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Abstract 
 

In this paper, it is shown that, if a sequence is strongly   deferred by the Cesaro summable for any   , 

 0  
 then it must be deferred by a statistically convergent and the inverse is also satisfied when 

the sequence is bounded. 
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1. Introduction 
 

The theory of statistical convergence was first introduced 
by Steinhaus (1951) and Fast (1951) independently in 
the same year. Since then, this subject has become one of 
the most active research areas for many mathematicians 
such as Erdös & Tenenbaum (1989), Freedman et al. 
(1978), Connor (1989), Fridy (1985), Fridy & Miller 
(1991), Schoenberg (1959). 

The statistical convergence is also closely related to 
the subject of asymptotic density of the subset of natural 
numbers (see, Buck (1953) and Zygmund (1979). 

Recall that a sequence 
( )kx x

 is said to be 

statistically convergent to L N  if for every 0  , 
 

 1
lim : , 0k k n x L

kn n
   


, 

 

where the vertical bars indicate the cardinality of the 
elements inside the set and this limit is denoted by 

lim ( )n
n

x L S



. 

Agnew (1932) defined deferred Cesaro mean of real 

valued sequence as 
( )kx x

 by 
 

( )

,

( ) 1

1
( ) : , 1,2,3,...

( ) ( )

q n

p q n k

k p n

D x x n
q n p n  

 



 

 

where 
 

 ( ) :p p n n N  and  ( ) :q q n n N  are the 

sequences of natural numbers satisfying 
( ) ( )p n q n

 

and 
lim ( )
n

q n


 
. 

It is clear that deferred Cesaro mean is a regular 
summability method complementing the Silverman 
Toeplitz theorem (see, Maddox (1970)).  

Agnew (1932) showed that this method has some 
important properties besides regularity.  
 
 

 
 

Definition 1.1. A sequence 
( )kx x

 is said to be  

strongly deferred Cesaro summable to L N  if 
 

( )

( ) 1

1
lim 0

( ) ( )

q n

k
n

k p n

x L
q n p n




 

 



, 

 

exist and it is denoted by 
lim ( [ , ])n
n

x L D p q


 
. 

 

Definition 1.2. A sequence 
( )kx x

 is said to be 
deferred statistically convergent to L N , if for every 

0  , 

 

 : ( ) 1 ( ),
lim 0

( ) ( )

k

n

k p n k q n x L

q n p n





    



, 

 

and it is denoted by 
lim ( [ , ])n
n

x L DS p q



. 

In the above definition, the   strongly deferred 
Cesaro summability and the deferred statistical 

convergence coincide with the  strongly Cesaro 
summability and the statistical convergence respectively 

when 
( )q n n

 and 
( ) 0p n 

. 
There is a natural relation between the statistical 

convergence and the  strongly Cesaro summability. 
This relation has been investigated by some authors 
including Connor (1989), Maddox (1967), Mursaleen 
(2000), Nuray (2010). 

In this work the main aim is to investigate the relation 
between the deferred statistical convergence and the
  strongly deferred Cesaro summability. 
 
2. Main Results and Their Proof 

Thorough this work  ( ) :p p n n N   and 

 ( ) :q q n n N   denote the sequences of positive 
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natural numbers and   is the real number such as
0   . The obtained theorems are as follows: 

 

Theorem 2.1. Let 0   be a real number. If a 

sequence 
( )kx x

 is   strongly 
[ , ]D p q

 convergent 

to L , then it is deferred by the statistical convergent to 
L . 

Proof. Assume that 
( )kx x

 is   strongly 
[ , ]D p q

 

convergent to L  and denote the set  
 

 : ( ) 1 ( ), kk p n k q n x L     
 

 

by 
( )K 

. Therefore, the inequality 
 

( )

( )

( ) 1

( )

( ) 1

1

( ) ( )

1

( ) ( )
k K

q n

k

k p n

q n

k

k p n

x L
q n p n

x L
q n p n









 

 

 


 





 

 

1
( )

( ) ( )
K

q n p n

 


 
 

holds. After taking limits when n  the proof is 
obtained. 

Corollary 2.1. Let 
( )q n n

. If a sequence 
( )kx x

 is 

  strongly 
[ , ]D p n

 convergent to L , then it is 

statistically convergent to L . 
 

Proof. If we consider Theorem 2.1 and Theorem 2.2.5 in 
Kucukaslan & Yılmaztürk (2012), the proof is obtained. 

Theorem 2.2. If a sequence 
( )kx x

 is bounded and 

deferred by the statistical convergence to L  for an 

arbitrary  ( ) :p p n n N   and  ( ) :q q n n N  , 

then it is   strongly 
[ , ]D p q

 convergent to L . 

Proof. Suppose that 
( )kx x

 is bounded and deferred 

by the statistical convergence to L  for an arbitrary 

 ( ) :p p n n N   and  ( ) :q q n n N  . Also, let us 

denote the complement of 
( )K 

 by 

 ( ) : : ( ) ( ),c

kK k p n k q n x L     
. It is clear 

from the assumption that there is a positive real number 

M  such that kx L M 
 for all n N . Therefore, we 

have  
 

( ) ( )

( )

( ) 1

( ) ( )

( ) 1 ( ) 1

1

( ) ( )

1

( ) ( )
k K k K

q n

k

k p n

q n q n

k k

k p n k p n

x L
q n p n

x L x L
q n p n

 



 

 

 

   

 


 
    
 
  



 

 
 

( ) ( )

( ) ( )

( ) 1 ( ) 1

1

( ) ( )
k K k K

q n q n

k p n k p n

M
q n p n

 

 

 

   

 
  
 
  

 
 

1
( ) ( ) .

( ) ( )

cM K K
q n p n

     
 

 
 

The limit relation gives the proof since  
 

( )
lim 0

( ) ( )n

K

q n p n







 and 

( )
lim 1

( ) ( )

c

n

K

q n p n







. 

 

Corollary 2.2. Let 
( )q n

 be an arbitrary strictly 

increasing sequence and 

( )

( ) ( )

q n

q n p n
 be a bounded 

sequence. If a sequence 
( )kx x

 is bounded and 

statistically convergent to L , then it is   strongly 

[ , ]D p q
 convergent to L . 

 

Corollary 2.3. Let 
( )q n

 be an arbitrary sequence such 

as 
( )q n n

 for all n N  and 
( ) ( )

n

q n p n
 be a 

bounded sequence. If a sequence 
( )kx x

 is bounded 

and statistically convergent to L , then it is an  

strongly 
[ , ]D p q

 convergent to L . 
When Theorem 2.2 is taken into consideration 

together with Theorem 2.2.1 and Theorem 2.2.2 in 
Kucukaslan and Yılmaztürk (2012) then the proof of 
Corollary 2.2 and Corollary 2.3 is obtained. 

 

Theorem 2.3. The  strongly 
[ , ]D p q

 convergent 

sequence 
( )kx x

 is an   strongly Cesaro convergent 

only if 

( )

( ) ( )

p n

q n p n
 is bounded. 

 

Proof. The technique that was used by Agnew R.P. in 
Agnew (1932) can be applied for this purpose. Let us 

assume that 
( )kx x

 is an   strongly Cesaro 

convergent to L .  
In this case, the following equality 
 

( )

( ) 1

( ) ( )

1 1

1

( ) ( )

1

( ) ( )

q n

k

k p n

q n p n

k

k k

x L
q n p n

x L
q n p n





 

 

 


 
   

  



 
 

 

( )

1

( )

1

( ) 1
.

( ) ( ) ( )

( ) 1
.

( ) ( ) ( )

p n

k

k

q n

k

k

p n
x L

q n p n p n

q n
x L

q n p n q n









 
    

 

 
  

 




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hold. It can be said that the   strongly 
[ , ]D p q

 

convergence of 
( )kx x

 is the linear combination of the 

  strongly Cesaro convergence of 
( )kx x

. We can 
consider this linear combination as a matrix 
transformation. For the regularity of this matrix 
transformation the sequence  
 

                     

( ) ( )

( ) ( )

q n p n

q n p n

 
 

                             
(2.1) 

must be bounded.  
 
For the boundedness of (2.1) (if and only if ) 
 

( )

( ) ( )

p n

q n p n
 

 

must be bounded since 
 

( ) ( ) ( ) ( ) 2 ( ) 2 ( )
1

( ) ( ) ( ) ( ) ( ) ( )

q n p n q n p n p n p n

q n p n q n p n q n p n

  
  

  
 

 

This assertion completes the proof. 
 

Now, in the following Theorems   strongly 
[ , ]D p q

 

convergence and   strongly 
[ ', ']D p q

 convergence of 

the sequence 
( )kx x

 are compared under the 
restriction  

 

                  
( ) '( ) '( ) ( )p n p n q n q n  

             (2.2) 
 

for all n N . 

Theorem 2.4. Let 
 ' '( )p p n

 and 
 ' '( )q q n

 
be sequences of positive natural numbers satisfying (2.2) 

and the sets 
 : ( ) '( )k p n k p n 

,

 : '( ) ( )k q n k q n 
 are finite for all n N . Then, 

  strongly 
[ ', ']D p q

 convergence of bounded 

sequence implies   strongly 
[ , ]D p q

 convergence. 
 

Proof. There is a positive real number M  in the 

assumption such that kx L M 
 which holds for all 

n N . Therefore, we have  
 

( )

( ) 1

'( ) '( ) ( )

( ) 1 '( ) 1 '( ) 1

1 1
.

( ) ( ) ( ) ( )

.

q n

k

k p n

p n q n q n

k

k p n k p n k q n

x L
q n p n q n p n

x L





 

     

 
 

 
    

 



  
 

 

'( )

'( ) 1

2
(1)

'( ) '( )

1

'( ) '( )

q n

k

k p n

M O
q n p n

x L
q n p n





 

 


 



 

If we take the limit, we obtain the sequence 
( )kx x

 

which is an   strongly 
[ , ]D p q

 convergence. 
 

Theorem 2.5. Let 
 ' '( )p p n

 and 
 ' '( )q q n

 
be sequences of positive natural numbers satisfying (2.2) 
and  

( ) ( )
lim 0

'( ) '( )n

q n p n
d

q n p n


 


. 

 

Then, the   strongly 
[ ', ']D p q

 convergence of the 

sequence of 
( )kx x

 implies a  strongly 
[ , ]D p q

 
convergence. 

 

Proof. It is easy to see that the inequality  
 

( )

( ) 1

'( )

'( ) 1

1

( ) ( )

1

( ) ( )

q n

k

k p n

q n

k

k p n

x L
q n p n

x L
q n p n





 

 

 


  





 

 
'( )

'( ) 1

'( ) '( ) 1

( ) ( ) '( ) '( )

q n

k

k p n

q n p n
x L

q n p n q n p n



 


 

 


 
 

holds. After taking limit when n , we understand 

that sequence 
( )kx x

 is an  strongly 
[ , ]D p q

 

convergent to L . 
At this point the inclusion relationship between the

  strongly 
C  summability and the   strongly 

[ , ]D p q
 summability need to be examined. The method 

C  is obtained by deleting a set of rows from the Cesaro 

matrix when  ( )
n N

n


 is a strictly increasing 

sequence of positive natural numbers (see, Armitage at 

al. (1989)). Let us denote that for the method 
[ , ]D p q

 by  
 

D  for 
( ) ( 1)p n n 

 and 
( ) ( )q n n

. 
 

Theorem 2.6. Let  ( )
n N

n


 be an increasing 

sequence of positive integers and 
(0) 0 

. If a 

sequence 
( )kx x

 is a  strongly 
D  convergent to 

L , then it is a   strongly 
C  convergent to L . 

 

Proof. We are going to use the same technique used by 

Agnew (1932). Assume that the sequence 
( )kx x

 is a 

  strongly 
D  convergent to L . So, for any n N  we 

have  
 

( ) ( 1)1

1 0 ( ) 1

1 1

( ) ( )

n in

k k

k i k i

x L x L
n n

 
 

 



   

 
   

 
  
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 

 

( 1)1

0 ( ) 1

1

,

0

( 1) ( )

( ). ( 1) ( )

in

k

i k i

n

n i i
i

i i
x L

n i i

b D x








 

  



  





 
  

 



 


, 

 

where 
( 1)

( ) 1

1
( )

( 1) ( )

i

i k

k i

D x x L
i i





 



 

 
 


 

 

and  

,

( 1) ( )
, 1,2,3,..., 1,

( )

0, .

n i

i i
i n

nb

otherwise

 



 
 

 

  

 

Since, the matrix is regular and 
lim( ) 0i
i

D x



, 

then  
( )

1

1
lim 0

( )

n

k
n

k

x L
n







 
. 

 

It means that, the sequence 
( )kx x

 is a  strongly 

C  convergent to L . 

Corollary 2.7. Let  ( )
n N

n


 be an increasing 

sequence of positive integers and 
(0) 0 

. The 

strongly 
D  convergent sequence can be an  

strongly 
C  convergent only if  

 

( )
liminf 1

( 1)n

n

n







. 

 

If we accept that
( ) ( 1)p n n 

 and 
( ) ( )q n n

 in 
Theorem 2.3 then we have  
 

( 1) 1

( )( ) ( 1)
1

( 1)

n

nn n

n



 






 


 . 
 

The proof of Corollary 2.7 becomes clear with this fact. 
So, it is omitted here.  
 

Remark 2.1. If we consider the case 1  , then 
Theorem 2.6 and Theorem 2.7 coincide with Theorem 
2.14 and Theorem 2.15 in Osikiewicz (1997), 
respectively. 
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