
Abstract—In the age of widespread digital integration,
the rise in cyber threats is evident. Cyber attackers
use malicious software (malware) to compromise data
and exploit system resources, employing tactics such
as remote control or ransom through data encryption.
Despite the common use of antivirus software with
signature-based detection, this study reveals its limita-
tions. Using a honeypot trap system on Google Cloud,
suspicious files uploaded by attackers were analyzed.
Results from evaluating these files with 64 antivirus
programs show that relying solely on signature-based
methods is insufficient. Only three programs had success
rates exceeding 90%, while the majority had success
rates predominantly below 70%. This underscores the
need for diverse detection techniques alongside signature-
based methods to enhance cybersecurity. The repository
containing collected malicious files and the Python script
is available on Github, serving as a valuable research
resource for further exploration.

Index Terms—Malware, Cowrie, Trap System, Honey-
pot, Anti-Virus.

I. INTRODUCTION

IN the contemporary era, the pace of development
in both the internet and information systems con-

tinues to increase steadily, consequently leading to a
proportional escalation in the risks associated with
cyber attacks.Malicious software, or malware, is the
primary instrument used by cybercriminals to carry
out targeted assaults and evade security protocols [1].
Malware developed by cyber attackers can be consid-
ered among the severe attack vectors that compromise
the security of systems. In addition to the scientific
and technical challenges of malware analysis, it is
also complicated to obtain malware safely. In order
to evaluate suspicious files, signature-based, behavior-
based transactions from movements on the system by
passing through the summary functions of the files and

Melike BAŞER is with the Department of Computer Engineer-
ing, Engineering Faculty, Istanbul University - Cerrahpasa, Istanbul,
TURKEY e-mail: melike.baser@iuc.edu.tr

Ebu Yusuf GUVEN¨ is with the Department of Computer
Engineering, Engineering Faculty, Istanbul, TURKEY e-mail: eygu-
ven@iuc.edu.tr

static analysis operations can be performed over the
source code. One of the ways to obtain malware is
to collect malware that infects systems. The collected
malware should be investigated through open sources.
The use of trap systems called Honeypot [2] which
attract attackers to find malware used in current attacks
and make them think that they have gained access to
a real system is also preferred by researchers.

According to the 2022 statistics of Cyber Attacks
[3], it seems that malware is developing and becoming
more sophisticated than ever. Malware [4], is software
designed for stealing important information and gain-
ing access to the remote target system or damaging
system resources. Malware comes in many forms,
including viruses, worms, trojan horses, rootkits, back-
doors, botnets, spyware, and adware [5]. Malware can
be seen as a significant security threat facing end-
users today. Under the current conditions, it is almost
impossible to prevent infection with viruses since it
is unnecessary to use computer networks, flash drives,
pirated software, and more. Statistics show that every
computer is infected with at least one virus [6].

Anti-virus applications detect and classify malware
by constantly scanning files and comparing their sig-
natures with known malware signatures. Malware sig-
natures are usually generated by anti-virus experts
who examine the malware samples collected. These
malware signatures can be file names, text strings,
or regular expressions of byte code. Signature-based
methods can only detect malware found in databases
that have not changed significantly. According to the
Pyramid of Pain, changing the hash information is
considered the footprint where attackers spend the least
amount of effort and time [7]. Accordingly, malware
can hide its malicious signature using code obfuscation
techniques that make the code look quite different
from the original version, making the reliability of
signature-based systems questionable.

Within the scope of this study, suspicious files
collected through Cowrie, a trap system, were checked
based on signatures by using anti-virus applications
on Virus Total. Furthermore, a Python script has been
developed that checks the databases of other anti-virus
software via the Virus Total API for signature checking
suspicious files uploaded by attackers on Honeypot.
Our goal is to determine which antivirus applications

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 12, No. 4, December 2024
Research Article

Melike Baser, Ebu Yusuf Guven, Muhammed Ali Aydin

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

337

 Analysis of Malicious Files Gathering via
Honeypot Trap System and Benchmark of
 Anti-Virus Software

Muhammed Ali AYDIN is with the Department of Computer
Engineering, Engineering Faculty, Istanbul University - Cerrahpasa,
Istanbul, TURKEY e-mail: aydinali@iuc.edu.tr
 Manuscript received Jul 1, 2024; accepted Nov 22, 2024
doi: 10.17694/bajece.1506554

https://orcid.org/0000-0003-0175-5045
https://orcid.org/0000-0002-7587-3127
https://orcid.org/0000-0002-1846-6090

are able to recognize the signatures of recent suspi-
cious files uploaded to our trap system by attackers
at the time of upload. In this study, we observed
that some signature-based anti-viruses were able to
recognize the vast majority of recent suspicious files,
while signature-based methods were expected to fail.
Signature-based anti-viruses are especially preferred
in the field because they offer the advantages of fast
response and low cost. In our work, we developed
a Python application that works on file signatures to
quickly evaluate malware uploaded by attackers to the
honeypot environment. The types of suspicious files
identified as malicious files and which malware family
they belong to have been examined and classified.
In addition, the returns of anti-virus applications to
suspicious files were evaluated, and anti-virus appli-
cations were compared among themselves. The main
contributions of this study are:

• Introducing a new data set of malicious files1,
• Detection of files uploaded to Cowrie Honeypot

using Virus Total,
• Classification of malware using signature-based

detection and analysis of its statistics,
• Determining the success of signature-based de-

tection methods,
• Evaluation and comparison of anti-virus applica-

tions,
• Evaluation of the working mechanism of anti-

virus applications and discussion of the adequacy
of the signature-based detection method.

The rest of this article is organized as follows. In
Chapter 2, the relevant studies are described. Sec-
tion 3 presents malware classification, detection, and
analysis methods. Chapter 4 includes the experimental
processes of the work done, while Chapter 5 conveys
the results obtained from this process. Finally, the
results obtained in Chapter 6 were discussed, and
the study was terminated by making the necessary
recommendations.

II. RELATED WORK

Malware; their goals, techniques, and methods are
cyber threat vectors that change and develop daily.
Anti-virus applications that use different methods such
as file signatures, source code, and behavioral analysis
to protect against malware have emerged. Anti-virus
software is the biggest obstacle to malware, such as
damaging software and hardware, stealing information,
using it for its purposes, or demanding a ransom.
Malware that uses many methods to circumvent anti-
virus applications has reached our day by undergoing
substantial changes [8]. In the face of increasing and
changing threat vectors, cyber security researchers
have also needed to improve how they detect malware
[9]. Researchers have classified malware according to
its change and development, its goals and objectives,

1https://github.com/istec-iuc/cowrie-logs

and the vulnerabilities it exploits. While the first type
of malware developed was known to be a joke virus,
on the other hand, the Cryptojacking malware, which
produces crypto money by exploiting device resources,
appeared [10], [11]. While there are fundamental
classifications such as virus, worm, trojan horse, and
ransomware in some sources, some studies include
more detailed classifications such as a rootkit, botnet,
and fileless malware [12], [13], [14].

Malware detection methods can generally be classi-
fied into three categories: signature-based, behavior-
based, and heuristic-based. Tibra Alsmadi and his
colleagues classified it as signature-based detection,
heuristic-based detection, and sandbox detection [15].
They also explained the advantages and disadvantages
of each when making this classification. Anti-virus
applications installed on computer systems usually use
a Signature-based detection technique and form the
basis of security software [16]. Rohith et al. shared
how an anti-virus program detects a suspicious file,
how to prevent the proliferation of malware on com-
puter systems, and methods for detecting the identity
of suspicious files [6].

Although anti-virus software effectively blocks
known malware threats, it creates portability, resource
consumption, and cost problems. It is necessary to
install a separate anti-virus application on each com-
puter, and also, anti-virus applications have periodic
needs, such as updating and license renewal. Akshay
Chavan and his colleagues have designed an anti-
virus that can be found on any portable device and
scan the computer system for signature-based and
heuristic analysis when connected [16]. Considering
that a portable anti-virus program uses a static database
and thousands of brand-new viruses are developed
customary, it includes the various risks. Over the In-
ternet, having a dynamic database is becoming crucial.
The study that designed another anti-virus belongs
to Botacin et al. The framework for the proposed
HEAVEN model Intel x86/x86-64 and MS Windows
was introduced to improve the performance and effec-
tiveness of Anti-virus. The HEAVEN model detected
almost all malware with a data set consisting of 10,000
malware and 1,000 benign software samples from
different categories [17].

With the development of Artificial Intelligence tech-
nologies, studies using artificial intelligence in mal-
ware detection are also increasing. By providing a
detailed review of ways to improve the efficiency of
existing malware detection technologies, Faruk and his
colleagues have shown that artificial intelligence is
promising for developing anti-malware systems [18].
Various artificial intelligence methods used in conjunc-
tion with the signature-based detection technique have
become one of the principal methodologies in malware
detection. Lima et al. classified the malware with an
average accuracy of %98.32 using the model they
created with Artificial Neural Network in anti-virus

ISSN: 2147-284XCopyright © BAJECE https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 12, No. 4, December 2024

338

https://dergipark.org.tr/bajece

applications [19]. It has been shown to give statistically
superior and more effective results than the signature-
based Anti-viruses. Rani et al. also applied the K-
Nearest Neighbors algorithm to detect anomalies and
discussed the challenges associated with implementing
malware classifiers [20]. Intrusion detection systems
developed using multiple Machine Learning meth-
ods have provided greater security against malware
[21]. Assegie demonstrated a signature-based malware
detection model based on classification and analysis
using the K-Nearest Neighbors (KNN) model and the
application programming interface (API) on a Kaggle
dataset with %98.17 accuracy. In addition, the grid
search method was used to find the optimal K value
to obtain higher classification accuracy [22]. With the
advancement of smartphone technology, the develop-
ment of mobile applications has increased rapidly, and
new challenges have emerged, such as the inability
to distinguish between benign and malicious malware
applications. Mo’ath Zyout et al. present Conv1d and
LSTM methods for classifying mobile applications
as benign or malicious based on Android permis-
sions, achieving high precision and accuracy (98.16%,
97.72%, and 96.63%, 96.69%, respectively) on the
CICMalDroid 2020 dataset. Conv1d, specifically in
binary classification, outperformed the LSTM model
when compared with the Mal-Prem dataset [23].

In order to perform the detection and analysis of
malicious software, first of all, data consisting of
malware is needed. Although examples are obtained
from malware attacks that infect systems and come
to institutions and organizations, it is impossible to
know the newly developed types before infecting a
system. Newly developed species that come from the
same malware family and are considered a different
variants can be discovered using honeypot systems.
Detection and analysis of suspicious files uploaded to
honeypots can allow improving the measures that can
be taken against malware. Sethia et al. classified the
malware they collected through Honeypot according
to the protocols they received attacks from, and it was
seen that the most attacks came from SQL 2000XP,
SMB, and FTP protocols [24]. The fact that protocols
frequently used in corporate structures is attacked
shows that malware targets organizations. Matin et
al. proposed a framework for collecting Portable Exe-
cutable malware using the Modern Honey Network.
The Honeypot used is the Modern Honey Network
with Dionaea sensor. They classified the types of mal-
ware using Virus Total [25]. Kyriakou et al. introduced
a distributed honeypot system that records links to the
commonly used protocol, detects malware using Virus
Total’s analysis engine, and works in a distributed
manner [26]. The study showed that in addition to
assisting in an organization’s risk assessment, real-
time statistics and analysis can be provided against
honeypots and attackers. Chris Moore examines how
honeypot policies can be used to detect and mitigate a

ransomware attack on the Microsoft Windows network
[27]. Wang and his colleagues extensively analyzed
the similarity of malware binaries caught by IoTCMal,
which they proposed as IoT Honeypot, and discovered
eight malware families controlled by at least 11 groups
of attackers [28]. Research studies show that honeypots
are valuable for obtaining and analyzing malware.

In this investigation, an evaluation study was carried
out on the malware files collected with Cowrie Honey-
pot installed on Google Cloud. Within the scope of the
study, a signature-based detection technique was used,
and a program script was developed that could evaluate
the attacks on Cowrie instantly through Virus Total.
Responses from Anti-virus applications running on
Virus Total distinguish suspicious files from malware
or benign files. The success of signature-based meth-
ods against files used by attackers to attack current
systems was demonstrated. Statistics were determined
by classifying malware, and the performance of anti-
virus applications was evaluated.

III. MALWARE

Malware is software that aims to perform an unau-
thorized operation that will have a negative impact on
the confidentiality, integrity, or usability of the infor-
mation system [29]. Detection of malicious software
is divided according to how the developed software
works and the methods of analysis.

A. Malware Types
Malware has variations depending on the develop-

ment purpose, the way it works, or the targeted attack.
These types of malware are:

a) Virus: It is a malicious program that enters
the system without the user’s knowledge or agreement
and can duplicate itself by activating through an ap-
plication file. A virus can corrupt or delete data on a
computer, propagate to other machines via email, and
destroy the entire hard drive [29], [30].

b) Worm: It is a self-replicating and propagating
program that uses network mechanisms to propagate
itself [30]. The critical difference between viruses and
worms is that for a virus to start replicating requires
human intervention, such as opening the infected file.
In contrast, worms can reproduce without intervention
[31].

c) Trojan Horse: A computer program with a
covert and potentially malicious function that appears
to have a useful function but escapes security mecha-
nisms by exploiting the legitimate powers of a system
entity [32].

d) Spyware: It is malicious software that gathers
data without the user’s knowledge or consent [32]. It
may do various tasks, including recording the keys
that a user presses on the keyboard, tracking the
websites visited, scanning the data on the hard drive,
and keeping track of Internet searches. They do not
copy themselves in any way from one machine to
another, unlike viruses [33].

ISSN: 2147-284XCopyright © BAJECE https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 12, No. 4, December 2024

339

https://dergipark.org.tr/bajece

e) Adware: It refers to a particular class of mal-
ware that uses the computer or other device to display
unwanted adverts. While adware can occasionally be
safe, some pop-ups also aim to gather data and infor-
mation through targeted advertisements in addition to
displaying advertisements [33]. It can use numerous
advertising links to route you to malicious websites
and infected pages.

f) Rootkit: It is a malicious program designed for
malicious people to gain privileged access to devices.
Rootkits cannot reproduce by themselves and do not
pose a danger to the system [34]. However, they can
often be part of more sophisticated threats, and attacks,
such as malware installation.

g) Botnet: Computer networks infected with
malware are referred to as botnets. Bot refers to
remotely controllable software, applications, or code
script installed in machines [35].

h) Ransomware: It is a type of malware that en-
crypts the files of the targeted person or organization.
With this attack, the cyber threat actor prevents the
victim from accessing their data until the victim pays
the ransom [36]. There are two types of ransomware.
The first is locker ransomware (Locker ransomware),
and the second is encrypted ransomware (Crypto ran-
somware). Locker ransomware affects basic computer
functions, while Encrypted ransomware encrypts cer-
tain files [37].

i) Backdoor: They are applications that al-
low cybercriminals or attackers to access computers
remotely[38]. Backdoors can also spread via malicious
apps on mobile and smart devices.

j) Downloader: It is a type of Trojan horse that
downloads other malware onto a computer. Also called
a dropper [39]. The downloader must be connected to
the Internet to be able to download the files.

k) Cryptojacking: It is a type of malware
in which victims’ devices (computers, smartphones,
tablets, and even servers) are used secretly and with-
out permission to mine cryptocurrencies without their
knowledge[10]. Unlike other threats, cryptojacking is
designed to be hidden entirely from the victim.

l) Fileless Malware: Instead of downloading or
installing files to infect a system, they are software
that infects the system via utilizing existing software
(WMI, Powershell, etc.) on the device. It can get
through security precautions, including signature de-
tection, hardware verification, pattern analysis, and
timestamping, and generally leaves no trace. Since it
does not leave a trail, it can get past ”Signature-Based
Antivirus” systems[10].

B. Malware Detection Techniques

There are fundamentally two techniques used to
detect malware. One of these techniques is Signature-
Based Detection, and the other is Behavioral Based
Detection. Apart from these techniques, techniques
developed according to the types of harmful files or

the purpose of the studies are also used. Therefore,
this study classified malware detection methods into
three different categories.

a) Signature-based Detection: It is the most
widely used malware detection technique. A signature
is a sequence of bytes used to identify specific mal-
ware. Signature-based anti-virus software maintains
a repository of known malware signatures, which is
updated as new threats are discovered. Signature-based
detection is simple, fast, and effective against common
types of malware. The most crucial disadvantage is that
it requires an up-to-date signature database. Malware
that is not in the database cannot be identified and
detected without a current signature database. In order
to avoid signature detection, several obfuscation tech-
niques are employed. Using these methods, malware
cannot be found [40].

b) Behavioral-based Detection: The behavior-
based malware detection technique observes pro-
gram behavior with monitoring tools and determines
whether the program is malicious or benign. Even
if the program codes are changed, the behavior of
the program will be similar; therefore, most of the
new malware can be detected by this technique. [41].
Various Virtual Machine and Sandbox tools can be
used in the Behavioral-based detection technique.

c) Heuristic-based Detection: It is a detection
method that evaluates the features extracted from a
software file and its behavior on the system (mem-
ory, processor, disk, etc.) with artificial intelligence
methods [42]. With artificial intelligence techniques,
the approach can use the outputs of signature-based
and behavior-based analysis methods as features. As a
result, the model developed according to the applied
artificial intelligence method can detect unlearned mal-
ware that has not been seen before.

C. Malware Analysis Methods

Dynamic analysis and static analysis are the two
main methods used to analyze malware. In specific
research, these are supplemented by using hybrid anal-
ysis and memory analysis approaches [43], [44].

a) Static Analysis: Static analysis is the tech-
nique of analyzing the suspicious file with methods
such as API call, Opcode, and N-gram without running
it. The analysis method is generally used in the first
stage, enabling the correct decision on how to classify
or analyze the suspicious file and which direction the
following analysis studies should focus on [45].

b) Dynamic Analysis: Dynamic analysis refers to
the process of analyzing the changes on the network,
memory, processor, RAM, or applications in the sys-
tem by running a code or script by observing with tools
such as Wireshark, Autoruns, and Sandbox. The pur-
pose of dynamic analysis is to detect malicious activity
by the executable while running without compromising
the security of the analysis platform [46].

ISSN: 2147-284XCopyright © BAJECE https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 12, No. 4, December 2024

340

https://dergipark.org.tr/bajece

c) Hybrid Analysis: The hybrid analysis tech-
nique looks at behavioral parameters such as con-
suming processing power, changes in memory, and
applications that affect system performance or disrupt
its operation to analyze any malware signature and
improve malware analysis. This method, which is used
to overcome the shortcomings of static and dynamic
analysis techniques, increases the ability to accurately
detect malware [47].

d) Memory Analysis: Memory analysis has be-
come an effective technique in malware analysis.
Memory analysis uses the memory image to analyze
information about running programs, the operating
system, and the overall state of the computer. In-
vestigations consist of two steps memory acquisition
and memory analysis. In memory collection, the target
machine’s memory is freed using tools such as Mem-
oryze, FastDump, and DumpIt. In memory analysis,
memory images are analyzed using tools such as
Volatility and Rekall [48].

IV. EXPERIMENTAL METHOD

Malware is software that disrupts or blocks the
operation of systems and is designed and analyzed for
attack purposes. In our study, malware files collected
with the Cowrie honeypot system we built on Google
Cloud were compared and evaluated with antivirus
applications using signature-based detection method.
Signature-based antiviruses are widely used in the
field, offer the advantages of fast response and low
cost, and are simple and effective. For this purpose, a
Python script was developed to analyze 50 malicious
files obtained from the Cowrie honeypot on Virus
Total.

A. Preparation Process

Malware is one of the methods used by attackers
to disrupt the accessibility, integrity, and confidential-
ity of the system. Therefore, analysis of attacks on
systems by malicious software is essential to ensure
security by taking precautions. The motivation behind
catching and analyzing malware is to study its mech-
anism and how it interacts with the operating system.
By understanding what types of activities are taking
place over the network, he can develop a security
mechanism to protect people and various organizations
from such malware attacks. In this study, a tool that
acts as a trap is used to attract attackers and make
them think that they have gained access to a real
system, and it is evaluated whether the files obtained
from the attacks on this trap system are harmful. As
a result of the evaluation, anti-virus applications were
also compared.

In our study, the environment where the trap system
was configured was preferred as Google Cloud Plat-
form. Google Cloud Platform is a cloud information
platform that provides server infrastructure services to

the end-user and allows creating and running Virtual
Machines 2. Google Cloud Platform has been preferred
in terms of ease of use by giving an external IP address
to the virtual machine installed on it and allowing the
machine to change the firewall rules easily. A virtual
machine with 2 CPUs, 4 GB Memory features, and
Ubuntu 18.04 LTS operating system is configured on
the Google Cloud Platform. For this virtual machine,
the Americas region has been chosen as the location.
All incoming network traffic (ingress) is allowed by
updating the firewall rules.

Cowrie honeypot system was installed on the virtual
machine on Google Cloud Platform. Cowrie is a low-
medium interactive SSH and Telnet honeypot system
that can record brute-force attacks and the attacker’s
shell interaction 3. The findings are based on data col-
lected from the virtual machine running on the Google
Cloud Platform between when the Cowrie honeypot
trap system was first activated and the last date it was
examined. As a result, over the duration of its 47-
day longevity, the honeypot system received 3,626,394
attacks, all of which were recorded in log files. In
addition, the honeypot system also kept a record of
the suspicious files that were collected throughout the
attacks[49].

B. Malware Gathering

Cowrie honeypot is a decoy system that simulates
SSH and Telnet protocols, allowing attackers to per-
form various activities within the system via remote
connection. In this system, 50 suspicious files were
obtained as a result of attacks carried out over FTP
(File Transfer Protocol), which is used by attackers to
upload and download files. While the attacker activities
in the Trap System are recorded under the var/log
folder, a different directory is used for uploaded files.
Files uploaded by attackers via FTP are stored under
the var/lib/downloads directory and 50 suspicious files
stored in this directory were retrieved from the system
for further analysis. 64 different anti-virus applications
were analyzed and an automatic analysis script was
developed in Python to evaluate the files. With this
script, the results from various anti-virus applications
were compared and the effectiveness of the Signature
Based Detection technique was discussed. The gen-
erated dataset contains the tags of files flagged as
suspicious by anti-virus applications and is intended
to classify various types of malware. Specifically, the
dataset contains different malware categories such as
Trojan, Mirai, Backdoor, Malware, CoinMiner, Down-
loader, and Other, with each category containing types
and variants of files designed to perform malicious
activities. For example, Trojan and Backdoor files
provide unauthorized access to the system, while Mirai
files are used to carry out botnet attacks against IoT

2https://cloud.google.com/why-google-cloud
3https://cowrie.readthedocs.io/en/latest/

ISSN: 2147-284XCopyright © BAJECE https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 12, No. 4, December 2024

341

https://dergipark.org.tr/bajece

devices. This dataset is an important resource for
cybersecurity researchers and threat analysts, enabling
in-depth analysis of malware identification and classi-
fication. When the files are analyzed in general, it is
seen that 50 files have a total size of 52 MB. In this
case, there is an average of 1 MB per file, with the
largest file being 3024 KB and the smallest file being 2
KB. The content of most of the files is unreadable due
to obfuscation, while the readable files usually contain
bash script or HTML code.

C. Evaluation of Malware

In order to find and analyze malware, various
techniques are used. The signature-based detection
approach is the quickest and most famous of these
approaches. The signature-based detection approach
uses tools like Virus Total, Trend Micro, and URLVoid.
Virus Total 4 is a free tool with a desktop downloadable
or online API for analyzing suspicious files, hashes, or
URLs. It uses a set of Antivirus engines to facilitate
the detection of various malware [50]. Apps are nei-
ther classified as malicious nor benign by VirusTotal.
About 60 antiviral scanners are used to determine the
content and runtime of an application or executable file
based on its hash. As a result, the platform user must
choose how to interpret this information to determine
if a file is malicious. There are no standard procedures
for interpreting scan results from Virus Total to directly
tag applications [51]. In this study, malicious files were
detected using the signature-based detection method
with Virus Total’s assist, and the anti-virus programs’
responses were evaluated.

D. Control Application

The files uploaded to the system by the attackers
during the time the Cowrie Honeypot was attacked
were recorded. Various anti-virus programs on Virus
Total, which use a signature-based detection method,
have been given suspicious files. The files were au-
tomatically uploaded to Virus Total thanks to the
developed Python script, and the responses provided
by the anti-virus software were gathered. The Figure
1 depicts the process’s flow. On Github, malicious files
and Python script are shared 5.

V. RESULT

Cowrie Honeypot, which we installed on Google
Cloud, tracked the attacker’s behavior for 47 days
and analyzed 50 suspicious files that the attackers
uploaded to the system. The hashes of suspicious files
with the Python script we developed were compared
over the Virus Total API (Application Programming
Interface), and anti-virus applications’ malware sig-
nature detection results were evaluated. Suspicious

4https://www.virustotal.com/gui/home/upload
5https://github.com/istec-iuc/cowrie-logs

Fig. 1: Detection and evaluation of suspicious files
obtained

files are classified as ’harmful’, ’not harmful’, or ’not
responding’ as described in the Table I. Sixty-four anti-
virus apps on Virus Total identified files as ’positive’;
files it does not identify as harmful are ’negative’; it
also returned ’not responding’ for files where it could
not specify any class. Apart from these, there were also
Anti-virus applications that did not respond within a
certain period. According to the results indicated in
the Figure 2, %34 of the 64 Anti-virus applications
received positive feedback, which meant that there
were malicious files, while %58 of the negative return
was received, which resulted in the uploaded files that
were not harmful. Anti-virus applications that cannot
classify these files as harmful or not harmful also
appear in %8.

TABLE I: Descriptions of antivirus responses to sus-
picious files

State Meaning
Positive The file’s signature was found in the

database of the Anti-virus application, and
it was determined that it is malware.

Negative The database of the anti-virus application
did not find the file’s signature and was
found to be free of malware.

Not Responding The file’s signature could not be found in the
database of the anti-virus application and
could not respond in the required time.

Fig. 2: Evaluation result percentages of Anti-virus
applications in malware detection

ISSN: 2147-284XCopyright © BAJECE https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 12, No. 4, December 2024

342

https://dergipark.org.tr/bajece

Malicious files are divided into several classes ac-
cording to their purpose, mode of operation, or dif-
ferent parameters. These have been extensively men-
tioned under the heading ’Malware Types’. According
to the answers received from the Anti-virus appli-
cations by performing the analysis, six main head-
ings were determined within the scope of this study,
and the classification was made as on the Githup
Repository6. Accordingly, these six titles are listed
as ’Trojan Horse’, ’Mirai’, ’CoinMiner’, ’Backdoor’,
’Downloader’, ’Malware’, and ’Other’. The most pre-
ferred malicious file was the Mirai variants, followed
by Trojan Horse and CoinMiner as seen in the Figure
3. Those that cannot be typed but are considered
malicious files are listed under the Other heading.

Fig. 3: Malware classification rates where suspicious
files are tagged

The top 20 anti-virus applications on Virus Total
used within this study’s scope with the highest positive
responses to 50 malicious files uploaded within a
certain period are given in Figure II. Two of the 50
malicious files evaluated received no positive response
from any anti-virus application. From this point of
view, it can be interpreted that these two files are not
harmful. According to these results, AVG is the anti-
virus application with the highest number of positive
responses, followed by Avast and DrWeb applications.

It has been observed that some anti-virus applica-
tions cannot classify uploaded files as ’harmful’ or
’not harmful’ or do not respond at all within a certain
period. The 19 anti-virus applications that failed to
classify or return an answer are given in Figure 4. In
addition, 36 antivirus applications were able to detect
less than ten malware.

VI. DISCUSSION AND CONCLUSION

We evaluated the files collected with Cowrie Honey-
pot, which we installed on Google Cloud through Virus
Total. As part of the study, we developed a program
script to evaluate 50 files obtained from the Cowrie
system through Virus Total. We detected the files using

6https://github.com/istec-iuc/cowrie-logs

TABLE II: Number of suspicious files that antivirus
applications respond to as malicious

Anti-virus Applications Positive Numbers
AVG 47
Avast 42

DrWeb 40
TrendMicro-HouseCall 40

TrendMicro 38
McAfee-GW-Edition 36

Fortinet 35
ESET-NOD32 34

Kaspersky 34
McAfee 34
GData 33

Symantec 30
BitDefender 28

Emsisoft 28
FireEye 28
Avira 27
Cynet 27

Jiangmin 26
Lionic 26

MicroWorld-eScan 26

Fig. 4: Distribution of antiviruses with the most un-
successful malware detection

the signature-based method in the study and compared
the anti-virus tools.

Within the scope of the study, it aims to collect
the actively used malicious software and classify these
malicious software while simultaneously evaluating
the success rate of anti-virus applications. According
to the results, AVG is the anti-virus application with
the highest success rate, followed by Avast and DrWeb
applications. This study shows that AVG and Dr.Web’s
databases can recognize recent attacks by scanning
files uploaded to a decoy system. Since the results
were collected at the time of the attack, it is possible
that antivirus applications update their databases later.
The dataset shared in this study could be used in fu-
ture research to compare which antivirus applications
have updated themselves in the time since publication.
The trap system, which was set up to catch current
malware, was open for about 2 months and collected
50 malware samples. In a future study that is open
for a longer period of time, more malware could be
collected and the time it takes for antiviruses to update

ISSN: 2147-284XCopyright © BAJECE https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 12, No. 4, December 2024
343

https://dergipark.org.tr/bajece

their signature databases against current attacks could
be evaluated at different times of the year. On the other
hand, there were opinions that the databases of 19 anti-
virus applications, which could not be returned for 50
files, were not up-to-date or that the databases were
too large to return a response within a certain period.

Signature-based detection is still a standard method
used to detect malware. Of the anti-virus applications
we tested, AVG achieved the most with 98 percent.
After AVG, the highest was the AVAST application,
with 87 percent success. However, when the top 10
anti-virus applications that returned the most positive
responses were evaluated, it was seen that the success
rate decreased to 70 percent. Even if the success rate
of anti-virus applications is 99 percent, systems can
be damaged if any malware infection is evaluated
for corporate companies and end-users. Since it is
generally not possible to run more than one anti-virus
application on an operating system as is done within
the scope of the study, applications with up-to-date
and broad signature databases should be preferred.
Generally, there are disadvantages such as anti-virus
applications adversely affecting system performance
by system requirements (processing power, ram, In-
ternet, etc.) or not being used due to high license
costs. For this reason, in our study, it was seen that in
addition to multiple anti-virus application evaluations,
malicious files increase the likelihood of not being de-
tected because they cannot be tested on multiple anti-
viruses. In this context, it can be considered a suitable
solution for anti-virus applications to share databases
with each other in order to make the systems more
secure. Furthermore, virus Total runs multiple anti-
virus applications, making it easy and advantageous
to use multiple anti-viruses.

When examining the overall stats, the fact that
approximately 76 percent of the requests respond
negatively or do not respond at all makes the success of
signature-based systems questionable, especially con-
sidering that there was no response from 19 antivirus
applications. Of the 64 antivirus applications included
in the evaluation, 19 did not receive a response, which
raises several concerns regarding the performance of
the antivirus applications themselves, the effectiveness
of VirusTotal, the insufficient API response time, and
the relevance of the up-to-date data set used in our
study.

This study shows that while signature-based Anti-
viruses with up-to-date databases are still successful,
signature-based detection alone is not sufficient. It is
understood that static and dynamic analysis methods
are also necessary for system security. In our study,
we developed a Python application that works on file
signatures to quickly evaluate malware uploaded by
attackers to the honeypot environment. In the future,
we aim to collect more files with a trap system that
will run for a longer period of time. We also aim to
provide a more comprehensive and robust assessment

of malware detection by incorporating behavior-based,
heuristic and AI-assisted techniques into the analysis.

ACKNOWLEDGMENT

This study was carried out in the Internet of
Things Security Test and Evaluation Center (ISTEC)
of İstanbul University-Cerrahpasa and sponsored by
the Istanbul Development Agency. Also, this publica-
tion was prepared within the scope of master’s thesis.

REFERENCES

[1] G. Pitolli, G. Laurenza, L. Aniello, L. Querzoni, and R. Bal-
doni, “Malfamaware: automatic family identification and mal-
ware classification through online clustering,” International
Journal of information security, vol. 20, pp. 371–386, 2021.

[2] M. Amal and P. Venkadesh, “Review of cyber attack detection:
Honeypot system,” Webology, vol. 19, no. 1, pp. 5497–5514,
2022.

[3] S. COOK, “Malware statistics in 2022: Frequency, impact,
cost & more,” Feb 2022. [Online]. Available: https:
//www.comparitech.com/antivirus/malware-statistics-facts/

[4] S. S. Chakkaravarthy, D. Sangeetha, and V. Vaidehi, “A survey
on malware analysis and mitigation techniques,” Computer
Science Review, vol. 32, pp. 1–23, 2019.

[5] N. Pachhala, S. Jothilakshmi, and B. P. Battula, “A com-
prehensive survey on identification of malware types and
malware classification using machine learning techniques,” in
2021 2nd International Conference on Smart Electronics and
Communication (ICOSEC). IEEE, 2021, pp. 1207–1214.

[6] C. Rohith and G. Kaur, “A comprehensive study on malware
detection and prevention techniques used by anti-virus,” in
2021 2nd International Conference on Intelligent Engineering
and Management (ICIEM). IEEE, 2021, pp. 429–434.

[7] K. Oosthoek and C. Doerr, “Cyber threat intelligence: A prod-
uct without a process?” International Journal of Intelligence
and CounterIntelligence, vol. 34, no. 2, pp. 300–315, 2021.

[8] D. Aygör and E. Aktan, “The limitations of signature-based
and dynamic analysis methods in detecting malwares: A case
study,” Journal of the Faculty of Engineering and Architecture
of Gazi University, vol. 37, no. 1, pp. 305–315, 2022.

[9] U. Inayat, M. F. Zia, F. Ali, S. M. Ali, H. M. A. Khan,
and W. Noor, “Comprehensive review of malware detection
techniques,” in 2021 International Conference on Innovative
Computing (ICIC). IEEE, 2021, pp. 1–6.

[10] D. Laka, “Malware: Types, analysis and classification,” Anal-
ysis and Classification (January 14, 2022), 2022.

[11] E. Tekiner, A. Acar, A. S. Uluagac, E. Kirda, and A. A.
Selcuk, “Sok: cryptojacking malware,” in 2021 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2021,
pp. 120–139.

[12] S. Talukder and Z. Talukder, “A survey on malware detection
and analysis tools,” International Journal of Network Security
& Its Applications (IJNSA) Vol, vol. 12, 2020.

[13] S. A. Roseline and S. Geetha, “A comprehensive survey of
tools and techniques mitigating computer and mobile malware
attacks,” Computers & Electrical Engineering, vol. 92, p.
107143, 2021.

[14] S. Varlioglu, N. Elsayed, Z. ElSayed, and M. Ozer, “The
dangerous combo: Fileless malware and cryptojacking,” South-
eastCon 2022, pp. 125–132, 2022.

[15] T. Alsmadi and N. Alqudah, “A survey on malware detection
techniques,” in 2021 International Conference on Information
Technology (ICIT). IEEE, 2021, pp. 371–376.

[16] A. Chavan, K. Kerakalamatti, and S. Srivastva, “Implemen-
tation of portable antivirus system using signature-based de-
tection and heuristic analysis,” in 2021 5th International
Conference on Trends in Electronics and Informatics (ICOEI).
IEEE, 2021, pp. 1481–1486.

[17] M. Botacin, M. Z. Alves, D. Oliveira, and A. Grégio, “Heaven:
A hardware-enhanced antivirus engine to accelerate real-time,
signature-based malware detection,” Expert Systems with Ap-
plications, vol. 201, p. 117083, 2022.

ISSN: 2147-284XCopyright © BAJECE https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 12, No. 4, December 2024

344

https://www.comparitech.com/antivirus/malware-statistics-facts/
https://www.comparitech.com/antivirus/malware-statistics-facts/
https://dergipark.org.tr/bajece

[18] M. J. H. Faruk, H. Shahriar, M. Valero, F. L. Barsha,
S. Sobhan, M. A. Khan, M. Whitman, A. Cuzzocrea, D. Lo,
A. Rahman et al., “Malware detection and prevention using
artificial intelligence techniques,” in 2021 IEEE International
Conference on Big Data (Big Data). IEEE, 2021, pp. 5369–
5377.

[19] S. M. de Lima, H. K. d. L. Silva, J. H. d. S. Luz, H. J. d. N.
Lima, S. L. d. P. Silva, A. de Andrade, and A. M. da Silva,
“Artificial intelligence-based antivirus in order to detect mal-
ware preventively,” Progress in Artificial Intelligence, vol. 10,
no. 1, pp. 1–22, 2021.

[20] S. Rani, K. Tripathi, Y. Arora, and A. Kumar, “Analysis of
anomaly detection of malware using knn,” in 2022 2nd In-
ternational Conference on Innovative Practices in Technology
and Management (ICIPTM), vol. 2. IEEE, 2022, pp. 774–779.

[21] A. Katkar, S. Shukla, D. Shaikh, and P. Dange, “Malware
intrusion detection for system security,” in 2021 International
Conference on Communication information and Computing
Technology (ICCICT). IEEE, 2021, pp. 1–5.

[22] T. A. Assegie, “An optimized knn model for signature-based
malware detection,” Tsehay Admassu Assegie.” An Optimized
KNN Model for Signature-Based Malware Detection”. Inter-
national Journal of Computer Engineering In Research Trends
(IJCERT), ISSN, pp. 2349–7084, 2021.

[23] M. Zyout, R. Shatnawi, and H. Najadat, “Malware clas-
sification approaches utilizing binary and text encoding of
permissions,” International Journal of Information Security,
pp. 1–26, 2023.

[24] V. Sethia and A. Jeyasekar, “Malware capturing and analysis
using dionaea honeypot,” in 2019 International Carnahan
Conference on Security Technology (ICCST). IEEE, 2019,
pp. 1–4.

[25] I. M. M. Matin and B. Rahardjo, “A framework for collecting
and analysis pe malware using modern honey network (mhn),”
in 2020 8th International Conference on Cyber and IT Service
Management (CITSM). IEEE, 2020, pp. 1–5.

[26] A. Kyriakou and N. Sklavos, “Container-based honeypot de-
ployment for the analysis of malicious activity,” in 2018 Global
Information Infrastructure and Networking Symposium (GIIS).
IEEE, 2018, pp. 1–4.

[27] C. Moore, “Detecting ransomware with honeypot techniques,”
in 2016 Cybersecurity and Cyberforensics Conference (CCC).
IEEE, 2016, pp. 77–81.

[28] B. Wang, Y. Dou, Y. Sang, Y. Zhang, and J. Huang, “Iotcmal:
Towards a hybrid iot honeypot for capturing and analyzing
malware,” in ICC 2020-2020 IEEE International Conference
on Communications (ICC). IEEE, 2020, pp. 1–7.

[29] J. Aycock, Computer viruses and malware. Springer Science
& Business Media, 2006, vol. 22.

[30] R. Ball, “Computer viruses, computer worms, and the self-
replication of programs,” in Viruses in all Dimensions: How
an Information Code Controls Viruses, Software and Microor-
ganisms. Springer, 2023, pp. 73–85.

[31] M. N. Alenezi, H. Alabdulrazzaq, A. A. Alshaher, and M. M.
Alkharang, “Evolution of malware threats and techniques: a
review,” International Journal of Communication Networks
and Information Security, vol. 12, no. 3, pp. 326–337, 2020.

[32] “CNSSI 4009: Committee on national security systems
(cnss) glossary,” Committee on National Security Systems
(CNSS), 2015, accessed: 2024-10-28. [Online]. Available:
https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf

[33] J. Aycock, Spyware and adware. Springer Science & Business
Media, 2010, vol. 50.

[34] I. Kuzminykh and M. Yevdokymenko, “Analysis of security
of rootkit detection methods,” in 2019 IEEE International
Conference on Advanced Trends in Information Theory (ATIT).
IEEE, 2019, pp. 196–199.

[35] N. A. Mims, “Chapter 14 - the botnet problem,” in Computer
and Information Security Handbook (Fourth Edition), J. R.
Vacca, Ed. Morgan Kaufmann, 2025, pp. 261–272.

[36] M. Swanson and B. Guttman, “NIST SP 800-12 Rev. 1:
An Introduction to Information Security,” National Institute
of Standards and Technology (NIST), Tech. Rep. 800-12
Rev. 1, 2017, accessed: 2024-10-28. [Online]. Available:
https://csrc.nist.gov/pubs/sp/800/12/r1/final

[37] A. Warikoo, “Perspective chapter: Ransomware,” in Malware-
Detection and Defense. IntechOpen, 2023.

[38] E. Salimi and N. Arastouie, “Backdoor detection system
using artificial neural network and genetic algorithm,” in 2011
International Conference on Computational and Information
Sciences, 2011, pp. 817–820.

[39] H. W. Kim, “A study on countermeasures by detecting trojan-
type downloader/dropper malicious code,” International Jour-
nal of Advanced Culture Technology, vol. 9, no. 4, pp. 288–
294, 2021.

[40] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin,
and M. Stamp, “A comparison of static, dynamic, and hybrid
analysis for malware detection,” Journal of Computer Virology
and Hacking Techniques, vol. 13, no. 1, pp. 1–12, 2017.

[41] Ö. A. Aslan and R. Samet, “A comprehensive review on
malware detection approaches,” IEEE Access, vol. 8, pp. 6249–
6271, 2020.

[42] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A
survey on heuristic malware detection techniques,” in The 5th
Conference on Information and Knowledge Technology, 2013,
pp. 113–120.

[43] Y. K. B. M. Yunus and S. B. Ngah, “Review of
hybrid analysis technique for malware detection,” IOP
Conference Series: Materials Science and Engineering, vol.
769, no. 1, p. 012075, feb 2020. [Online]. Available:
https://doi.org/10.1088/1757-899x/769/1/012075

[44] R. Sihwail, K. Omar, and K. A. Z. Ariffin, “An effective
memory analysis for malware detection and classification,”
Comput., Mater. Continua, vol. 67, no. 2, pp. 2301–2320,
2021.

[45] K. Monnappa, Learning Malware Analysis: Explore the con-
cepts, tools, and techniques to analyze and investigate Win-
dows malware. Packt Publishing Ltd, 2018.

[46] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic
malware analysis in the modern era—a state of the art survey,”
ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–48,
2019.

[47] Y. K. B. M. Yunus and S. B. Ngah, “Review of hybrid analysis
technique for malware detection,” in IOP Conference Series:
Materials Science and Engineering. IOP Publishing, 2020,
p. 012075.

[48] R. Sihwail, K. Omar, and K. Z. Ariffin, “A survey on malware
analysis techniques: Static, dynamic, hybrid and memory anal-
ysis,” Int. J. Adv. Sci. Eng. Inf. Technol, vol. 8, no. 4-2, pp.
1662–1671, 2018.

[49] M. Başer, E. Y. Güven, and M. A. Aydın, “Ssh and telnet pro-
tocols attack analysis using honeypot technique:* analysis of
ssh and telnet honeypot,” in 2021 6th International Conference
on Computer Science and Engineering (UBMK). IEEE, 2021,
pp. 806–811.

[50] R. Masri and M. Aldwairi, “Automated malicious advertise-
ment detection using virustotal, urlvoid, and trendmicro,” in
2017 8th International Conference on Information and Com-
munication Systems (ICICS). IEEE, 2017, pp. 336–341.

[51] A. Salem, S. Banescu, and A. Pretschner, “Maat: Automati-
cally analyzing virustotal for accurate labeling and effective
malware detection,” ACM Transactions on Privacy and Secu-
rity (TOPS), vol. 24, no. 4, pp. 1–35, 2021.

ISSN: 2147-284XCopyright © BAJECE https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 12, No. 4, December 2024

345

https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf
https://csrc.nist.gov/pubs/sp/800/12/r1/final
https://doi.org/10.1088/1757-899x/769/1/012075
https://dergipark.org.tr/bajece

Melike BAŞER Melike Başer, completed
her undergraduate education at Istanbul
University-Cerrahpaşa with her graduation
project titled ”SSH and Telnet Protocols
Attack Analysis Using Honeypot Tech-
nique: Analysis of SSH AND TELNET
Honeypot” in 2021. In 2022, she started
working as a Research Assistant at Istan-
bul University-Cerrahpaşa Computer En-
gineering Department. In 2023, she com-
pleted his master’s degree at Istanbul

University-Cerrahpaşa with his thesis titled ”Analysis of malicious
files gathered on honeypot system”. She took part in 2 academic
projects. In 2023, he started her PhD in Computer Engineering at
Istanbul Technical University and continues her education.

Ebu Yusuf GÜVEN received his bache-
lor’s degree in Computer Engineering from
Istanbul University in Turkey. He com-
pleted his master’s degree at Fatih Sultan
Mehmet University with his thesis titled
”Cyber Attack Detection and Prevention
Methods for Edge Computing”. In 2023,
he completed his doctorate education at
Istanbul University-Cerrahpaşa. His thesis
is titled ”Development of a New Screening
Model for Cyber Threat Intelligence”. He

is currently working as an assistant professor at Istanbul University-
Cerrahpaşa and a researcher at IoT Security Test and Evaluation
Center (ISTEC). He has a keen interest in cyber security and related
fields.

Muhammed Ali AYDIN obtained his B.S.
degree in computer engineering from Is-
tanbul University in Istanbul, Turkey in
2001. He completed his MSc degree in
computer engineering from Istanbul Tech-
nical University, Istanbul, Turkey in 2005.
He received his Ph.D. degree in com-
puter engineering from Istanbul Univer-
sity, Istanbul, Turkey in 2009. He was a
Postdoctoral Research Associate with the
Department of RST, Telecom SudParis,

Paris, France, from 2010 to 2011. He has been working as an
Assistant Professor in Istanbul University-Cerrahpasa Department
of Computer Engineering since 2009. He is the Vice Dean of Engi-
neering Faculty and Head of Cyber Security Department since 2016.
His research interests include optical networks, network security,
information security and cryptography.

ISSN: 2147-284XCopyright © BAJECE https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 12, No. 4, December 2024

346

https://dergipark.org.tr/bajece

APPENDIX

TABLE III: Malware Classification of Suspicious Files
- Trojan

Trojan
Trojan.CYGU-5
Trojan.GenericKD.37014839
Trojan.GenericKD.46282322 (B)
Linux.Trojan.Agent.WM6SLY
Trojan.GenericKD.36919466 (B)
Trojan.Generic.D233049B
Trojan:Linux/Multiverze
Trojan.Gen.NPE
E32/Trojan.OJUR-2
TROJ GEN.R049C0PF82
Trojan/Generic.ASSuf.3CFBA
Trojan.Generic-Bash.Save.81cad571
Linux.Trojan.Agent.BYCO3E
Trojan.Linux.Agent
Trojan.Generic.D2C47968
Trojan.Generic-Bash.Save.b4766376
TrojanDownloader.Linux.w
Trojan-Downloader.Linux.Sh
Trojan.Generic.D2C23652
Linux.Trojan.Agent.U1BI7F
E32/Trojan.ADHC-11
Trojan.BDNM-12
Trojan.Malware.121218.susgen
Trojan.SuspectCRC
Unix.Trojan.DarkNexus-7679166-0
Trojan.Shell.Agent
Trojan.GenericKD.37014839 (B)
Trojan.ElfArm32.Dwn.ixvyeu
Trojan.Generic
Trojan.GenericKD.36890669 (B)
TrojanDownloader.Linux.yr
Trojan.GenericKD.46111158 (B)
Trojan.Gafgyt.Linux.28527
Trojan.GenericKD.46354653
Trojan.GenericKD.37044452 (B)
Elf.Trojan.A1686007
Trojan.GenericKD.46111158
Linux.Trojan.Agent.956L7O
Trojan.Generic.D2C3EBF0
Trojan.U.Downloader.oa
Trojan.Generic-Script.Save.ba695
Trojan.Shell.Agent.a!c
E32/Trojan.KSLF-8
Trojan.GenericKD.46373334 (B)
ELF.Trojan.42987.GC
TrojanDownloader.Linux.xc
Linux.DownLoader.598
E32/Trojan.BIKP-4
Archive.Trojan.Agent.237VFG
Trojan.GenericKD.46300839
Win32.Trojan-downloader.Agent.Ljke
Trojan.GenericKD.36946419
Trojan:Script/Woreflint.A!cl
Trojan.GenericKD.36897947 (B)
TROJ GEN.R002C0DDR21
Trojan.Generic.D233C1F3
TROJ FRS.VSNW17D21
Trojan.Generic.D233C1F3

TABLE IV: Malware Classification of Suspicious Files
- Other

Other
GenericRXPJ-JL!B7740B0E0D53
GenericRXPL-SI!3B6C0968416D
Script.Application.Agent.ESB7CE
multiple detections
LINUX.Agent
Suspicious.Linux.Save.a
a variant of Generik.JHEILIY
PUA.Generic
Linux/DDoS-BIB
a variant of Linux/Gafgyt.AXI
GenericRXHV-CO!494F5DC3C97D
GenericRXID-MY!CEAE104121FB
Script.Application.Agent.BYSNFG
ex virus.script.bash.000002
LINUX/Agent.SH.CDWC
GenericRXIA-AZ!3DC11C062A9F
LINUX/Gafgyt.quxje
BV:Agent-BHX [Drp]
GenericRXLU-EV!62CF685B889F
LINUX/Dldr.Agent.chw
GenericRXIA-VB!2CA7C03A8DCB
Linux.Lightaidra
PUP-XNS-AN
GenericRXHZ-TQ!F42C2BC71DC8
GenericRXIA-WK!D0B5FB9EA23F
a variant of Generik.GVFDFVN
Linux/DDoS-CIA
ELF:CVE-2017-17215-A [Expl]
PossibleThreat
Linux/Gafgyt.DF!tr.bdr
GenericRXIB-LH!FC4CD46E3F7C
HackTool.XMRMiner!1.C0AC (CLASSIC)
GenericRXIB-BH!F3630D8BF607
RDN/Generic.dx
GenericRXIB-FF!4CDE0578155B
RiskTool.Linux.clc
Static AI - Malicious ELF

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 12, No. 4, December 2024

347

https://dergipark.org.tr/bajece

TABLE V: Malware Classification of Suspicious Files
- Mirai

Mirai
avariantofLinux/TrojanDownloader.Mirai.A
LINUX/Dldr.Mirai.nmpob
Trojan.Linux.Mirai.GED
Generic.Bash.MiraiA.EB5DB9B6(B)
Generic.Bash.MiraiA.EB5DB9B6
LINUX/Dldr.Mirai.aymds
LINUX/Dldr.Mirai.gours
HEUR:Trojan-Downloader.Linux.Mirai.d
ELF/Mirai.A!tr.dldr
Backdoor.Linux.MIRAIA.USNELFD21
Gen:NN.Mirai.34058
Linux/Mirai.Gen35
Generic.Bash.MiraiB.F5F3FD03(B)
LINUX/Mirai.bykao
Backdoor.Mirai/Linux!1.BAF6(CLASSIC)
Possible MIRAIDLOD.SMLBAT5
Trojan.Linux.Mirai.K!c
Backdoor.Mirai/Linux!1.B311(CLASSIC)
UDS:Backdoor.Linux.Mirai
Linux/Mirai.D!tr.dldr
Linux.Trojan-downloader.Mirai.Wqmn
Backdoor.Linux.MiraiDownload.ve
Linux.Mirai.B!tr.bdr
ELF:MiraiDownloader-KG[Trj]
Linux.Mirai.2924
HEUR:Trojan-Downloader.Linux.Mirai.e
ELF/Mirai.D!tr
ELF:MiraiDownloader-JD[Trj]
Lnx/Mirai-FEBO!62CF685B889F
LINUX/Mirai.apkfl
Linux.Mirai.4511

TABLE VI: Malware Classification of Suspicious Files
- Backdoor and Malware

Backdoor Malware
Backdoor.Linux.rec Malware@#1hds26rs9a7iq
Backdoor.Linux.ZYX.USDSEED21 Malware.Generic-Script.Save.ba303
Backdoor.Linux.bskw Malware@#t8qixr26txeu
Backdoor.Linux.Agent Mal/ShellDl-A
HEUR:Backdoor.Linux.Gafgyt.df Malware@#z42j21fz2ven
Backdoor/Text.CryptoBot Malware@#11tskun56nig
RDN/Generic BackDoor Malware.Generic-Script.Save.ba104

Other:Malware-gen [Trj]
Malware.ELF-Script.Save.b606d819
Malware@#3noqscxynq9q3

TABLE VII: Malware Classification of Suspicious
Files - CoinMiner and Downloader

CoinMiner Downloader
Multios.Coinminer.Miner-6781728-2 Shell/ElfDownloader.S3
E64/CoinMiner.B.gen!Camelot Linux.DownLoader.535
Downloader/Shell.ElfMiner.S1165 Linux.DownLoader.533
Application.Linux.Miner.LL BV:Downloader-JS [Drp]
Trojan.U.CoinMiner.oa TrojanDownloader.Linux.eh
Linux/CoinMiner.Gen2 Linux/Downloader.1288
ELF/BitCoinMiner.HF!tr RDN/Generic Downloader.x
not-a-virus:HEUR:RiskTool.Linux.BitCoinMiner.b Linux/Downloader.w
LINUX/BitCoinMiner.fmbfm Linux.DownLoader.532
Linux.Risk.Bitcoinminer.Dwtp Linux.DownLoader.459

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 12, No. 4, December 2024
348

https://dergipark.org.tr/bajece

	Introduction
	Related Work
	Malware
	Malware Types
	Malware Detection Techniques
	Malware Analysis Methods

	Experimental Method
	Preparation Process
	Malware Gathering
	Evaluation of Malware
	Control Application

	Result
	Discussion and Conclusion
	References
	Biographies
	Melike BAŞER
	Ebu Yusuf GÜVEN
	Muhammed Ali AYDIN

	Appendix

