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ABSTRACT
Aims: To evaluate the diagnostic accuracy of Claude-3, a large language model, in detecting pathological features and diagnosing 
retinitis pigmentosa and cone-rod dystrophy using pattern electroretinography data.
Methods: A subset of pattern electroretinography measurements from healthy individuals, patients with retinitis pigmentosa 
and cone-rod dystrophy was randomly selected from the PERG-IOBA dataset. The pattern electroretinography and clinical data, 
including age, gender, visual acuities, were provided to Claude-3 for analysis and diagnostic predictions. The model’s accuracy 
was assessed in two scenarios: “first choice,” evaluating the accuracy of the primary differential diagnosis and “top 3,” evaluating 
whether the correct diagnosis was included within the top three differential diagnoses.
Results: A total of 46 subjects were included in the study: 20 healthy individuals, 13 patients with retinitis pigmentosa, 13 patients 
with cone-rod dystrophy. Claude-3 achieved 100% accuracy in detecting the presence or absence of pathology. In the “first 
choice” scenario, the model demonstrated moderate accuracy in diagnosing retinitis pigmentosa (61.5%) and cone-rod dystrophy 
(53.8%). However, in the “top 3” scenario, the model’s performance significantly improved, with accuracies of 92.3% for retinitis 
pigmentosa and 76.9% for cone-rod dystrophy.
Conclusion: This is the first study to demonstrate the potential of large language models, specifically Claude-3, in analyzing pattern 
electroretinography data to diagnose retinal disorders. Despite some limitations, the model’s high accuracy in detecting pathologies 
and distinguishing between specific diseases highlights the potential of large language models in ocular electrophysiology. Future 
research should focus on integrating multimodal data, and conducting comparative analyses with human experts.
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INTRODUCTION
Pattern electroretinography (PERG) has been a valuable tool 
in ophthalmology for testing retinal ganglion cell function, 
photoreceptor health and diagnosing various retinal diseases 
by presenting alternating visual stimuli and recording 
the electrical responses from the retina.1,2 PERG provides 
objective information regarding the health and integrity 
of the retinal pathway, with the macula and optic nerve in 
particular. Analysis of PERG waveforms, particularly the 
N95, P50, and N35 components, allows for the assessment 
of macular function and detection of abnormalities in the 
ganglion cell layer and inner retina.1 The different PERG 
patterns observed in different diseases, such as the reduced 
amplitudes in retinitis pigmentosa (RP) and the delayed 
implicit times in glaucoma, aid in differential diagnosis and 
facilitate appropriate management strategies.3,4 PERG offers 
a non-invasive and objective measure of retinal function, 

making it a valuable tool for monitoring disease progression 
and evaluating treatment efficacy.5

The emergence of artificial intelligence (AI) has revolutionized 
various aspects of medical diagnosis, offering promising 
approaches to interpreting complex medical data and 
assisting clinicians in making more informed decisions.6 In 
the field of ophthalmology, AI algorithms have demonstrated 
remarkable capabilities in analyzing retinal images for 
diabetic retinopathy, age-related macular degeneration, and 
other retinal diseases.7 Beyond analyzing retinal images, AI 
algorithms have been successfully used to predict glaucoma 
progression, automate visual field interpretation, and 
personalize treatment.8,9 AI offers several advantages in 
medical diagnostics, including the ability to detect subtle 
patterns that human observers often miss, enable rapid and 
objective assessments, and improve diagnostic accuracy, 
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leading to better patient outcomes.10,11 However, despite these 
promises, implementing AI in healthcare still faces issues with 
privacy, algorithmic bias, and the requirement for thorough 
validation to ensure reliability and security.12

Large language models (LLMs) represent a unique and 
powerful subset of artificial intelligence that are trained on 
massive text and code datasets, enabling them to understand 
and generate human-like text, translate languages, and 
answer complex questions in an informative manner.13 
Unlike traditional AI models that excel at specific tasks such 
as image recognition or data classification, LLMs use their 
extensive training to process and understand information 
more holistic and contextual manner, mimicking the learning 
and reasoning processes of humans.14 This ability to extract 
meaning, identify patterns, and draw conclusions from 
complex data sources makes them valuable tools for analyzing 
various medical data, including clinical notes, research 
articles and even  genome sequences.15-17

Interpretation of pattern ERG data is a complex task that 
typically requires extensive training and expertise in 
ophthalmology and electrophysiology and often challenges 
even experienced clinicians.18 The aim of this study is to 
evaluate the potential of Claude-3, a large language model 
accessible to a wider range of users, in analyzing pattern ERG 
data and providing diagnostic insights, potentially helping 
clinicians and researchers interpret this complex data.

METHODS

Dataset 
This study utilized the Pattern Electroretinogram-Institute of 
Applied Ophthalmobiology (PERG-IOBA) dataset available 
from PhysioNet, which serves as a research resource for 
complex physiologic signals.19 Since this publicly available 
dataset from the was used in this study, ethical approval is 
not required. All procedures were carried out in accordance 
with the ethical rules and the principles of the Declaration of 
Helsinki. The terms of use of the database have been adhered 
to. The dataset includes 1,354 transient PERG responses from 
304 subjects in 336 records, collected between 2003 and 
2022.20 It consists of 105 healthy subjects and 199 patients 
diagnosed with various retinal conditions. The most common 
diseases represented in the data set were RP with 48 patients, 
macular dystrophy with 32 patients, Stargardt disease with 
16 patients and cone-rod dystrophy (CRD) with 14 patients. 
Clinical diagnosis, including age, gender, and visual acuity 
measurements in logMAR scale, was provided in CSV (comma 
separated values) format. The dataset had been anonymized, 
and data collection dates had been randomly date-shifted to 
maintain patient privacy and confidentiality.20

PERG Signal Acquisition
PERG signals in the dataset were captured by experienced 
technicians using the computerized Metrovision 
Optoelectronic Stimulator Vision Monitor MonPack 120 
(Metrovision, Pérenchies, France). The acquisition protocol 
strictly adhered to the International Society for Clinical 
Electrophysiology of Vision (ISCEV) guidelines.21 Signals 

were recorded at a high sampling rate of 1700 Hz over a 
duration of 150 milliseconds, producing 255 equally spaced 
observations per signal. Figure shows a portion of the raw 
data recorded from a patient.

Figure. A portion of the raw data recorded from a patient

Study Sample Selection
A specific subset of PERG measurements from healthy 
individuals, patients with RP and CRD were randomly 
selected from the larger dataset for this analysis. The PERG 
data for each subject in this subset were extracted from the 
dataset and provided to the Claude-3 language model for 
analysis and diagnostic predictions. The study was designed 
as a pilot study, hence the number of participants was kept 
limited.

Data Input to Claude-3 LLM
To evaluate the potential of large language models (LLMs) 
in analyzing PERG waveforms and providing diagnostic 
insights, we employed Claude-3, a commercially available 
LLM. We provided Claude-3 with a prompt that included the 
following instructions:

‘’Analyze the provided pattern ERG data for both eyes, 
identifying abnormalities in the N35, P50, and N95 waves, 
oscillatory potentials, and overall waveform morphology. 
Indicate the presence of pathology with a “Yes” or “No.” 
If pathology is detected, select the top three differential 
diagnoses from a comprehensive list associated with 
pattern ERG features. Each diagnosis should include a 
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detailed justification focusing on the bilateral ERG findings, 
particularly concerning both cone and rod functions, and 
consider the patient’s current age, gender, and bilateral 
presentation. Rank these diagnoses by likelihood and outline 
the potential need for further tests or information to confirm 
these diagnoses.

Please include the following patient details:

• Age: [ ]

• Gender: [ ]

• Right Eye Visual Acuity (logMAR): [ ]

• Left Eye Visual Acuity (logMAR): [ ]

Note: The age at symptom onset is unknown. Given 
the complexity of diseases associated with pattern ERG 
abnormalities, additional clinical data, imaging, or tests may 
be necessary for a definitive diagnosis.’’

Important Outcomes
First scenerio; 

First choice accuracy: This metric assesses whether Claude-3 
identified the correct pathology as the first differential 
diagnosis. This is critical for determining the model’s 
precision in diagnosing the most likely condition without 
additional input.

Second scenerio;

Top three accuracy: This broader metric evaluates whether 
the correct diagnosis was included in the model’s top three 
differential diagnoses. This measure reflects the model’s ability 
to detect and prioritize potential diagnoses, which is critical 
for clinical settings where multiple potential diagnoses may 
be considered before reaching a final conclusion.

Statistical Analysis
To determine whether the variables were normally distributed, 
the Shapiro-Wilk normality test was used. Demographic 
characteristics (age and sex) and visual acuity measurements 
were summarized using mean and standard deviation for 
continuous variables and frequencies and percentages for 
categorical variables. One-way analysis of variance (ANOVA) 
was performed to compare the mean age of the three groups, 
and a chi-square test was used to assess differences in gender 
distribution. To compare visual acuity between groups, we 
used the Kruskal-Wallis test with Bonferroni correction for 
multiple comparisons. Sensitivity, specificity, precision and F1 
scores were calculated for each study group. Statistical analyzes 
were performed using Statistical Package for Social Sciences 
(SPSS) software, version 25.0 (IBM, Chicago, IL, USA). Values   
of p<0.05 were considered statistically significant in all tests.

RESULTS
Demographics and Visual Acuity
A total of 46 subjects were included in the study, with 20 
healthy individuals, 13 patients with RP, and 13 patients with 
CRD. The demographic characteristics and visual acuity 
measurements for each group are summarized in Table 1.

Table 1. Demographics and visual acuity measurements for each group

Characteristic
Retinitis 

pigmentosa (n=13)
Cone-rod 

dystrophy (n=13)
Normal 
(n=20) p

Age (years)

   Mean±SD 35.5±15.8 34.2±15.6 28.8±18.3
0.48

   Range (12-62) (10-61) (6-70)

Gender

   Male 9 (69.2%) 8 (61.5%) 9 (45.0%)
0.38

   Female 4 (30.8%) 5 (38.5%) 11 (55.0%)

Mean visual acuity (LogMAR)

  Mean±SD 0.39±0.44 0.51±0.37 0.15±0.22 0.0015*
p*: significant, Post-hoc Dunn test (Bonferroni correction): RP vs. CRD: p>0.327 RP vs. Normal: 
p<0.023 CRD vs. Normal: p<0.011  SD: Standard deviation, LogMAR:  Logarithm of the minimum 
angle of resolution, RP:  Retinitis pigmentosa, CRD: Cone-rode dystrophy

Diagnostic Accuracy
The diagnostic accuracy of Claude-3 in detecting the presence 
or absence of pathology in all study groups was successful 
and all cases were correctly identified. In the normal group, 
the model confirmed no pathology in all 20 (100%) subjects. 
Similarly, in the pathologic group, the model confirmed 
pathology in all 26 (100%) subjects. The accuracy of the 
differential diagnosis showed variability, with RP and CRD in 
the first scenerio having an accuracy of 61.5% (8 of 13 cases) 
and 53.8% (7 of 13 cases), respectively. Notably, the model 
performed better when we used the second scenerio, with 
RP and CRD achieving higher success rates of 92.3% (12 of 
13 cases) and 76.9% (10 of 13 cases), respectively. However 
there was no statistical difference when comparing model’s 
accuracy of the differential diagnosis between RP and CRD in 
both scenarios (p=1 and 0.59), respectively.

Performance Metrics
We evauleted performance metrics acording to 2 scenarios. 
Results are given in Table 2.

Table 2. Performance metrics for Claude-3 diagnosis

Performance metric Healthy vs. pathologic RP CRD

Sensitivity 100% 69.23% 53.85%

Specificity 100% 100% 84.62%

Precision 100% 100% 77.78%

F1 score 100% 81.82% 63.64%
RP:  Retinitis pigmentosa, CRD: Cone-rode dystrophy

DISCUSSION
Our results suggest that Claude-3 achieves perfect 
performance, with 100% sensitivity, specificity, precision, 
and F1 score, demonstrating its ability to accurately identify 
all cases with pathology as well as all healthy cases without 
any misclassifications. It can effectively distinguish between 
healthy subjects and those with retinal diseases, achieving 
100% accuracy in detecting the presence or absence of disease 
based on PERG data with minimal clinical data. The ability to 
accurately differentiate between healthy and pathologic cases 
is crucial in a clinical setting, as it can help prioritize patients 
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who require further diagnostic evaluation and potential 
treatment.22

PERG is a highly valuable diagnostic tool in the evaluation 
of RP, a genetic disorder that causes progressive retinal 
degeneration.4 In RP, PERG waveforms typically exhibit 
reduced amplitudes which is due to impaired function of 
photoreceptors and retinal ganglion cells.2 These abnormalities 
can be detected even in early stages of the disease when visual 
acuity is still preserved, making PERG a sensitive tool for 
early diagnosis and monitoring disease progression.23 

PERG is particularly informative in diagnosing and monitoring 
CRDs, a group of inherited retinal diseases characterized by 
deterioration of cone and rod photoreceptors.24 The PERG 
can provide detailed assessments of cone function, which 
is crucial in cone-rod dystrophies where cone dysfunction 
typically presents before rod dysfunction.24 For example, 
PERG can help distinguish different patterns of visual 
impairment in patients with cone-rod dystrophy, with some 
having more severe cone dysfunction than others.24 This 
functional assessment is consistent with clinical observations 
and genetic findings, thereby supporting the diagnosis and 
understanding the disease progression in these patients.25

When considering the first scenario, Claude-3 demonstrated 
moderate accuracy in diagnosing RP (61.5%) and CRD (53.8%). 
However, when evaluating the second scenario, the model’s 
performance significantly improved, with accuracies of 92.3% 
for RP and 76.9% for CRD. This suggests that Claude-3 is 
capable of identifying the correct diagnosis within the top 
three suggestions, even if it may not always be the first choice. 
These results are promising, indicating the potential of LLMs 
in analyzing PERG data for the diagnosis of retinal disorders. 
However, our literature search did not yield any studies done 
with artificial intelligence specifically using LLMs on this 
subject; therefore, we cannot directly compare our results to 
previous findings.

However, the model’s performance metrics in identifying 
specific retinal disorders based on the first scenario varied 
between RP and CRD. While Claude-3 showed good 
performance in identifying RP cases, with high specificity 
and precision, its performance in identifying CRD cases 
was moderate, with lower sensitivity, specificity, and 
precision. This difference in performance may be attributed 
to the heterogeneity of CRD phenotypes and the overlap of 
PERG features with other retinal disorders, making it more 
challenging for the model to accurately identify CRD cases 
based solely on the first-choice diagnosis.24

Integrating AI into clinical practice offers several benefits, 
such as providing rapid, objective assessments of complex 
medical data and detecting subtle patterns that may be 
overlooked by human observers.11 However despite its 
promise one of the  major concern is the “black box” nature 
of these models, where the reasoning behind their predictions 
remains opaque.26 In this models training data are often 
obscured or undocumented, and their methods opaque.27 This 
lack of transparency can affect trust and acceptance among 
clinicians, particularly when dealing with complex medical 
decisions.28

Our study has several strengths and limitations. One of the 
strengths is the use of a large, well-characterized data set 
(PERG-IOBA) that conforms to the ISCEV guidelines for 
PERG collection, ensuring data reliability and consistency.20 
Another strength of our study is the use of a commercially 
available large language model, Claude-3, which is accessible 
to a wider range of users compared to specialized AI models 
that require extensive technical expertise. This accessibility 
enables greater potential in clinical settings, as healthcare 
professionals without strong AI knowledge can still benefit 
from the model’s insights. However, our study has notable 
limitations, the most significant being the relatively small 
sample size, as it was designed as a pilot study. Additionally, the 
study focuses on a specific subset of retinal diseases, and while 
Claude-3 shows promising results in analyzing PERG data, its 
performance for other types of ocular electrophysiological 
tests and different retinal diseases remains to be investigated.

There are several important directions for future research 
in this area. First, the integration of PERG data with other 
diagnostic modalities such as optical coherence tomography 
and visual field testing may represent a significant advance 
toward a multimodal diagnostic approach. By combining 
data from these different sources, LLMs could provide a more 
comprehensive and nuanced understanding of retinal health 
and improve the ability to diagnose complex conditions 
that may not be detectable with a single diagnostic method. 
Conducting comparative analysis between the performances 
of LLMs and human experts is also crucial. Such studies 
would help delineate the strengths and limitations of each 
approach and provide insights into how best to use AI in 
clinical settings. By directly comparing AI with human 
diagnostics, researchers can identify specific scenarios where 
AI excels or lags behind, thereby refining AI applications to 
effectively support clinical decision making.29

CONCLUSION
This study is the first to demonstrate the potential of large 
language models, particularly Claude-3, in analyzing PERG 
data for the diagnosis of retinal diseases. Despite some 
limitations, the model’s high accuracy in detecting pathologies 
and distinguishing between specific diseases highlights the 
potential of AI in ophthalmology. Future research should 
focus on addressing limitations.

ETHICAL DECLARATIONS

Ethics Committee Approval
Since the PERG IOBA dataset from the PhysioNet database 
was used in this study, ethical approval is not required. The 
terms of use of the database have been adhered to.

Informed Consent
Since the PERG IOBA dataset from the PhysioNet database 
was used in this study, informed consent is not required.

Referee Evaluation Process
Externally peer-reviewed. 



542

Aykut et al. Diagnosing retinal disorders with artificial intelligence J Health Sci Med. 2024;7(5):538-542

Conflict of Interest Statement
The authors have no conflicts of interest to declare. 

Financial Disclosure
The authors declared that this study has received no financial 
support. 

Author Contributions
All of the authors declare that they have all participated in 
the design, execution, and analysis of the paper, and that they 
have approved the final version. 

Acknowledgement
Our research’s data was presented in ‘15th Medical Informatics 
Congress’ as ‘Oral Presentation’ on May 30, 2024. 

REFERENCES
1. Thompson DA, Bach M, McAnany JJ, Šuštar Habjan M, 

Viswanathan S, Robson AG. ISCEV standard for clinical pattern 
electroretinography (2024 update). Doc Ophthalmol. 2024; 
148(2):75-85. doi:10.1007/s10633-024-09970-1

2. Robson AG, El-Amir A, Bailey C, et al. Pattern ERG correlates 
of abnormal fundus autofluorescence in patients with retinitis 
pigmentosa and normal visual acuity. Invest Ophthalmol Vis Sci. 
2003;44(8):3544-3550. doi:10.1167/iovs.02-1278

3. Gallo Afflitto G, Chou TH, Swaminathan SS, et al. Pattern 
electroretinogram in ocular hypertension, glaucoma suspect 
and early manifest glaucoma eyes: a systematic review and meta-
analysis. Ophthalmol Sci. 2023;3(4):100322. doi:10.1016/j.xops. 
2023.100322

4. Janáky M, Pálffy A, Horváth G, Tuboly G, Benedek G. Pattern-
reversal electroretinograms and visual evoked potentials in 
retinitis pigmentosa. Doc Ophthalmol. 2008;117(1):27-36. doi:10. 
1007/s10633-007-9099-0

5. Robson AG, Nilsson J, Li S, et al. ISCEV guide to visual 
electrodiagnostic procedures. Doc Ophthalmol. 2018;136(1):1-26. 
doi:10.1007/s10633-017-9621-y

6. Yu KH, Beam AL, Kohane IS. Artificial intelligence in 
healthcare. Nat Biomed Eng. 2018;2(10):719-731. doi:10.1038/
s41551-018-0305-z

7. Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and 
deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2): 
167-175. doi:10.1136/bjophthalmol-2018-313173

8. Gulshan V, Peng L, Coram M, et al. Development and validation 
of a deep learning algorithm for detection of diabetic retinopathy 
in retinal fundus photographs. Jama. 2016;316(22):2402-2410. 
doi:10.1001/jama.2016.17216

9. Asaoka R, Murata H, Hirasawa K, et al. Using deep learning and 
transfer learning to accurately diagnose early-onset glaucoma 
from macular optical coherence tomography images. Am J 
Ophthalmol. 2019;198:136-145. doi:10.1016/j.ajo.2018.10.007

10. Liu X, Faes L, Kale AU, et al. A comparison of deep learning 
performance against health-care professionals in detecting 
diseases from medical imaging: a systematic review and meta-
analysis. Lancet Digit Health. 2019;1(6):e271-e297. doi:10.1016/
S2589-7500(19)30123-2

11. McKinney SM, Sieniek M, Godbole V, et al. International 
evaluation of an AI system for breast cancer screening. Nature. 
2020;577(7788):89-94. doi:10.1038/s41586-019-1799-6

12. Char DS, Abràmoff MD, Feudtner C. Identifying ethical 
considerations for machine learning healthcare applications. 
Am J Bioeth. 2020;20(11):7-17. doi:10.1080/15265161.2020.18194
69

13. Raffel C, Shazeer NM, Roberts A, et al. Exploring the limits of 
transfer learning with a unified text-to-text transformer. J Mach 
Learn Res. 2019;21(140):1-67. 

14. Head CB, Jasper P, McConnachie M, Raftree L, Higdon G. Large 
language model applications for evaluation: opportunities and 
ethical implications. N Direct Evaluat. 2023;2023(178-179):33-
46. doi:10.1002/ev.20556

15. Meng X, Yan X, Zhang K, et al. The application of large language 
models in medicine: a scoping review. iScience. 2024;27(5): 
109713. doi:10.1016/j.isci.2024.109713

16. Singhal K, Azizi S, Tu T, et al. Large language models encode 
clinical knowledge. Nature. 2023;620(7972):172-180. doi:10.1038/
s41586-023-06291-2 

17. Wu J, Ma Y, Wang J, Xiao M. The application of chatgpt 
in medicine: a scoping review and bibliometric analysis. J 
Multidiscip Healthc. 2024;17:1681-1692. doi:10.2147/JMDH.
S463128

18. Yap GH, Chen LY, Png R, et al. Clinical value of electrophysiology 
in determining the diagnosis of visual dysfunction in neuro-
ophthalmology patients. Doc Ophthalmol. 2015;131(3):189-96. 
doi:10.1007/s10633-015-9515-9

19. Goldberger AL, Amaral LA, Glass L, et al. PhysioBank, 
PhysioToolkit, and PhysioNet: components of a new research 
resource for complex physiologic signals. Circulation. 2000; 
101(23):E215-220. doi:10.1161/01.cir.101.23.e215

20. Fernández I, Cuadrado Asensio R, Larriba Y, Rueda C, 
Coco-Martin RM. A comprehensive dataset of pattern 
electroretinograms for ocular electrophysiology research: the 
PERG-IOBA dataset (version 1.0.0). PhysioNet. 2024. doi:10. 
13026/d24m-w054

21. Bach M, Brigell MG, Hawlina M, et al. ISCEV standard for 
clinical pattern electroretinography (PERG): 2012 update. Doc 
Ophthalmol. 2013;126(1):1-7. doi:10.1007/s10633-012-9353-y

22. Parikh R, Mathai A, Parikh S, Chandra Sekhar G, Thomas R. 
Understanding and using sensitivity, specificity and predictive 
values. Indian J Ophthalmol. 2008;56(1):45-50. doi:10.4103/0301-
4738.37595

23. Popović P, Jarc-Vidmar M, Hawlina M. Abnormal fundus 
autofluorescence in relation to retinal function in patients with 
retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol. 2005; 
243(10):1018-1027. doi:10.1007/s00417-005-1186-x

24. Hamel CP. Cone rod dystrophies. Orphanet J Rare Dis. 2007;2:7. 
doi:10.1186/1750-1172-2-7

25. Downes SM, Payne AM, Kelsell RE, et al. Autosomal dominant 
cone-rod dystrophy with mutations in the guanylate cyclase 2D 
gene encoding retinal guanylate cyclase-1. Arch Ophthalmol 
(Chicago, Ill : 1960). 2001;119(11):1667-1673. doi:10.1001/
archopht.119.11.1667

26. Schwartz IS, Link KE, Daneshjou R, Cortés-Penfield N. Black 
box warning: large language models and the future of infectious 
diseases consultation. Clin Infect Dis. 2024;78(4):860-866. doi:10. 
1093/cid/ciad633

27. Harrer S. Attention is not all you need: the complicated 
case of ethically using large language models in healthcare 
and medicine. EBioMedicine. 2023;90:104512. doi:10.1016/j.
ebiom.2023.104512

28. Au Yeung J, Kraljevic Z, Luintel A, et al. AI chatbots not yet 
ready for clinical use. Frontiers in digital health. 2023;5:1161098. 
doi:10.3389/fdgth.2023.1161098

29. Rojas-Carabali W, Sen A, Agarwal A, et al. Chatbots Vs. Human 
experts: evaluating diagnostic performance of chatbots in uveitis 
and the perspectives on ai adoption in ophthalmology.  Ocul 
Immunol Inflamm. 2023:1-8. doi:10.1080/09273948.2023.22667
30


	_Hlk175868517

