,+ be fixed and B+ be a ball including x with |B+|ν > 0.
We take into account three cases.
(1) r < |x|/4. If y1, y2 ∈ B+, then we have log(e + |y1|) ≈ log(e + |y2|). Therefore, we get

|p(y) − p−(B+)| ≤
A

log(e + |y|)
,

for all y ∈ B+ and y ∈ B+ implies β(y) ≤ A β(x) since r < |x|/4. Then, by using Lemma 2.1 and Lemma 2.6, substituting

p−(B+) for v(·), p(·) for u(·), and with t = 1, and since
p(x)

p−(B+)
≤ p+ < ∞, one can obtain

(
|B+|−1

ν

∫
B+

f (y)(y′)νdy
)p(x)

≤

(
|B+|−1

ν

∫
B+

f (y)p−(B+)(y′)νdy
) p(x)

p− (B+ )

≤

(
A |B+|−1

ν

∫
B+

f (y)p(y)(y′)νdy + |B+|−1
ν

∫
B+
β(y)p−(B+)(y′)νdy

) p(x)
p− (B+ )

≤

(
A |B+|−1

ν

∫
B+

f (y)p(y)(y′)νdy + A β(x)p−(B+)(y′)νdy
) p(x)

p− (B+ )

≤ 2p+A
(
|B+|−1

ν

∫
B+

f (y)p(y)(y′)νdy
) p(x)

p− (B+ )

+ 2p+A β(x)p(x).

Taking into account that p− > 1, β(x)p(x) ∈ L1,ν(Rn
k,+). Therefore,

|B+|−1
ν

∫
B+

f (y)p(y)(y′)νdy
p(x)

p− (B+ ) =

(
|B+|−1

ν

∫
B+

f (y)p(y)(y′)νdy
)p− (
|B+|−1

ν

∫
B+

f (y)p(y)(y′)νdy
) p(x)

p− (B+ )−p−

= |B+|
−[( p(x)

p− (B+ ) )−p−]/p−
ν

(∫
B+

f (y)p(y)(y′)νdy
)[( p(x)

p− (B+ ) )−p−]/p−

×

(
|B+|−1

ν

∫
B+

f (y)p(y)(y′)νdy
)p−

.

One can write

−
1
p−

[
p(x)

p−(B+)
− p−

]
= p(x)

[
1

p(x)
−

1
p−(B+)

]
≤ 0.
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If |B+|ν ≥ 1, then |B+|
−[ p(x)

p− (B+ )−p−]/p−
ν ≤ 1. Also, if |B+|ν ≤ 1, we find

p(x)
[

1
p(x)

−
1

p−(B+)

]
≥

p+
p2
−

(p−(B+) − p+(B+)),

and by Lemma 2.4,

|B+|
−[ p(x)

p− (B+ )−p−]/p−
ν ≤ |B+|

p+
p2
−

(p−(B+)−p+(B+))

ν ≤ A.

Again,

p(x)
p−(B+)

− p− =
p(x)

p−(B+)
p− − p− ≥ 0,

and since
∫
Rn

k,+

| f (y)|p(y)(y′)νdy ≤ 1, we obtain

(∫
B+

f (y)p(y)(y′)νdy
)[ p(x)

p− (B+ )−p−]/p−

≤ 1.

Taking into account of all these estimates, we obtain (3.1).
(2) |x| ≤ 1 and r ≥ |x|/4. Since |x| ≤ 1, applying Lemma 2.6, we find

0 ≤ p(y) − p−(B+) ≤ p+ − p− ≤
A

log(e + |x|)
for all y ∈ B+.

Then, with the use of Lemma 2.1, Lemma 2.6, substituting p−(B+) for v(·), p(·) for u(·) with t = 1, and since p(x)
p−(B+) ≤

p+ < ∞, one can see(
|B+|−1

ν

∫
B+

f (y)(y′)νdy
)p(x)

≤

(
|B+|−1

ν

∫
B+

f (y)p−(B+)(y′)νdy
) p(x)

p− (B+ )

≤

(
A |B+|−1

ν

∫
B+

f (y)p(y)(y′)νdy + |B+|−1
ν

∫
B+
β(x)p−(B+)(y′)νdy

) p(x)
p− (B+ )

≤ 2p+

(
A |B+|−1

ν

∫
B+

f (y)p(y)(y′)νdy
) p(x)

p− (B+ )

+ 2p+A β(x)p(x).

As in (1), desired inequality is obtained.

(3) |x| ≥ 1 and r ≥ |x|/4. Taking into account that f (x) ≥ 1 or f (x) = 0, p− ≥ 1 and
∫
Rn

k,+

| f (y)|p(y)(y′)νdy ≤ 1, we

have (
|B+|−1

ν

∫
B+

f (y)(y′)νdy
)p(x)

≤ |B+|
−p(x)
ν

(∫
B+

f (y)p(y)(y′)νdy
)p(x)

≤ |B+|
−p(x)
ν ≤ A |x|−Qp(x) ≤ A β(x)p(x).

We now estimate (3.1) for f (x) ≤ 1. Let x ∈ Rn
k,+ be fixed and |x| ≥ 1. Therefore, we show that(

|B+|−1
ν

∫
B+

f (y)(y′)νdy
)p(x)

≤ A
(
|B+|−1

ν

∫
B+

f (y)p(y)(y′)νdy
)p−

+ A β(x)p− .

Since p(x) ≤ p+ < ∞, we have(
|B+|−1

ν

∫
B+

f (y)(y′)νdy
)p(x)

≤ 2p+

(
|B+|−1

ν

∫
B+∩B|x|(0)

f (y)(y′)νdy
)p(x)

+ 2p+

(
|B+|−1

ν

∫
B+\B|x|(0)

f (y)(y′)νdy
)p(x)

= I1 + I2.
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We first estimate I2. Let E = B+ \ B|x|(0). Then, one can write

0 ≤ p(y) − p−(E) ≤ p+(E) − p−(E) ≤
A

log(e + |x|)
for all y ∈ E.

With the use of Lemma 2.1, Lemma 2.6, substituting p−(E) for v(·), p(·) for u(·) with t = 1, and since E ⊂ B+ and
p(x)

p−(E) ≤ p+ < ∞, we have(
|B+|−1

ν

∫
E

f (y)(y′)νdy
)p(x)

≤

(
|B+|−1

ν

∫
E

f (y)p−(E)(y′)νdy
) p(x)

p− (E)

≤

(
A |B+|−1

ν

∫
E

f (y)p(y)(y′)νdy + |B+|−1
ν

∫
E
β(x)p−(E)(y′)νdy

) p(x)
p− (E)

≤ 2p+

(
A |B+|−1

ν

∫
B+

f (y)p(y)(y′)νdy
) p(x)

p− (E)

+ 2p+β(x)p(x).

We also obtain that

I2 =

(
|B+|−1

ν

∫
B+\B|x|(0)

f (y)(y′)νdy
)p(x)

≤ A
(
|B+|−1

ν

∫
B+

f (y)p(y)(y′)νdy
)p−

+ A β(x)p(x),

with the use of p(x) ≥ p−(E). Let us obtain I1 and E∗ = B|x|(0) ∩ B+. Then, by (2.3), we get

|p(x) − p(y)| ≤
A

log(e + |y|)
for all y ∈ E∗.

Again, with the use of Lemma 2.1, Lemma 2.6 with v(·) = p(x), u(·) = p(·), t = 1, and with the use of r > |x|/4,
|B|x|(0)|ν ≤ A |B+|ν, we get(

|B+|−1
ν

∫
E∗

f (y)(y′)νdy
)p(x)

≤

(
|B+|−1

ν

∫
E∗

f (y)p(x)(y′)νdy
) p(x)

p(x)

≤

(
A |B+|−1

ν

∫
E∗

f (y)p(y)(y′)νdy + |B+|−1
ν

∫
B|x|(0)
β(y)p(x)(y′)νdy

)p−

≤ A
(
|B+|−1

ν

∫
E∗

f (y)p(y)(y′)νdy
)p−

+ A
(
|B+|−1

ν

∫
B|x|(0)
β(y)p(x)(y′)νdy

)p−

≤ A
(
|B+|−1

ν

∫
B+

f (y)p(y)(y′)νdy
)p−

+ A
(
|B+|−1

ν

∫
B|x|(0)
β(y)p(x)(y′)νdy

)p−

.

Let 1 < v < p−. Then, by Lemma 2.1, we have(
|B+|−1

ν

∫
B|x|(0)
β(y)p(x)(y′)νdy

)p−

≤ |B+|
−p−/v
ν

(∫
B|x|(0)
β(y)p(x)v(y′)νdy

)p−/v

.

Since p(x)v ≥ p−v > 1 and β(y) ≤ 1,∫
B|x|(0)
β(y)p(x)v(y′)νdy ≤

∫
B|x|(0)
β(y)p−v(y′)νdy ≤ A.

Also, since |x| ≥ 1,

|B|x|(0)|−p−/v
ν ≤ A (e + |x|)−(Q)p−/v = A β(x),

and β(x) ∈ L1,ν since p− > v. Thus, we complete the proof. □

Now, we present the following main result on B-fractional maximal operator.

Theorem 3.5. Let 0 ≤ α < Q, p(·) ∈ LH(Rn
k,+) with 1 < p− ≤ p+ <

Q
α

and q(·) : Rn
k,+ → [1,∞) which is defined by

1
p(x)

−
1

q(x)
=
α

Q
. Then, B-fractional maximal operator Mαν : Lp(·),ν(Rn

k,+)→ Lq(·),ν(Rn
k,+) is bounded.
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Proof. Let f ∈ Lp(·),ν(Rn
k,+) be fixed. Without losing the generality, let f ≥ 0 and ∥ f ∥p(·),ν ≤ 1. With the use of Lemma

2.2 and Theorem 3.1, it is sufficient to illustrate that∫
Rn

k,+

|Mαν f (y)|q(y)(y′)νdy ≤ A.

Define f1 = fχ{x: f (x)≥1} and f2 = fχ{x: f (x)<1}. Then, ∥ fi∥p(·),ν ≤ ∥ f ∥p(·),ν = 1, i = 1, 2. By Propositions 3.2 and 3.3
and since q+ < ∞, we have∫

Rn
k,+

Mαν f (x)q(x)(x′)νdx ≤ 2q+

∫
Rn

k,+

Mαν f1(x)q(x)(x′)νdx + 2q+

∫
Rn

k,+

Mαν f2(x)q(x)(x′)νdx

≤ A
∫
Rn

k,+

Mν f1(x)p(x)(x′)νdx + A
∫
Rn

k,+

Mν f2(x)p(x)q(x)/q∗(x)(x′)νdx.

We now estimate each integral. The proof is obvious for the first integral:

A
∫
Rn

k,+

Mν f1(x)p(x)(x′)νdx ≤ A
∫
Rn

k,+

Mν f (x)p(x)(x′)νdx ≤ A.

For the second, let ϵ > 0 be fixed. Then, one can find y, |y| ≥ |x| with q∗(x) ≤ (1 + ϵ)q(y). Then, we find

0 ≤ q∗(x) − q(x) ≤ (1 + ϵ)q(y) − q(x) ≤ |q(y) − q(x)| + ϵq+ ≤
A

log(e + |x|)
+ ϵq+.

Since q∗(x) ≥ 1 and ϵ > 0 is arbitrary, we obtain∣∣∣∣∣1 − q(x)
q∗(x)

∣∣∣∣∣ ≤ A
log(e + |x|)

.

Let v(x) = q(x)
q∗(x) . Then v− ≥

q−
q+

, so R2q+/q− (·)
v− is integrable. With the use of Lemma 2.6 for u(x) = 1, we have∫

Rn
k,+

Mν f2(x)p(x) q(x)
q∗ (x) (x′)νdx ≤ At

∫
Rn

k,+

Mν f (x)p(x)(x′)νdx +
∫
Rn

k,+

R2q+/q− (·)
v− (x′)νdx ≤ A.

This completes the proof. □

As an analog of the result in [16], we can write the following:

Corollary 3.6. If f ∈ Lp(·),ν(Rn
k,+) and 1 < p− ≤ p+ ≤ ∞, then

lim
r→0
|B+(0, r)|−1

ν

∫
B+(0,r)

T y f (x)(y′)νdy = f (x), a.a. x ∈ Rn
k,+.

4. On B-Riesz Potentials

In this section, our aim is to show that B-Riesz potential operator from Lp(·),ν(Rn
k,+) to Lq(·),ν(Rn

k,+) is bounded.
Although, B-Riesz potential is well-known, it will be nice to recall it.

Let 0 < α < Q, then B-Riesz potential is introduced by

Iαν f (x) =
∫
Rn

k,+

T y|x|α−Q f (y)(y′)νdy.

Let us give the inequality that we will use to obtain our other main result.

Lemma 4.1 ( [14]). For any ϵ, 0 < ϵ < min(α,Q − α), there exists a constant A = A(α, n, ν, ϵ) > 0 such that

Iαν f (x) ≤ A
√

Mα−ϵν f (x)Mα+ϵν f (x), (4.1)

for any nonnegative function f : Rn
k,+ → R

n and for any x ∈ Rn
k,+.

Now, we present the main result on B-Riesz potential operator.
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Theorem 4.2. Let 0 < α < Q, 1 < p− ≤ p+ <
Q
α

, p(·) ∈ LH(Rn
k,+) and q(·) : Rn

k,+ → [1,∞) which is defined by
1

p(·)
−

1
q(·)
=
α

Q
. Then,

∥Iαν f ∥Lq(·),ν(Rn
k,+) ≤ A ∥ f ∥Lp(·),ν(Rn

k,+). (4.2)

Proof. Let f ∈ Lp(·),ν(Rn
k,+) be fixed. Without losing the generality, let ∥ f ∥p(·),ν = 1. Then, from Lemma 2.2, it is

sufficient to illustrate that ∫
Rn

k,+

|Iαν f (y)|q(y)(y′)νdy ≤ A.

Let ϵ be fixed 0 < ϵ < max(α,Q − α) such that
2

ϵq+
Q + 1

> 1, (4.3)

and define v(·) : Rn
k,+ → [1,∞) as

v(x) =
2

ϵq(x)
Q + 1

.

With the use of (4.3), we find v− > 1. Also, for all x ∈ Rn
k,+, one can write

1
p(x)

−
1

v(x)q(x)
2

=
α − ϵ

Q
, (4.4)

1
p(x)

−
1

v′(x)q(x)
2

=
α + ϵ

Q
. (4.5)

Take the power q(x) of both side of (4.1) and by integrating over Rn
k,+, then we get∫

Rn
k,+

|Iαν f (x)|q(x)(x′)νdx ≤ A
∫
Rn

k,+

[
Mα−ϵν f (x)

]q(x)/2 [
Mα+ϵν f (x)

]q(x)/2 (x′)νdx.

By Lemma 2.1, we get∫
Rn

k,+

|Iαν f (x)|q(x)(x′)νdx ≤ A
∥∥∥∥[Mα−ϵν f (·)

]q(·)/2
∥∥∥∥

v(·),ν

∥∥∥∥[Mα+ϵν f (·)
]q(·)/2

∥∥∥∥
v′(·),ν
.

In order to obtain the desired result, we calculate all of the norms on the RHS. Without losing the generality, each norm
is greater than 1. Otherwise the proof is obvious. Therefore, in each norm we take the infimums over µ > 1. Since for
all x ∈ Rn

k,+ and µ > 1, µ2/q(x) ≥ µ2/q+ , we get∫
Rn

k,+

 [Mα−ϵν f (x)
]q(x)/2

µ

v(x)

(x′)νdx =
∫
Rn

k,+

( [
Mα−ϵν f (x)

]
µ2/q(x)

)v(x)q(x)/2

(x′)νdx ≤
∫
Rn

k,+

( [
Mα−ϵν f (x)

]
µ2/q+

)v(x)q(x)/2

(x′)νdx,

and by using (4.4) and Theorem 3.5,∥∥∥∥[Mα−ϵν f (·)
]q(·)/2

∥∥∥∥
v(·),ν
≤

∥∥∥[Mα−ϵν f (·)
]∥∥∥q+/2

v(·)q(·)
2 ,ν
≤ A ∥ f ∥q+/2p(·),ν ≤ A.

On the other hand, the norm estimate for ∥
[
Mα+ϵν f (·)

]q(·)/2
∥v′(·),ν can be obtained in a similar manner. By (4.5), we have∫

Rn
k,+

 [Mα+ϵν f (x)
]q(x)/2

µ

v′(x)

(x′)νdx =
∫
Rn

k,+

( [
Mα+ϵν f (x)

]
µ2/q(x)

)v′(x)q(x)/2

(x′)νdx ≤
∫
Rn

k,+

( [
Mα+ϵν f (x)

]
µ2/q+

)v′(x)q(x)/2

(x′)νdx.

Hence, we obtain ∥∥∥∥[Mα+ϵν f (·)
]q(·)/2

∥∥∥∥
v′(·),ν

≤
∥∥∥[Mα+ϵν f (·)

]∥∥∥q+/2
v′ (·)q(·)

2 ,ν
≤ A ∥ f ∥q+/2p(·),ν ≤ A,

which gives us the desired result. □
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Theorem 4.3. Let 0 < α < Q, 1 < p− ≤ p+ <
Q
α

, then the following is necessary for (4.2) holds:

1
p(·)
−

1
q(·)
=
α

Q
.

Proof. Let 1 < p− ≤ p+ <
Q
α

, f ∈ Lp(·),ν(Rn
k,+) and suppose that the inequality (4.2) holds. Define ft := f (tax), then we

obtain

∥ ft∥Lp(·),ν(Rn
k,+) = inf

µ > 0 :
∫
Rn

k,+

(
| f (tx)|
µ

)p(·)

(x′)νdx ≤ 1


= inf

µ > 0 :
∫
Rn

k,+

(
| f (y)|
µ

)p(·)

t−Q(y′)νdy ≤ 1


= t−Q∥ f ∥Lp(·),ν(Rn

k,+),

and

∥Iαν ft∥Lq(·),ν(Rn
k,+) =

∥∥∥∥∥∥∥
∫
Rn

k,+

ft(y)T y|x|α−Q(y′)νdy

∥∥∥∥∥∥∥
Lq(·),ν(Rn

k,+)

=

∥∥∥∥∥∥∥
∫
Rn

k,+

T y|x|α−Q ft(y)(y′)νdy

∥∥∥∥∥∥∥
Lq(·),ν(Rn

k,+)

=

∥∥∥∥∥∥∥
∫
Rn

k,+

T y|x|α−Q f (y)t−Q(y′)νdy

∥∥∥∥∥∥∥
Lq(·),ν(Rn

k,+)

=

∥∥∥∥∥∥∥
∫
Rn

k,+

tQ−αT y|tx|α−Q f (y)t−Q(y′)νdy

∥∥∥∥∥∥∥
Lq(·),ν(Rn

k,+)

= t−Q∥Iαν f ∥Lq(·),ν(Rn
k,+).

By (4.2), we have

∥Iαν f ∥Lq(·),ν(Rn
k,+) ≤ A t−2Q∥ f ∥Lp(·),ν(Rn

k,+),

where A = A( p(·), q(·), ν) > 0 is a constant. If
1

p(·)
>

1
q(·)
+
α

Q
, then ∥Iαν f ∥Lq(·),ν(Rn

k,+) = 0 in the case t → 0 and for all

f ∈ Lp(·),ν(Rn
k,+). Thus, we obtain a contradiction. Similarly, if

1
p(·)
<

1
q(·)
+
α

Q
, then ∥Iαν f ∥Lq(·),ν(Rn

k,+) = 0 in the case

t → ∞, and for all f ∈ Lp(·),ν(Rn
k,+), Thus, we obtain a contradiction. Consequently,

1
p(·)
=

1
q(·)
+
α

Q
. Hence, the proof

is completed. □

5. Conclusions

Fractional maximal operators, Riesz potentials and boundedness of these operators on different function spaces are
considerable problems of Harmonic Analysis. On variable Lebesgue spaces, for shortly Lp(·),ν(Rn

k,+), fractional maximal
and Riesz potential operators have been examined by many mathematicians. On the other hand, B-fractional maximal
and B-Riesz potential operators have been studied on Lebesgue spaces. These results motivate us to investigate B-
fractional maximal Mαν and B-Riesz potential operator Iαν on Lp(·),ν(Rn

k,+). Here, B-fractional maximal and B-Riesz
potential operators on Lp(·),ν(Rn

k,+) have been examined. We have obtained the mapping properties of B-fractional
maximal operator in Lp(·),ν(Rn

k,+). Finally, by using this result and Lp(·),ν(Rn
k,+)-boundedness of generalized translation

operator, we have proved that B-Riesz potential on Lp(·),ν(Rn
k,+) is bounded.
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