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1. Introduction 

Vehicle cab suspension systems started as auxiliary systems to 

automobile suspension aimed at improving the cab comfort during 

vehicle movement. This solution led to an increase in the cost of 

the automobile and required detailed theoretical, experimental, and 

practical research to assess the efficiency of using such systems [1]. 

Currently, the problems of studying, calculating, and designing 

cab suspension systems remain open as there are no straightfor-

ward and accurate theoretical approaches and practical solutions 

that could determine the research methods and engineering ap-

proaches to the design of such systems. Current approaches to ve-

hicle cab suspension system development during the design stage 

are based on mathematical calculation and the simulation model-

ing of the dynamics [2] that act as the baseline for the development 

of structural and engineering solutions in cab suspension systems. 

When assessing the efficiency of vehicle cab suspension systems 

through the simulation modeling of the dynamics, researchers con-

ventionally develop complex dynamic models of vehicles [3,4,5,6], 

although a more modern and faster approach stipulates using vir-

tual cab setups [7]. 

When designing vehicles, it is important to align the operation 

of the cab suspension system with other vehicle systems that 

should jointly provide the required comfort and vehicle movement 

stability and prevent resonant phenomena [8]. The incorrect selec-

tion of elasticity and damping parameters in cab suspension sys-

tems may result in resonant phenomena in the vehicle cab, which 

http://www.ijastech.org/
mailto:ury.furletov@gmail.com
https://doi.org/10.30939/ijastech..1506048
https://orcid.org/0009-0003-4947-790X
https://orcid.org/0000-0002-8851-959X
https://orcid.org/0000-0002-5351-3622
https://orcid.org/0000-0003-4183-9489
https://orcid.org/0000-0002-2606-9984
https://orcid.org/0000-0002-0752-5075
https://orcid.org/0000-0002-6189-0129
https://orcid.org/0000-0002-5180-4899


 

Maksimov et al. / International Journal of Automotive Science and Technology 8 (4): 527-536, 2024 

 

528 

 

may lead to a loss of comfort and movement stability and up to the 

destruction of the automobile as shown in Figure 1. 

 

 

 

 
a 

 
b 

Fig. 1.a. The combined operation of the cab suspension system and other vehicle systems  
b. The emergence of a resonant phenomenon in the truck cab. 

 

During the initial stages of cab suspension system design, the 

majority of cab oscillation problems are considered basing upon 

the well-established theory of linear differential equations with 

constant coefficients [9]. However, the linear oscillation theory 

may not always reflect the reality as vehicle cab oscillations with 

6 degrees of freedom in a 3D space can be described with a system 

of differential equations that contain various non-linear links be-

tween generalized coordinates that reflect the impacts of various 

forces (inertia, potential, dissipation, etc.). The presence of these 

non-linear links in certain scenarios creates conditions for the sig-

nificant redistribution of oscillation energy between the general-

ized coordinates of the dynamic system of the suspended cab [7]. 

To analyze the compatibility of vehicle cab suspension system 

parameters with other systems for determining the probability of 

resonant phenomena and cab oscillation stability, it is necessary to 

develop a mathematical model of the suspended cab that can re-

flect the spatial oscillation of the cab and subsequently study its 

oscillations. 

2. Mathematical Model of Spatial Cab Oscillations 

When developing the mathematical model of suspended cab os-

cillations, make the following assumptions: 

The cab is a perfectly rigid body, and its elastic oscillations are 

not considered; 

The elastic elements of the cab suspension system have a linear 

loading characteristic within their working stroke; 

The cab suspension system has viscous-friction damping ele-

ments whose force is linearly dependent on their deformation rate; 

The attachment points of the elastic damping elements of the cab 

suspension system are located in the same horizontal plane when 
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the cab is in the static balance state. 

2.1 Kinematic Relations 

The spatial positioning of the cab's rigid body can be determined 

as shown in Figure 2, using two rectangular coordinate systems: 

the fixed inertial coordinate system O2×2Y2Z2 and the moving 

system OXYZ bound to the cab. The positioning of the moving 

coordinate system relative to the fixed one is determined by the 

coordinates of the radius vector 𝑹𝟎 =  [𝑥2
0, 𝑦2

0, 𝑧2
0] of its pole O 

and the angles between the axes of the fixed and moving coordi-

nate systems. The mutual orientation of the fixed and moving co-

ordinate system axes can be determined by the precession θ, nuta-

tion ψ, and self-rotation φ angles, referred to as Euler angles, using 

trigonometric functions that express all of the direction cosines that 

form a direction cosine matrix A. The Euler angles, along with the 

coordinates of the vector 𝑹𝟎, are the six generalized coordinates 

that determine the spatial position of the vehicle cab. 

 

 

 

Figure 2. The calculation model for the suspended cab 

1 – cab; 2 – elastic element; 3 – damping element; 4 – vehicle undercarriage 

 

The coordinates 𝑹𝟐 = [𝑥2, 𝑦2, 𝑧2] of a random cab point in the 

fixed coordinate system are linked to its coordinates 𝑹 = [𝑥, 𝑦, 𝑧] 
in the moving coordinate system with vector relation in Eq. (1): 

𝑹𝟐
T = 𝑹𝟐

0 + 𝑨𝑹T,  (1) 

where Т is the transposition symbol. 

The angular velocity vector ω of the cab equals vector sum in 

Eq. (2): 

𝛚 = �̇� + �̇� + �̇�. (2) 

2.2 Differential Equations of the Cab Dynamics 

Cab movement can be described with vector equations in Eq. 

(3): 

𝑀
d𝑽𝑐

d𝑡
= 𝑯 = 𝑯у + 𝑯с; 

d𝛔𝑐

d𝑡
= 𝑴0 = 𝑴0

у
+ 𝑴0

с , 

 

(3) 

where 𝑀 is the cab weight, kg; 𝑽𝑐 is the velocity vector of the 

cab mass center, m/sec; 𝝈𝑐 is the angular momentum relative to 

the mass center, m²∙kg/sec; 𝑯, 𝑴0 are the principal vector and 

moment of forces affecting the cab respectively, N, N⋅m; 𝑯у, 𝑴0
у
 

are the principal vector and moment of elastic forces affecting the 

cab respectively, N, N⋅m; 𝑯с, 𝑴0
с  is the principal vector and mo-

ment of resistance forces affecting the cab respectively, N, N⋅m; 

The vehicle cab is connected to the undercarriage with 4 elastic 

and 4 viscous-friction damping elements that form the cab's oscil-

lation system with six degrees of freedom. In the vertical direction, 

elastic elements are represented by springs with stiffness 𝑐𝑢 

where the u index denotes the deformation along the elastic ele-

ment axis. Vertical damping elements are represented by hydraulic 

dampers with the damping coefficient 𝑘𝑢 where the u index de-

notes the deformation along the damping element axis. In the lon-

gitudinal and transverse directions, the elastic and damping ele-

ments are represented by the rubber bushings of the cab suspension 

system guide featuring the stiffness 𝑐𝑥𝑦 and the damping coeffi-

cient 𝑘𝑥𝑦, respectively. 
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In practice, vehicle cab suspension systems use complex devices 

that combine both the elastic and the damping elements as shown 

in Figure 3. Thus, the mathematical model uses the deformation of 

such device as the u parameter. 

 

Fig. 3. The elastic and damping device for the cab suspension system 

It is presumed that initially, the axes of the fixed and moving 

coordinate systems have the same origin of coordinates which is 

located in the cab mass center. For each elastic and damping ele-

ment i, we used the vector coordinates 

𝑬𝑖 =  [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖], 𝑖 =  1, … ,4 of its cab attachment point in the 

moving coordinate system. In this case, the coordinates of the same 

points in the fixed coordinate system 𝑬2𝑖 = [𝑥2𝑖 , 𝑦2𝑖 , 𝑧2𝑖], 𝑖 =
1, … ,4 can be obtained using expression (1). The coordinates of 

the undercarriage attachment point vector of the elastic and damp-

ing element i are denoted in the fixed coordinate system through 

𝑮2𝑖 = [𝑥2𝑖
0 , 𝑦2𝑖

0 , 𝑧2𝑖
0 ], 𝑖 = 1, … ,4 . Assume that the elastic and 

damping forces of each element are directed along the axis of this 

element. The deformation of elastic and damping element i is de-

noted as 𝑢𝑖 , 𝑖 = 1, … ,4. The deformation value in Eq. (4) is deter-

mined in the fixed coordinate system: 

𝑢𝑖 = √(𝑥2𝑖 − 𝑥2𝑖
0 )2 + (𝑦2𝑖 − 𝑦2𝑖

0 )2 + (𝑧2𝑖 − 𝑧2𝑖
0 )2. (4) 

Then the elastic restoring force vector of elastic element i ap-

plied in the direction of its deformation can be calculated as 𝑯𝑖
у

=
𝑐𝑢𝑢𝑖 , 𝑖 = 1, … ,4.. To determine the projections of 𝑯у on the axis 

of the fixed coordinate system, we used the calculation model 

shown in Figure 4. 

 

 

 

Fig. 4. The calculation model to determine the direction of forces in elastic and damping element i of the cab suspension system 
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The elastic force projections of elastic element i on the fixed 

coordinate system axis look as follows in Eq. (5): 

𝐻𝑖𝑥2
у

= 𝑐𝑢𝑢𝑖cosη𝑖sinα𝑖; 

𝐻𝑖𝑦2
у

= 𝑐𝑢𝑢𝑖cosη𝑖cosα𝑖; 

𝐻𝑖𝑧2
у

= 𝑐𝑢𝑢𝑖sinη𝑖; 

ηi = arcsin
𝑧2𝑖−𝑧2𝑖

0

𝑢𝑖
; 

αi = arctg
𝑥2𝑖−𝑥2𝑖

0

𝑦2𝑖−𝑦2𝑖
0 . 

 

 

 

(5) 

The coordinates of the velocity vector of the undercarriage 

attachment points 𝑽𝐺2
 can be determined by solving the differ-

ential equations of vehicle movement. The coordinates of the 

vector 𝑽𝐸2
 can be determined as  𝑽𝐸2

= 𝑽𝐶2 + 𝛚 × 𝑹, 
where 𝑽𝐶2 is the velocity vector of the cab mass center in the 

fixed coordinate system, m/sec. Thus, the deformation rate of 

damping element i can be calculated using expression in Eq. (6): 

�̇�𝑖 =
𝑉𝑧2𝑖

− 𝑉𝑧2𝑖

0

sinη𝑖
. 

 

(6) 

The resistance force projections of damping element i on the 

fixed coordinate system axis can be determined with expres-

sions in Eq. (7): 

𝐻𝑖𝑥2
с = 𝑘𝑢�̇�𝑖cosη𝑖sinα𝑖; 

𝐻𝑖𝑦2
с = 𝑘𝑢�̇�𝑖cosη𝑖cosα𝑖; 

𝐻𝑖𝑧2
с = 𝑘𝑢�̇�𝑖sinη𝑖. 

 

(7) 

The moment equations from the projections of forces affect-

ing the cab in the moving coordinate system can be written 

down as follows in Eq. (8): 

𝑀0𝑥 = ∑ (𝐻𝑖𝑦
у

+ 𝐻𝑖𝑦
с )𝑧𝑖

4
𝑖=1 − ∑ (𝐻𝑖𝑧

у
+4

𝑖=1

𝐻𝑖𝑧
с )𝑦𝑖; 

𝑀0𝑦 = ∑ (𝐻𝑖𝑧
у

+ 𝐻𝑖𝑧
с )𝑥𝑖

4
𝑖=1 − ∑ (𝐻𝑖𝑥

у
+4

𝑖=1

𝐻𝑖𝑥
с )𝑧𝑖; 

𝑀0𝑧 = ∑ (𝐻𝑖𝑥
у

+ 𝐻𝑖𝑥
с )𝑦𝑖

4
𝑖=1 − ∑ (𝐻𝑖𝑦

у
+4

𝑖=1

𝐻𝑖𝑦
с )𝑥𝑖, 

 

 

 

(8) 

where xi, yi, zi are the coordinates of vehicle cab attachment 

points of elastic and damping element i, m. 

2.3 Transforming Mathematical Model of Suspended 

Cab Oscillations into a Quasi-Linear Form 

The structure of non-linear forces in the equation system (3) 

is very complex. Expressing the left parts of these equations 

through Euler angles and their derivatives, we get cumbersome 

trigonometric relations between six coordinates and their deriv-

atives that do not allow for the separation of variables. The most 

rational way to analyze non-linear systems is based on the usage 

of approximate analysis methods for systems with low non-lin-

earity. These systems were termed quasi-linear. Movement 

equations in Eq. (3) become quasi-linear if the analysis is lim-

ited to the oscillations whose angles do not exceed ±30°. This 

limitation allows for the approximate replacement of trigono-

metric functions of the Euler angles with the first two terms of 

their power series expansion in Eq. (9), i.e.: 

 

sinθ = θ −
θ3

6
; 

cosθ = 1 −
θ2

2
. 

 

 

(9) 

This approach helps research the key effects of non-linear os-

cillations of systems. It is also important that the majority of 

non-linear terms in equations in Eq. (3) are represented by the 

products of two or more coordinates and their derivatives. The 

existing mathematical methods [10] are suitable for the analysis 

of systems of non-linear differential equations of rigid body os-

cillations while being limited to coordinate values that allow for 

the consideration of movement equations as quasi-linear. 

Having transformed equation in Eq. (2) using proportions in 

Eq. (9), the generalized form of the equation system in Eq. (3) 

after the reduction of similar terms and only retaining small 

first-order terms in the projections on the moving coordinate 

system axis can be presented as a system of differential equa-

tions in Eq. (10): 

�̇� − 𝑉𝑥 = 0; 

�̇�𝑥 + λ1
2𝑥 +

4𝑘𝑥𝑦

𝑀
𝑉𝑥 −

4𝑐𝑥𝑦𝑧0

𝑀
ψ −

4𝑘𝑥𝑦𝑧0

𝑀
ωψ =

𝐻𝑥(𝑡); 

�̇� − 𝑉𝑦 = 0; 

�̇�𝑦 + λ2
2𝑦 +

4𝑘𝑥𝑦

𝑀
𝑉𝑦 +

4𝑐𝑥𝑦𝑧0

𝑀
θ +

4𝑘𝑥𝑦𝑧0

𝑀
ωθ =

 𝐻𝑦(𝑡); 

�̇� − 𝑉𝑧 = 0; 

�̇�𝑧 + λ3
2𝑧 +

4𝑘𝑧

𝑀
𝑉𝑧 = 𝐻𝑧(𝑡); 

θ̇ − ωθ = 0; 

ω̇θ + λ4
2θ +

4𝑘𝑥𝑦𝑧0
2+4𝑘𝑧𝑦0

2

𝐽𝑥
ωθ +

4𝑐𝑥𝑦𝑧0

𝐽𝑥
𝑦 +

4𝑘𝑥𝑦𝑧0

𝐽𝑥
𝑉𝑦 = 𝑀𝑥(𝑡); 

ψ̇ − ωψ = 0; 

ω̇ψ + λ5
2ψ +

4𝑘𝑥𝑦𝑧0
2+4𝑘𝑧𝑥0

2

𝐽𝑦
ωψ −

4𝑐𝑥𝑦𝑧0

𝐽𝑦
𝑥 −

4𝑘𝑥𝑦𝑧0

𝐽𝑦
𝑉𝑥 = 𝑀𝑦(𝑡); 

φ̇ − ωφ = 0; 

ω̇φ + λ6
2φ +

4𝑘𝑥𝑦(𝑥0
2+𝑦0

2)

𝐽𝑧
ωφ = 𝑀𝑧(𝑡). 

 

 

 

 

 

 

 

 

 

 

 

(10) 

The analysis of equations in Eq. (10) shows that variables 

𝑥2, 𝑦2, 𝑧2 can be separated if this is allowed by elastic forces 

𝐻𝑥2
у

, 𝐻𝑦2
у

, 𝐻𝑧2
у

 and resistance forces 𝐻𝑥2
с , 𝐻𝑦2

с , 𝐻𝑧2
с . However, 

the separation of angular variables 𝜃, 𝜓, 𝜑 is impossible in any 

circumstances. The inertial links between angular coordinates 

prove more solid than the links between linear coordinates. 

The natural oscillation frequencies of the suspended cab can 

be determined using proportions in Eq. (11): 
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λ1
2 =

4𝑐𝑥𝑦

𝑀
; λ2

2 =
4𝑐𝑥𝑦

𝑀
; λ3

2 =
4𝑐𝑧

𝑀
; 

λ4
2 =

4𝑐𝑥𝑦𝑧0
2 + 4𝑐𝑧𝑦0

2

𝐽𝑥
;  λ5

2

=
4𝑐𝑥𝑦𝑧0

2 + 4𝑐𝑧𝑥0
2

𝐽𝑦
;  λ6

2

=
4𝑐𝑥𝑦(𝑥0

2 + 𝑦0
2)

𝐽𝑧
. 

 

 

 

(11) 

The analysis of the obtained equations in Eq. (10) shows that 

the vertical and angular (relative to the vertical Z axis) oscilla-

tions of the suspended cab are independent and can be described 

with linear differential equations, while oscillatory phenomena 

relative to these phase variables are subject to the known reso-

nance laws in linear systems. The longitudinal-angular cab os-

cillations (relative to the Y axis) are associated with the longitu-

dinal oscillations relative to the X axis. The transverse cab os-

cillations (relative to the X axis) are associated with the trans-

verse oscillations relative to the Y axis. 

In practice, situations where oscillations start in the direction 

of one of the coordinates and automatically cause cab oscilla-

tions in the directions of its other coordinates leading to spatial 

resonance in the cab and cab oscillation instability are common 

during vehicle movement. In this case, the structure of oscilla-

tory movement gets some components with frequencies that are 

multiples of the natural cab oscillations. 

 
Table 1.The adverse frequency ratios for suspended vehicle cab os-

cillation stability 

# 
Adverse frequency 

ratio 
External disturbance frequency ωs : 

External resonance 

 λ3 ≈ ω𝑠 

-eigen vertical oscillation frequency 

of the suspended mass; 

-eigen vertical oscillation frequency 

of the vehicle on tires; 

 

λ4 ≈ ω𝑠;  λ5 ≈ ω𝑠; 
λ4 ≈ 2ω𝑠;  λ5

≈ 2ω𝑠; 
λ4 +  λ5 ≈ ω𝑠;  

λ4 + λ5 ≈ 2ω𝑠; 
|λ4 −  λ5| ≈ ω𝑠; 

|λ4 − λ5| ≈ 2ω𝑠; 
λ4 + 2λ5 ≈ ω𝑠; 
2λ4 + λ5 ≈ ω𝑠; 

|2λ4 − λ5| ≈ ω𝑠; 
|λ4 −  2λ5| ≈ ω𝑠. 

-eigen longitudinal-angular oscilla-

tion frequency of the suspended mass; 

-eigen transverse-angular oscilla-

tion frequency of the suspended mass; 

-eigen torsional oscillation frequen-

cies of the vehicle undercarriage; 

-eigen bending (vertical plane) os-

cillation frequencies of the vehicle un-

dercarriage; 

Internal resonance 

 λ4 ≈ 2λ2;  λ5 ≈ 2λ1 - 

3. Results and Discussion 

3.1 Suspended Cab Oscillation Stability Analysis 

Considering the equation system in Eq. (10) and the specifics 

of vehicle oscillation excitation, which is more probable in the 

vertical, longitudinal-angular, and transverse-angular direction, 

we can write down the adverse ratios for the quasi-linear system 

of a cabin with a suspension system as shown in Table 1. 

The equation system in Eq. (10) is broken into four independ-

ent systems: vertical oscillations, angular oscillations relative to 

the vertical axis, longitudinal-angular oscillations (relative to 

the Y axis) and the associated longitudinal oscillations relative 

to the X axis; transverse-angular oscillations (relative to the Х 

axis) and the associated transverse oscillations relative to the Y 

axis. The methods of combating unstable resonant oscillations 

in the vertical directions are known, and the emergence of reso-

nance in the direction of angular oscillations relative to the ver-

tical Z axis is very unlikely. Thus, we shall consider the remain-

ing two cases. 

To analyze the stability of suspended cab oscillations, we 

used the second Lyapunov method which states that any system 

can be stable if its total time derivatives of Lyapunov functions 

must not be positive. Lyapunov functions and their derivatives 

for suspended cab oscillations for the third (𝑉3) and the fourth 

(𝑉4) cases as the squared form of phase variables (12): 

𝑉3 = 𝑥2 + 𝑉𝑥
2 + ψ2 + ωψ

2 > 0; 𝑉4 = 𝑦2 + 𝑉𝑦
2 +

θ2 + ωθ
2 > 0. 

�̇�3 = 2𝑥𝑉𝑥 + 2𝑉𝑥�̇�𝑥 + 2ψωψ + 2ωψω̇ψ ≤ 0; 

�̇�4 = 2𝑦𝑉𝑦 + 2𝑉𝑦�̇�𝑦 + 2θωθ + 2ωθω̇θ ≤ 0. 

 

 

(12) 

The selected total derivatives are shown in expressions (13) 

and (14): 

�̇�3 = 4𝑘𝑥𝑦 [
𝑧0

𝐽𝑦
𝑉𝑥ωψ −

1

𝑀
𝑉𝑥

2 +
𝑧0

𝑀
𝑉𝑥ωψ −

𝑧0
2

𝐽𝑦
ωψ

2 ]

+ 4𝑐𝑥𝑦 [
1

𝑀
𝑉𝑥ψ +

𝑧0

𝐽𝑦
𝑥ωψ]

−
4𝑘𝑧𝑥0

2

𝐽𝑦
ωψ

2 + 𝑥𝑉𝑥 + ψωψ

− λ1
2𝑥𝑉𝑥 − λ5

2ψωψ; 

 

 

 

(13) 

�̇�4 = −4𝑘𝑥𝑦 [
𝑧0

𝐽𝑥
𝑉𝑦ωθ +

1

𝑀
𝑉𝑦

2 +
𝑧0

𝑀
𝑉𝑦ωθ +

𝑧0
2

𝐽𝑥
ωθ

2]

− 4𝑐𝑥𝑦 [
1

𝑀
𝑉𝑦θ +

𝑧0

𝐽𝑥
𝑦ωθ]

−
4𝑘𝑧𝑦0

2

𝐽𝑥
ωθ

2 + 𝑦𝑉𝑦 + θωθ

− 𝜆2
2𝑦𝑉𝑦 − 𝜆4

2θωθ. 

 

 

 

(14) 

The obtained expressions in Eq. (13) and in Eq. (14) show 

that conditions in Eq. (12) may not be fulfilled for all adverse 

frequency ratios shown in Table 1. This may result in short-term 

increases of oscillation amplitudes when the frequency of exter-

nal impacts changes as well. In practice, these phenomena can 

occur during vehicle acceleration, braking, or turning. 

In expression in Eq. (13), the component −
4𝑘𝑧𝑥0

2

𝐽𝑦
ωψ

2 < 0, 

while in expression in Eq. (14), the component −
4𝑘𝑧𝑦0

2

𝐽𝑥
ωθ

2 <

0. We can increase the absolute values of these components to 

keep functions �̇�3  and �̇�4  in the non-positive domain. This 

can be achieved in two ways: 
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1)Increasing the values of 𝑥0  and 𝑦0 . In practice, this 

means that the attachment points of the elastic and damping el-

ements of the cab suspension system should be located as far 

from the cab mass center as possible in the horizontal plane; 

2)If unstable cab oscillations occur during vehicle movement, 

it is necessary to increase the damping coefficient 𝑘𝑧 of the cab 

suspension system damping elements. 

It is impossible to completely avoid unstable cab oscillations 

as there can be various coordinate combinations and disturb-

ances. However, it is possible to reduce their frequency during 

vehicle movement. 

3.2Ways to suppress unstable oscillations of a cab with the 

suspension system 

The first suppression method for the vertical unstable oscilla-

tions of a suspended cab requires to increase the damping coef-

ficient 𝑘𝑧 of the cab suspension system hydraulic dampers. To 

justify the second suppression method, we considered the man-

ifestations of unstable modes in a non-linear system with one 

degree of freedom where oscillations are described with the 

Duffing equation [11]. Strictly speaking, this phenomenon does 

not occur in a non-linear system of unstable oscillations. How-

ever, it may have modes that are close to resonant or near-reso-

nant. These modes occur under a specific combination of initial 

system movement conditions and external impact intensity. We 

can say that the resonant frequency of a non-linear oscillatory 

system is one of its limit parameters that the system can tend to 

but cannot reach due to its phase instability. A non-linear system 

with one degree of freedom can only have one near-resonant 

mode at frequencies close to its resonant frequency if the phase 

instability of the elasticity, inertia, and resistance forces is insig-

nificant. The emergence of other resonant modes (subharmonic, 

superharmonic, and combined) is impossible [11, 12]. 

The value of the damping coefficient 𝑘𝑧 that characterizes 

the dissipation losses in the vehicle cab suspension system can 

only affect the nature of oscillation attenuation in the system. If 

there are dissipation losses, the non-linear system has a reso-

nance failure illustrated in Figure 5.a. The unstable ВЕ branch 

represents the movements that are always impossible. Fitting 

the cab suspension system with an elastic element with a non-

linear progressive loading characteristic shown in Figure 5.b re-

sults in increased comfort due to the reduced amplitudes of os-

cillations during resonant phenomena. 

In practice, the first and the second suppression methods for 

the vertical unstable oscillations of a suspended cab are imple-

mented in the vehicle cab suspension designs through the intro-

duction of complex structures (see Figure 5.c) featuring an air 

bellow with non-linear progressive loading characteristic and a 

controllable hydraulic damper that can increase the damping co-

efficient 𝑘𝑧 in the cab suspension system if unstable cab oscil-

lations occur. 

 

 
a 

 
B 

 

 
c 

Fig. 5. a. The resonance failure in systems with non-linear elas-
tic characteristics b. The non-linear loading characteristic of an elas-
tic element of the suspension system c. The complex elastic/damp-
ing device design to implement unstable oscillation suppression 
methods in a suspended cab 
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3.3 Experimental Study into the Emergence of Resonant 
Oscillations in the Suspended Vehicle Cab 

During the bench tests of a cab with a suspension system featur-

ing spring elastic elements and hydraulic dampers using the probes 

and equipment shown in Figure 6, we identified various types and 

forms of oscillations that occur in a suspended vehicle cab. 

We revealed 3 basic types of disposition toward spatial reso-

nance in a suspended cab: 

The classic resonance shown in Figure 7. It is manifested in low-

frequency cab sway with a large and constantly increasing ampli-

tude; 

 

 

 

Fig. 7. The emergence of a classical spatial resonance in the vehicle cab with a suspension system 

  

Fig. 6 . Probes and equipment for cab bench tests 

http://www.ijastech.org/
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Fig. 8. The emergence of a spatial rattle in the vehicle cab with suspension 

 

 

Fig. 9. The emergence of beating in the vehicle cab with suspension 
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The rattle shown in Figure 8. It is manifested in high-frequency 

cab oscillations with slowly increasing and decreasing amplitudes. 

The beating shown in Figure 9. It is manifested in high-fre-

quency cab oscillations with rapidly increasing and decreasing am-

plitudes. 

The presented spatial resonance prevention methods for sus-

pended vehicle cabs whose design is shown in Figure 5.c can help 

combat the types of resonance shown in Figure 7‒9, which has 

been proved in experiments. 

Thus, the results of the experiments confirm that the phenomena 

that can be analytically calculated using the developed mathemat-

ical model of a suspended cab can occur. This model can be used 

to improve the cab oscillation stability during vehicle movement. 

4. Conclusions 

In this research, we established that the vertical and angular os-

cillations of a suspended cab relative to the vertical Z axis are in-

dependent. The longitudinal-angular cab oscillations (relative to 

the Y axis) are associated with the longitudinal oscillations relative 

to the X axis. The transverse cab oscillations (relative to the X axis) 

are associated with the transverse oscillations relative to the Y axis. 

We identified the adverse natural frequency ratios of the cab sus-

pension system that can lead to unstable oscillations. In practice, 

the identified adverse frequency ratios can help analyze the param-

eters of the cab suspension system components and take action to 

prevent unstable vehicle cab oscillations during the design stage. 

The research helped identify the methods to reduce the ampli-

tudes of suspended cab sway when its spatial oscillations are un-

stable: 

The designed attachment points of the elastic and damping ele-

ments of the cab suspension system should be located as far from 

the cab mass center as possible in the horizontal plane. 

If unstable cab oscillations occur in any spatial direction, it is 

necessary to increase the damping coefficient of the damping ele-

ments of the cab suspension system, which can be implemented by 

fitting the cab suspension system with controllable damping ele-

ments; 

Fitting the cab suspension system with elastic elements with a 

non-linear progressive loading characteristic. This can be imple-

mented by fitting the cab suspension system with air bellows, 

which can significantly improve the cab comfort during vehicle 

movement. 

The developed mathematical model of the suspended cab to an-

alyze its oscillation stability during vehicle movement can be used 

to select the required stiffness and damping parameters in vehicle 

cab suspension systems to ensure high cab comfort and prevent 

unstable oscillations. 
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